Chevrolet introduces Dynamic Fuel Management cylinder deactivation on 2019 Silverado; Tula Dynamic Skip Fire
NREL develops EVI-Pro Lite tool for EV infrastructure planning

2019 Chevrolet Silverado 1500 offered with new 4-cylinder turbo with Active Fuel Management cylinder deactivation

The 2019 Chevrolet Silverado 1500 pickup truck will be offered with an all-new, technologically advanced 2.7L Turbo. Standard on LT and RST trims, the new engine delivers an SAE-certified 310 horsepower and 348 lb-ft (472 N·m) of torque—22% more torque than the 4.3L V-6 it replaces. Developed specifically for truck applications, the new 2.7L Turbo inline four-cylinder engine delivers peak torque from 1,500 to 4,000 rpm.

2-7L-Turbo-with-Active-Fuel Management-and-stopstart-technology

2.7L Turbo with Active Fuel Management and stop/start technology, All-new 2.7L Turbo with Active Fuel Management and stop/start technology paired with an eight-speed automatic transmission (SAE-certified at 310 hp/348 lb-ft).

The next-gen Silverado with the 2.7L Turbo delivers 0-60 mph performance in less than seven seconds and weighs 380 pounds less than the current Silverado with the 4.3L V-6. Compared with competitive full-size trucks, the Silverado 2.7L Turbo is expected to deliver comparable payload capability with greater torque than the 3.3L V-6 in the Ford F-150 XLT and the 3.6L V-6 in the Ram 1500 Big Horn.

The cornerstone of the 2.7L Turbo is an innovative double overhead cam valvetrain that enables:

  • Chevrolet’s first use of Active Fuel Management (cylinder deactivation) on a four-cylinder engine. (Chevrolet is offering a progression of Active Fuel Management on its 5.3L and 6.2L V8s—fully-variable digital cylinder deactivation technology called Dynamic Fuel Management, earlier post.)

  • High- and low-lift valve profiles.

  • Continuously variable valve timing.

2019-Chevrolet-Silverado-RST-022

2019 Silverado RST.

Additional engine technologies supporting the engine’s performance and efficiency include:

  • Dual-volute turbocharger housing for improved throttle response and low-speed torque.

  • Chevrolet’s first application of Active Thermal Management, which uses targeted engine heating and cooling to improve engine performance in hot and cold ambient temperatures.

  • An integrated exhaust manifold that is part of the cylinder head assembly and recovers exhaust heat for faster engine and transmission warmup, with quicker turbo response.

  • Stop/start technology that automatically stops the engine in stop-and-go traffic for fuel efficiency.

  • An electric water pump that eliminates the drag of a conventional, engine-driven pump to enhance efficiency. It also enables continual cabin heating even when the engine is disabled by the stop/start feature.

The new 2.7L Turbo engine represents a clean-sheet design for Chevrolet and was developed from the outset as a truck engine.

To help generate the strong low-end torque customers expect in a truck, it was designed with a long piston stroke of 4.01 inches (102 mm). The long stroke enables improved combustion and thus a higher compression ratio. Typically, a long stroke can increase the load of the pistons against the cylinder walls, generating more friction. That’s alleviated in the 2.7L Turbo with an offset crankshaft. It is slightly off-center of the cylinders, allowing a more upright position for the connecting rods during their movement.

To support the high cylinder pressures that come with turbocharging, the crankshaft and connecting rods are made of forged steel and the pistons are made of a tough aluminum alloy with a cast iron ring groove insert.

All elements of the 2.7L Turbo were designed for the demands of turbocharged performance in a truck environment, and the engine was subjected to the same rigorous durability standards as the Silverado’s proven V-8 engines.

The 2.7L Turbo also features an aluminum block and cylinder head for reduced mass.

The 2.7L Turbo’s valvetrain is GM’s first to incorporate variable lift, duration and Active Fuel Management to optimize performance and efficiency across the rpm band. It is a key reason the engine’s peak torque is available at only 1,500 rpm.

The system’s electro-mechanical variable camshaft effectively allows the engine to operate with three different camshaft profiles, complementing the variable valve timing system to deliver optimized operating modes for different engine speeds and loads:

  1. High valve lift for full power.

  2. Low valve lift for balance of power and efficiency.

  3. Active Fuel Management shuts down two of the cylinders in light load conditions to further conserve fuel.

It’s like having different engines for low- and high-rpm performance. The camshaft profile and valve timing is completely different at low and high speeds, for excellent performance across the board.

—Tom Sutter, chief engineer for the 2.7L Turbo

The camshaft design alters the lift of the intake and exhaust valves. As the engine load changes, electromagnetic actuators allow a movable shaft containing different cam lobes to shift imperceptibly between high-lift and low-lift profiles.

Higher lift and longer duration allow more air to flow into the combustion chamber, so the system’s high-lift lobe profile enhances performance at higher rpm, while the low-lift profile optimizes efficiency at low- and mid-range speeds.

The 2.7L Turbo engine employs an advanced dual-volute turbocharger that elevates the performance and efficiency advantages of a conventional turbo, with quicker response and enhanced low-rpm torque production.

Rather than a single spiral chamber (volute) feeding exhaust gas from the exhaust manifold to drive the turbine on the turbocharger, the dual volute design has a pair of separate chambers with two exhaust gas inlets and two nozzles to drive the turbine. The design allows the exhaust pulses of the engine to be leveraged for faster spool-up and subsequent boost production, particularly at low rpm, where the effect significantly enhances torque output and drivability.

It works in unison with the engine’s integrated exhaust manifold/turbocharger housing, which splits the exhaust channels from the cylinder head so the exhaust flows through two separate channels in the turbo housing, based on the engine’s exhaust pulses. When complemented by the precision of the engine’s valvetrain, that separation leverages exhaust scavenging techniques to optimize gas flow, which decreases exhaust gas temperatures, improves turbine efficiency and reduces turbo lag.

An electronically controlled wastegate and charge-air cooling system support the turbocharger and enhance its effectiveness. Compared to a conventional wastegate, the electronically controlled version offers more precise management of the engine’s boost pressure for smoother, more consistent performance.

With the charge-air cooler, the pressurized, heated air generated by the turbocharger is pumped through a heat exchanger before it enters the engine. That lowers the air charge temperature by about 130 degrees F (74 degrees C), packing the combustion chambers with cooler, denser air that enhances power production. The system achieves more than 80% cooling efficiency with less than 2 psi (12 kPa) flow restriction at peak power, contributing to the engine’s available torque production at low rpm.

Additional features of the engine include:

  • A variable-pressure oiling system with a continuously variable-displacement vane oil pump enhances efficiency by optimizing oil pressure as a function of engine speed and load. With it, the oil supply is matched to the engine requirements rather than the excessive supply of a conventional, fixed-displacement oil pump.

  • Active Thermal Management helps the engine warm up faster and achieve its optimal engine temperature for performance and efficiency. The system uses a rotary valve system to distribute coolant through the engine in a targeted manner. It sends heat where it’s needed to warm up the engine to reduce friction and heat the cab, or cools when needed for high power operation.

  • An electric water pump—a first for Chevy trucks—supports the Active Thermal Management system and further enhances the engine’s performance and efficiency by eliminating the parasitic drag that comes with a conventional engine-driven water pump.

  • Direct fuel injection is used to optimize efficiency and performance. With direct injection, a higher compression ratio (10.0:1) is possible because of a cooling effect as the injected fuel vaporizes in the combustion chamber, reducing the charge temperature and improving resistance to spark knock. Direct injection also enables gas scavenging from the combustion chamber to the turbo for fast response.

  • Dual overhead camshafts contribute to the 2.7L Turbo’s smoothness and high output, with dual independent continuously variable valve timing working with the valvetrain to deliver optimal performance and efficiency. The dual independent system, which allows the intake and exhaust valves to be phased at different rates, promotes linear delivery of torque with near-peak levels over a broad rpm range, and high specific output (horsepower per liter of displacement) without sacrificing overall engine response or driveability.

  • An integrated exhaust manifold on the cylinder head assembly promotes faster engine warmup and quicker turbo response.

  • Oil jets located in the block are employed for performance and temperature control. They target the underside of the pistons and the surrounding cylinder walls with an extra layer of cooling, friction-reducing oil. The jets reduce piston temperature, allowing the engine to produce more power and enhance long-term durability.

  • Stop/start enhances fuel economy in city driving. The driver-selectable system shuts off the engine at stoplights and certain other stop-and-go situations, saving fuel. The engine automatically restarts when the driver takes their foot off the brake.

The all-new 2.7L Turbo is matched with a Hydra-Matic eight-speed automatic transmission featuring enhancements designed to improve shift quality, as well as a new centrifugal pendulum absorber torque converter that reduces vibrations to improve smoothness.

The all-new 2.7L Turbo will be built at the General Motors Spring Hill facility in Tennessee.

The 2019 Silverado goes on sale this fall. EPA fuel economy estimates and towing/payload capacities are not yet available and will be announced closer to launch.

Comments

SJC

Go aluminum and lose 500 pounds.

Lad

Goes to show V8s are now mostly PR, when you can get better performance out of a 4 cylinder and blown air; and, with improved mileage and less emissions.

TeslaRedux.co

I hope stop start resets to "on" or a lot of hillbillies will keep it turned off just to be stupid.

Nocreditreports

Not a low friction engine from what I can gather, and tuned for high torque down low. Compared to the 5.3L, I predict lower real world efficiency and higher emissions overall (especially high in small particulates). GM wanted an aftermarket tuner engine so here it is. If GM had wanted an efficient truck, it would have built it as a strong hybrid with electric auxilliaries and a fully electric front axle (at the least). Is GM going to respond to FCA?

Lad

With Trump and the Republicans running the Government, look for the transition to clean energy and EVs to be delayed as long as they can make it happen and as long as the fossil fuel corporation can bribe them to act in their interests and not the people's best interest.

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Working...
Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

Working...

Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)