ARENA awards A$22.1M to 16 projects to accelerate exporting renewable hydrogen
DENSO leads $65M Series C round in ThinCI; deep learning and AI for automotive

Sandia-led team discovers mechanism for soot formation

A team led by researchers at Sandia National Laboratories has discovered a mechanism for soot formation, apparently solving a longstanding scientific puzzle. A paper on their work is published in Science.

Soot, which is formed during the combustion of hydrocarbon fuels, such as oil, natural gas and wood, is ubiquitous and has large detrimental effects on human health, agriculture, energy-consumption efficiency, climate and air quality. Responsible for significantly increased rates of cardiovascular and pulmonary diseases and associated deaths, soot also contributes to millions of deaths worldwide annually, largely from indoor cooking and heating in developing nations. It leads to tens of thousands of deaths in the US every year, predominantly from human caused, or anthropogenic, emissions to the atmosphere. In the atmosphere, emissions of soot are known as black carbon.

Sandia researcher Hope Michelsen said that while everyone knows what soot is, nobody has been able to explain how gaseous fuel molecules become soot particles. She said soot formation turns out to be very different from the typical process of gas molecules condensing into a particle, instead, requiring fast chemical reactions rather than condensation.

The solution also can apply to other high-temperature conditions, such as interstellar space, where large quantities of carbon-dust particles are formed, she said.

Although it has detrimental health and environmental effects, soot is extremely important to many industrial processes, such as boiler performance, glass production and carbon-black generation for rubber-product reinforcement and pigments.

Despite the ubiquity and importance of soot, the basic chemistry explaining why the molecules in a flame stick together at high temperatures and form particles has remained a scientific puzzle until now, said Michelsen.

In its final form, soot is a solid very similar to graphite, but it is initially formed from gaseous hydrocarbons. Experimental evidence indicates that it transitions from a gas to a liquid before it becomes a solid. Scientists have been trying for decades to explain that transition.

Soot particles are formed when gaseous molecules are heated to high temperatures, and they don’t easily turn back to gaseous molecules the way water droplets do when they are heated up. Strong chemical bonds hold soot particles together.

Making soot is more like baking a cake than it is like condensing water. Heating liquid cake batter to high temperatures turns it into a stable solid form.

— Hope Michelsen

Scientists have long suspected that chemical bonds must be formed to make soot. However, soot formation is fast, and researchers did not understand how the required chemical bonds could form so quickly. To make the problem even more difficult, researchers were not even sure which gas-phase molecules were involved in producing soot.

The key to soot formation, it turns out, is resonance-stabilized radicals. In general, molecules that are radicals have unpaired electrons that they want to share, which makes them reactive. But, unlike most radicals, these resonance-stabilized radicals have unpaired electrons that participate in other bonds in the molecule.

Sharing electron density between the unpaired electrons and other bonds in the molecule makes these radicals more stable than other radicals, but, nevertheless, they are more reactive than most of the other large molecules that form soot.

Measurements conducted at the Advanced Light Source, a DOE Office of Science user facility at the Lawrence Berkeley Lab, showed a sequence of these radical species in all the flames studied. Michelsen said other researchers had seen these radicals and thought they might be involved in soot formation, but there didn’t seem to be enough of them to be the main driver.

We figured out that these radicals can start a chain reaction.

—Hope Michelsen

The researchers refer to this mechanism as clustering of hydrocarbons by radical-chain reactions (CHRCR).


Schematic overview of the clustering of hydrocarbons by radical-chain reactions (CHRCR) mechanism. Johansson et al.

When these radicals react with other molecules, they can easily form new resonance-stabilized radicals. In the process, they react with other gaseous hydrocarbons and keep growing, regenerating radicals as part of the growing particle.

Massachusetts Institute of Technology professor William Green said it has long been speculated that pathways involving resonantly-stabilized radicals might be important in polycyclic aromatic hydrocarbon (PAH) and soot formation, since the known reactions are not fast enough to explain the rapid formation of soot.

Indeed a few specific reactions of resonantly-stabilized radicals leading to PAH are known, but until now no one has presented a convincing general mechanism supported by experimental observations. I look forward to incorporating these newly discovered reaction pathways into a comprehensive PAH formation mechanism to determine the range of reaction conditions where these newly discovered pathways are important.

—William Green


  • K. O. Johansson, M. P. Head-Gordon, P. E. Schrader, K. R. Wilson, H. A. Michelsen (2018) “Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth” Science Vol. 361, Issue 6406, pp. 997-1000 doi: 10.1126/science.aat3417


Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.


Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)