2019 Subaru Forester features updated 2.5L BOXER engine with stop/start, DriverFocus technology
EIA: US net energy imports in 2017 fell to their lowest levels since 1982

DESY study finds edges and corners increase efficiency of catalytic converters

Catalytic converters for cleaning exhaust emissions are more efficient when they use nanoparticles with many edges, according to a study carried out at the the Deutsches Elektronen-Synchrotron (DESY), a research center of the Helmholtz Association, X-ray source PETRA III.

A team of scientists from the DESY NanoLab watched live as carbon monoxide (CO) was converted into CO2 on the surface of noble metal nanoparticles such as those used in catalytic converters of cars. The results, presented in a paper in the journal Physical Review Letters, suggest that having a large number of edges increases the efficiency of catalytic reactions.

The different facets of the nanoparticles are often covered by growing islands of a nano oxide, finally rendering these facets inactive. At the edges, the oxide islands cannot connect, leaving active sites for the catalytic reaction and an efficient oxygen supply.

With increasing oxygen (red) concentration, an oxide sandwich forms on the surface of the metallic nanoparticles, inhibiting the desired reaction of carbon monoxide to carbon dioxide. At the edges, however, the oxide sandwich brakes up, leaving free active sites for catalysis. The more edges the nanoparticles posses, the more efficient will the catalytic converter work. Credit: DESY, Lucid Berlin. Click to enlarge.

Catalytic converters usually use nanoparticles because these have a far greater surface area for a given amount of the material, on which the catalytic reaction can take place. The scientists at DESY’s NanoLab grew platinum-rhodium nanoparticles on a substrate in such a way that virtually all the particles were aligned in the same direction and had the same shape of truncated octahedrons (octahedrons resemble double pyramids).

The scientists then studied the catalytic properties of this sample under the typical working conditions of an automotive catalytic converter, with different gaseous compositions in a reaction chamber that was exposed to intense X-rays from PETRA III on the P09 beamline.

The efficiency of catalytic materials can be measured using a mass spectrometer that reveals the proportions of certain types of molecules in the exhaust emissions, here the relative concentrations of carbon monoxide, oxygen and carbon dioxide. Because of the parallel alignment of the nanoparticles, the scientists were also able to determine those surfaces of the nanoparticles on which the reaction went particularly well.

Normally, the noble metal nanoparticles in a car’s catalytic converter are attached to tiny crumbs of substrate, which stick together forming complex structures.

These are difficult to examine using X-rays, because the noble metals only account for a few weight percent and in particular because the nanoparticles are aligned in all sorts of different directions. Under X-ray illumination, every particle produces a separate diffraction pattern and these overlap to create a blurred image. By having them aligned in parallel to each other, on the other hand, the diffraction patterns of all the nanoparticles are superimposed and amplify each another. This allows the different facets of the nanoparticles, in other words their individual surfaces, to be identified and specifically observed.

—Andreas Stierle, lead scientist at DESY and a professor of nanoscience at the University of Hamburg

The investigation showed that the reactivity of the nanoparticles increases sharply at a certain oxygen concentration—when just enough oxygen is available to oxidize each carbon monoxide molecule and turn it into carbon dioxide, said Stierle.

Beyond that concentration, the reactivity gradually drops again because a thick oxide layer grows on the surface of the particles, impeding the reaction. The X-ray analysis revealed the atomic structure of the surface of the nanoparticles at the best resolution yet under the conditions at which the reaction occurs. This shows that once a certain oxygen concentration is exceeded, the different crystal faces of the nanoparticles become coated with an oxygen-rhodium-oxygen sandwich, until eventually the surface of the metal is completely covered by this nano oxide layer.

The surface oxide eventually forms a closed layer over the nanoparticles. This is unfavorable for the desired reaction at first, because it makes it difficult for carbon monoxide molecules to attach themselves to the surface. However, the oxygen is unable to form a closed film along the edges between the faces of the nanoparticles, which means that the reactivity along the edges is higher.

—Uta Hejral, first author

This finding suggests a direct pathway to making catalytic converters more efficient: “We would expect catalytic converters to be increasingly efficient the more edges the nanoparticles have for a given surface area,” says Stierle. This finding can probably also be applied to many other catalytic reactions. Additional studies will have to show by how much the efficiency can be increased as a result.


  • U. Hejral, D. Franz, S. Volkov, S. Francoual, J. Strempfer, and A. Stierle (2018) “Identification of a catalytically highly active surface phase for CO oxidation over PtRh nanoparticles under operando reaction conditions” Physical Review Letters doi: 10.1103/PhysRevLett.120.126101


Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.


Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)