TomTom teams with rideOS to integrate real-time traffic data into next-generation transportation platform
Blackmore unveils first doppler lidar on the road

Argonne announces Flame Spray Pyrolysis process for commodity-scale manufacture of nanomaterials

The US Department of Energy’s (DOE) Argonne National Laboratory announced the availability of a new manufacturing technology that simplifies the manufacture of nanomaterials in high volumes. Known as Flame Spray Pyrolysis (FSP), the technology offers significant benefits over traditional methods used to manufacture the particle-based substances that are critical to producing a wide range of industrial materials.

Image.php

Argonne’s new manufacturing technology, shown here, can simplify the manufacture of nanomaterials in high volumes. Benefits include faster production rates and reduced material waste than standard wet chemistry processes. Source: ANL.

Flame spray synthesis is a versatile process that allows for commodity-scale production of a very broad range of nanomaterials that includes silica, metallic, oxide and alloy powders or particulate films.

—Argonne Principal Investigator Joe Libera

Compared to the wet chemistry processes typically used for synthesizing these materials today, Argonne’s FSP process can deliver cost savings due to faster production rates and reduced material waste.

Argonne’s Combustion Synthesis Facility incorporates a suite of advanced diagnostics that supports the optimization of complex material targets such as aluminum-doped lithium lanthanum zirconium oxide. These enhanced material characterization capabilities enable greater manufacturing precision.

Although FSP technology is already employed by industry as the cheapest and best way to make carbon black, fumed silica and pigmentary titanium powders, it is not yet widely used for producing more complex materials due to the difficulty in perfecting their characteristics.

—Joe Libera

The Combustion Synthesis Research Facility is located at Argonne’s Materials Engineering Research Facility (MERF) outside Chicago, Illinois. Researchers at the MERF can apply Argonne’s highly instrumented FSP process to produce samples at pre-pilot-scale one-day rates up to 500 grams of a single chemistry or up to 50 grams each of up to four different chemistries or process conditions. The facility has a novel clean-in-place fixture that permits daily cleaning of the combustion tube, which permits switching chemistries daily without cross-contamination.

Going forward, Libera will continue to expand the Argonne Combustion Synthesis Research Facility, adding a Planer Laser Induced Fluorescence (PLIF) laser diagnostic system, that uses a tunable laser light sheet to develop a better understanding of the flame chemistries involved.

Building on Argonne’s strengths in discovery science, researchers will build multi-physics simulations of the FSP process that the PLIF diagnostic tool can then validate. Libera also plans to add the capability to test the deposition of flame-made materials directly onto application substrates.

Development of Argonne’s Flame Spray Pyrolysis process and Combustion Synthesis Research Facility is funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, and Argonne’s Laboratory-Directed Research and Development funding program through Argonne’s Manufacturing Science and Engineering Program.

Comments

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Working...
Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

Working...

Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)