Green Car Congress  
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

« SUPERVALU unveils new natural gas powered truck fleet and fill station | Main | Scientists discover quick recipe for producing hydrogen »

Print this post

Added molecules allow metal-organic frameworks to conduct electricity

9 December 2013

Scientists from the National Institute of Standards and Technology (NIST) and Sandia National Laboratories have developed conductive metal-organic frameworks (MOFs)—MOFs with the ability to conduct electricity. These porous and conductive MOFs may be the first in an entirely new class of materials that could be used for sensing, conformal electronics (electronics that can bend and conform to unusual shapes), and other as-yet-unknown applications.

Retrieve.cfm
Electron-sharing TCNQ molecules bind to the copper ions in the framework to enable electrical conductivity in MOF materials. The dotted white arrows illustrate the mechanism of electrical conductivity in these materials. (TCNQ: 7,7,8,8-tetracyanoquinododimethane) Credit: M. Foster/Sandia National Labs. Click to enlarge.

MOFs are three-dimensional crystalline materials with nanoscale pores made up of metal ions linked by various organic molecules. MOFs have huge surface areas, and scientists can easily control the size of their pores and how the pores interact with molecules by tinkering with their chemistries. These characteristics make them ideal for use as catalysts, membranes or sponges for gas storage or for drug delivery, among other applications. Thousands of new MOF structures are discovered and characterized each year.

The NIST/Sandia team developed a method to modify the electrical conductivity of MOF thin films and to control it over six orders of magnitude. Their findings will appear in the journal Science.

MOFs are typically extremely poor electrical conductors because their constituent building blocks, the organic linkers and the metal ions, don’t really talk to each other in terms of electrical conduction. Our work points to a way of controlling and increasing their conductivity.

—NIST materials engineer Andrea Centrone

The group accomplished this by infiltrating an insulating MOF with redox-active, conjugated guest molecules—i.e., they infused and bound electron-sharing molecules into MOF thin films to create a material that is stable in air and approximately a million times more conductive than the unaltered MOF.

Based on several spectroscopic experiments, we believe that the guest molecules serve two important purposes: they create additional bridges between the metal ions—copper, in this case—and they accept electrical charge.

—NIST chemist Veronika Szalai

According to NIST physicist Paul Haney, who provided some modeling for the experimental data, the arrangement of the guest molecules in the MOF creates a unique conductivity mechanism while preserving the benefits of the porous MOF crystalline structure.

Our discovery gives chemists and engineers a whole new degree of freedom to tailor these materials for their technological applications. I would not be surprised if solar cells could be made using this new class of materials.

—Andrea Centrone

Resources

  • A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster,V. Stavila, P. Haney, R.A. Kinney, V. Szalai, F. El Gabaly, H.P. Yoon, F. Léonard and M.D. Allendorf (2013) “Tunable electrical conductivity in metal-organic framework thin-film devices,” Science doi: 10.1126/science.1246738

December 9, 2013 in Brief | Permalink | Comments (0) | TrackBack (0)

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c4fbe53ef019b0264b2d2970b

Listed below are links to weblogs that reference Added molecules allow metal-organic frameworks to conduct electricity:

Comments

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Working...
Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

Working...

Post a comment

Green Car Congress © 2014 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group