A123 Systems to supply 1MW Li-ion grid storage system to Maui Electric Company; 2MW system for NSTAR demonstration
Mercedes-Benz launching E 300 BlueTEC diesel and E 400 gasoline hybrids at Detroit Auto Show

SRI developing process for co-gasification of methane and coal to produce liquid transportation fuels; negligible water consumption, no CO2

Top: Conventional F-T process. Bottom: SRI process. Click to enlarge.

Researchers from SRI International (SRI) are developing a methane-and-coal-to-liquids process that consumes negligible amounts of water and does not generate carbon dioxide. Based on data from bench-scale tests, SRI engineers estimate that the capital cost for a full-scale plant using SRI’s process would be less than half that of a conventional coal-to-liquids (CTL) plant using Fischer-Tropsch synthesis (FTS). FTS produces only a small fraction of the hydrocarbons needed for fuel and requires extensive recycling.

The SRI CTL plant design offers a lower CO2-emitting fuel then conventional diesel; a lifecycle analysis by SRI put conventional diesel at 389 gCO2/mile, conventional F-T coal-to-liquids diesel at 830 gCO2/mile; and the SRI synthetic fuel at 326 gCO2/mile (when using carbon-neutral electricity. If biogas is substituted for conventional natural gas, total GHG emissions can further significantly reduced (190 gCO2/mile).

Lifecycle GHG comparison. Data: SRI. Click to enlarge.

The cost per gallon for the SRI fuel is higher than F-T fuel, however: a calculated $2.81 per gallons vs. $2.14.

SRI’s new process, developed in response to a DARPA (Defense Advanced Research Projects Agency) solicitation (DARPA-BAA-08-58), is based on the co-gasification of coal and methane. The coal first decomposes into volatiles and char while CH4 is converted into CO/H2 mixtures; the char is converted into CO/H2 mixtures via steam gasification on longer time scales.

The syngas is converted into methanol, which is then processed to make transportation fuels—in the case of the DARPA challenge, JP-8 (military distillate fuel). The use of natural gas (CH4) eliminates the need to add water as a source of hydrogen, reduces the need to add energy to drive the gasification reaction, and results in the use of a smaller gasifier.

As described in a presentation by Ripudaman Malhotra, associate director of SRI’s Chemical Science and Technology Laboratory at the 28th Annual International Pittsburgh Coal Conference, SRI uses process intensification (all C to product) to reduce capital cost; adjusts the syngas ratio to produce CO + 2H2, ideal for methanol; and uses efficient COTS (commercial off-the-shelf) technology for the methanol to JP-8 conversion.

In conventional CTL approaches, energy is supplied by burning a portion of the coal feed, which then produces carbon dioxide. SRI’s approach makes it economical to use carbon-neutral electricity, such as nuclear, hydro, or solar as a source of additional energy.

Process flow diagram. Source: SRI. Click to enlarge.

SRI estimates the efficiency of its CTL plant at 67%—significantly higher then traditional CTL plants predominately because it is converting 100% of the carbon feed into product and it utilizes electricity generated off-site. Accounting for the heat rate of generating that electricity from a traditional coal plant would result in a plant efficiency of 47%.

The implications of this research are expansive, including enhancing US energy security through the use of domestic carbon sources. The process can also dramatically reduce the environmental footprint associated with alternative transportation fuels.

—Robert Wilson, Ph.D., director, Chemical Science and Technology Laboratory, SRI International

SRI performed a series of analyses to examine the environmental impact of the technology under several scenarios. Based on these analyses, if diesel were produced using biogas as the source of methane, the resulting product would qualify as an alternative fuel under the revised Renewable Fuels Standard of the Energy Independence and Security Act of 2007. The Act requires alternative fuels to meet a standard of 50% reduction of greenhouse gas emissions compared to other fuels.

The work was supported by DARPA under Contract No. HR0011-10-0049.

DARPA solicitation. The DARPA solicitation set goals for a coal-to-liquids process for JP-8 of:

  • Process scalable to 100,000 bbl/day
  • Production cost of JP8 less than $3.00/gallon
  • No CO2 emissions during process
  • Water consumption less than 235 kg/barrel
  • Capital cost less than $15,000/daily barrel
  • (The availability of CO2-free electricity was assumed.)



Sounds good - not ideal, but practical.
The US has loads of gas and coal.
You could use biogas (if you had it) or electricity from some renewable source (when available) to generate liquid fuel.
While you might be able to electrify urban and short-medium range commuter transport, long range trucking and aviation will need liquid fuels for the foreseeable future.

The Chinese could probably use as well.


"Where do you want to get your gasoline from? ... Do you want to get it from the Middle East? Do you want to get it from Canadian oil sands?" Kelly asked. "Or you want to get it from the U.S. with U.S. jobs? Why not us?"



Sounds pretty smart, and no CO2 emission removes one of the main drawback of FT process, efficiency of conversion is also improved.

the last problem is cost, FT requires huge capital investment upfront as well as high running cost. You can easily go broke if the price of oil drops, so FT is only if oil is steady above 100$/B

overall might be better than canadian tar sands, but not as good as electrification and more efficient engines


they also say that capital cost is halved, wow .. sounds promising then


If the capital cost is so much lower, why is the price per gallon higher?


Capital cost is fixed cost and price per gallon is variable. They use methane instead of water and external electricity, which increases the cost per gallon.


'Course you gotta dig that coal outta the ground (explosives work best) and frack up the shale to git the methane... transport it all over the FT plant an then turn it all to liquid syn-gasoline. Which emits a whole bunch a CO2...

How about give us how much foreign oil we don't have to import and pay for with the lives of young soldiers?? Those are the metrics that matter to humanitarians and people who care about the "economy."


They haul coal across the country for coal fired power plants. Why not convert those plants to be energy plants that produce fuel as well?


That's called "polygeneration".

Unfortunately, the tonnage of coal being mined is going up while the total BTUs delivered is going DOWN. The USA is experiencing diminishing returns in coal mining, and using coal to make motor fuel would simply accelerate the process.


Coal gasification and combined cycle is more efficient, with increased efficiency they can make the same electrical power with less coal and use the rest for making fuels.

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.


Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)