Green Car Congress  
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

« Aviat, Aviation Foundation unveil concept CNG-fueled single-engine aircraft | Main | NSF awards $2M to U-Mich for algal biofuel work; looking to algal communities to enhance yield »

Print this post

UT Austin researchers successfully spoof yacht at sea with false GPS signals

31 July 2013

A radio navigation research team from The University of Texas at Austin successfully coerced a 213-foot yacht off its course, using a GPS spoofing device.

GPS spoofing creates false civil GPS signals to gain control of a vessel’s GPS receivers. The purpose of the experiment, led by assistant professor Todd Humphreys of the Department of Aerospace Engineering and Engineering Mechanics at the Cockrell School of Engineering, was to measure the difficulty of carrying out a spoofing attack at sea and to determine how easily sensors in the ship’s command room could identify the threat.

The researchers hope their demonstration will shed light on the perils of navigation attacks, serving as evidence that spoofing is a serious threat to marine vessels and other forms of transportation. Last year, Humphreys and a group of students led the first public capture of a GPS-guided unmanned aerial vehicle (UAV), or drone, using a GPS device created by Humphreys and his students.

With 90% of the world’s freight moving across the seas and a great deal of the world’s human transportation going across the skies, we have to gain a better understanding of the broader implications of GPS spoofing. I didn’t know, until we performed this experiment, just how possible it is to spoof a marine vessel and how difficult it is to detect this attack.

—Todd Humphreys

In June, the team was invited aboard the yacht White Rose of Drachs while it traveled from Monaco to Rhodes, Greece, on the Mediterranean Sea. The experiment took place about 30 miles off the coast of Italy as the yacht sailed in international waters.

From the White Rose’s upper deck, graduate students Jahshan Bhatti and Ken Pesyna broadcasted a faint ensemble of civil GPS signals from their spoofing device—a blue box about the size of a briefcase—toward the ship’s two GPS antennas. The team’s counterfeit signals slowly overpowered the authentic GPS signals until they ultimately obtained control of the ship’s navigation system.

Unlike GPS signal blocking or jamming, spoofing triggers no alarms on the ship’s navigation equipment. To the ship’s GPS devices, the team’s false signals were indistinguishable from authentic signals, allowing the spoofing attack to happen covertly.

Once control of the ship’s navigation system was gained, the team’s strategy was to coerce the ship onto a new course using subtle maneuvers that positioned the yacht a few degrees off its original course.

Once a location discrepancy was reported by the ship’s navigation system, the crew initiated a course correction. In reality, each course correction was setting the ship slightly off its course line. Inside the yacht’s command room, an electronic chart showed its progress along a fixed line, but in its wake there was a pronounced curve showing that the ship had turned.

After several such maneuvers, the yacht had been tricked onto a parallel track hundreds of meters from its intended one.

The experiment helps illustrate the wide gap between the capabilities of spoofing devices and what the transportation industry’s technology can detect, Humphreys said.

Chandra Bhat, director of the Center for Transportation Research at The University of Texas at Austin, believes that the experiment highlights the vulnerability of the transportation sector to such attacks.

The surprising ease with which Todd and his team were able to control a (multimillion) dollar yacht is evidence that we must invest much more in securing our transportation systems against potential spoofing.

—Chandra Bhat

It’s important for the public and policymakers to understand that spoofing poses a threat that has far-reaching implications for transportation, Humphreys said.

This experiment is applicable to other semi-autonomous vehicles, such as aircraft, which are now operated, in part, by autopilot systems. We’ve got to put on our thinking caps and see what we can do to solve this threat quickly.

—Todd Humphreys

As part of an ongoing research project, funding and travel expenses for this experiment was supported by UT Austin’s Wireless Networking and Communications Group through the WNCG’s Industrial Affiliates program.

July 31, 2013 in Brief | Permalink | Comments (0) | TrackBack (0)

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c4fbe53ef01901e8c3cd2970b

Listed below are links to weblogs that reference UT Austin researchers successfully spoof yacht at sea with false GPS signals:

Comments

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Working...
Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

Working...

Post a comment

Green Car Congress © 2013 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group