Brazil May Accelerate B5 Mandate from 2013 to 2010
CalCEF Invests in Electric Car and Biodiesel Companies

DOE JGI Sequences, Releases Genome of Symbiotic Tree Fungus

Laccaria bicolor and Douglas fir. Source: INRA.

The US Department of Energy Joint Genome Institute (DOE JGI) has determined the DNA sequence of Laccaria bicolor, a fungus that forms a beneficial symbiosis with trees and inhabits one of the most ecologically and commercially important microbial niches in North American and Eurasian forests.

The complete Laccaria genome sequence was announced 23 July at the Fifth International Conference on Mycorrhiza in Granada, Spain, by an international consortium comprising DOE JGI, Oak Ridge National Laboratory (ORNL), France’s National Institute for Agricultural Research (INRA), the University of Alabama in Huntsville (UAH), Ghent University in Belgium, and additional groups in Germany, Sweden, and France.

The Laccaria genome sequence will provide the global research community with a critical resource to develop faster growing trees for producing more biomass that can be converted to fuels, and for trees capable of capturing more carbon from the atmosphere.

This unique research opportunity enables us to use functional genomics to advance the understanding of how this symbiosis enhances biomass production and carbon management, particularly through the interaction with the poplar tree, also sequenced by DOE JGI.

Characterization of the interactions between poplar and its symbiotic associate, Laccaria bicolor, allows us to explore the coordinated response to environmental stressors, such as drought and extreme temperature, and other biological factors, providing a new dimension to climate change research and a step further toward mechanistic modeling of ecosystem responses.

We can now harness the interaction between these species and identify the factors involved in biomass production by characterizing the changes that occur between the two genomes as the tree and the fungus collaborate to generate biomass. It also helps us to understand the interaction between these two symbionts within the context of the changing global climate.

—DOE JGI Director Eddy Rubin

Key factors behind the ability of trees to generate large amounts of biomass or store carbon reside in the way that they interact with soil microbes known as mycorrhizal fungi, which excel at procuring necessary, but scarce, nutrients such as phosphate and nitrogen. When Laccaria bicolor partners with plant roots, a mycorrhizal root is created, resulting in a mutualistic relationship that significantly benefits both organisms. The fungus within the root is protected from competition with other soil microbes and gains preferential access to carbohydrates within the plant.

Such mycorrhizae are critical to terrestrial ecosystems, according to Francis Martin, INRA’s Laccaria project leader. Approximately 85% of all plant species, including trees, are dependent on such interactions to thrive. Mycorrhizae significantly improve photosynthetic carbon assimilation by plants and are estimated to fix more phosphate and nitrogen than the entire worldwide chemical fertilizer industry produces.

The woody tissues of trees act as one of the world’s most important terrestrial sinks for CO2, making trees an important stabilizer of carbon in the earth’s environment. The steady rise of global atmospheric CO2 concentrations suggests that we are on the trajectory for serious environmental problems. This situation could be eased by modeling and actively managing the complex relationships between trees and fungi.

—Francis Martin

The DOE Joint Genome Institute, supported by the DOE Office of Science, unites the expertise of five national laboratories—Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest—along with the Stanford Human Genome Center to advance genomics in support of the DOE mission related to clean energy generation and environmental characterization and clean-up.



allen Z

Nice, another symbiotic nitro/mineral fixing relationship. Perhaps this may be appiled in some way to other plants, esp. crops/trees.


This is crazy. While thoughtful, well researched revegetation projects are already technically feasible, they are socially infeasible in the current climate and receive no serious funding.

Playing god with genetics is simply going to create more problems than it is likely to solve, even if the political will for serious revegetation projects was to exist. Nice for the autistic researchers, not nice for people and the planet.

John Schreiber

This is the answer to those who worry that we will destroy the earth tying to grow our own energy. There are other microbes that do the same work in good organic soils. Genetic modification of plants is not the only way to get there, but I can't say I am totally opposed to it.

allen Z

can we splice the roots in like we do with stems?

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.


Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)