Green Car Congress  
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

« ORNL, Cincinnati Inc. partner to develop commercial large-scale polymer additive manufacturing system | Main | Williams announces new partnership with Petrobras for new F1 fuel »

Print this post

Rice study shows carbon nanotube fibers can carry up to 4x current as copper wire of same mass

18 February 2014

On a pound-per-pound basis, wet-spun carbon nanotube-based fibers developed at Rice University can carry up to four times as much electrical current as copper cables of the same mass, according to new study by researchers there. This higher current-carrying capacity (ampacity), said the researchers, makes these nanotube-based cables attractive for lightweight power transmission in systems where weight is a significant factor, such as aerospace applications.

While individual nanotubes are capable of transmitting nearly 1,000 times more current than copper, the same tubes coalesced into a fiber using other technologies fail long before reaching that capacity. However, a series of tests at Rice showed its wet-spun carbon nanotube fiber still handily beat copper.

The analysis led by Rice professors Junichiro Kono and Matteo Pasquali appeared online this week in the journal Advanced Functional Materials. Just a year ago the journal Science reported that Pasquali’s lab, in collaboration with scientists at the Dutch firm Teijin Aramid, created a very strong conductive fiber out of carbon nanotubes.

Present-day transmission cables made of copper or aluminum are heavy because their low tensile strength requires steel-core reinforcement. Scientists working with nanoscale materials have long thought there’s a better way to move electricity from point to point. Certain types of carbon nanotubes can carry far more electricity than copper. The ideal cable would be made of long metallic “armchair” nanotubes that would transmit current over great distances with negligible loss, but such a cable is not feasible because it’s not yet possible to manufacture pure armchairs in bulk, Pasquali said.

In the meantime, the Pasquali lab has created a method to spin fiber from a mix of nanotube types that still outperforms copper. The cable developed by Pasquali and Teijin Aramid is strong and flexible even though at 20 microns wide, it’s thinner than a human hair.

The researchers analyzed the fiber’s ampacity with a custom rig that allowed them to test it alongside metal cables of the same diameter. The cables were tested while they were suspended in the open air, in a vacuum and in nitrogen or argon environments.

Electric cables heat up because of resistance. When the current load exceeds the cable’s safe capacity, they get too hot and break. The researchers found nanotube fibers exposed to nitrogen performed best, followed by argon and open air, all of which were able to cool through convection. The same nanotube fibers in a vacuum could only cool by radiation and had the lowest CCC.

The outcome is that these fibers have the highest CCC ever reported for any carbon-based fibers. Copper still has better resistivity by an order of magnitude, but we have the advantage that carbon fiber is light. So if you divide the CCC by the mass, we win.

—Junichiro Kono

Kono plans to further investigate and explore the fiber’s multifunctional aspects, including flexible optoelectronic device applications.

The paper’s co-authors are Rice alumnus Natnael Behabtu and graduate students Colin Young and Dmitri Tsentalovich. Kono is a professor of electrical and computer engineering, of physics and astronomy, and of materials science and nanoengineering. Pasquali is a professor of chemical and biomolecular engineering, chemistry, and materials science and nanoengineering. Tsentalovich, Kono and Pasquali are members of the Richard E. Smalley Institute for Nanoscale Science and Technology.

The research was supported by the Department of Energy, the National Science Foundation, the Robert A. Welch Foundation, Teijin Aramid BV, the Air Force Office of Scientific Research and the Department of Defense National Defense Science and Engineering Graduate Fellowship.

Resources

  • Xuan Wang, Natnael Behabtu, Colin C. Young, Dmitri E. Tsentalovich, Matteo Pasquali, Junichiro Kono (2014) “High-Ampacity Power Cables of Tightly-Packed and Aligned Carbon Nanotubes,” Advanced Functional Materials doi: 10.1002/adfm.201303865

February 18, 2014 in Brief | Permalink | Comments (3) | TrackBack (0)

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c4fbe53ef01a5116f83da970c

Listed below are links to weblogs that reference Rice study shows carbon nanotube fibers can carry up to 4x current as copper wire of same mass:

Comments

What is thermal expansion and tensile at operating temp. How much wider could tower spacing go vs copper?

Icing, temperature extremes and wind conditions have to be considered.

In principle, lower weight cables could use fewer support towers, if they can manage-handle the environment.

These could be ideal for underground-sea power cables?

Carbon nanotubes impregnated into aluminum already beat copper. Alone they're also fine for all the extremes you mentioned.

It's mainly a matter of price/performance at this point, and the price is simply too high for bulk power cables.

Expensive fighter jets might be worth it for the weight savings.

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Working...
Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

Working...

Post a comment

Green Car Congress © 2013 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group