Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search



[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Caltech, JPL designed megasupramolecule fuel additive reduces intensity of post-impact fuel explosions

October 02, 2015

Researchers at Caltech and JPL used statistical mechanics to design a polymeric fuel additive that can self-assemble into “megasupramolecules” (≥5000 kg/mol) at low concentration (≤0.3 weight percent) and thus can reduce the intensity of post-impact fuel explosions that occur during accidents and terrorist acts.

Furthermore, preliminary results show that the additive can provide this benefit without adversely affecting fuel performance. The work is published in the journal Science.

More... | Comments (0)

FAA awards $100M to 8 companies for CLEEN II development; lower fuel consumption, emissions and noise

September 09, 2015

The Federal Aviation Administration (FAA) has awarded $100 million in contracts to eight companies to develop and to demonstrate aviation technologies that reduce fuel consumption, emissions, and noise under the second phase of its Continuous Lower Energy, Emissions, and Noise (CLEEN II) program. (The CLEEN II solicitation was posted in October 2014.)

The five-year CLEEN II program will build on the success of the original CLEEN program, a public-private partnership that began in 2010 and is a key part of the FAA’s NextGen efforts to make aviation more environmentally friendly. (Earlier post.) The CLEEN team focused on nine projects in the area of energy efficient aircraft technologies and sustainable alternative jet fuels. The first of these technologies will enter service in 2016.

More... | Comments (2)

Global Bioenergies joins aireg to push jet fuel application of its isobutene process; isododecane

September 08, 2015

France-based Global Bioenergies, a company developing a processes to convert renewable resources into hydrocarbons through fermentation, has joined aireg (Aviation Initiative for Renewable Energy in Germany e.V.) aireg, an organization promoting the development and use of renewable liquid fuels in aviation, aims to replace 10% of German jet fuel demand with sustainable, alternative aviation fuels by 2025.

Global Bioenergies, which is currently developing its demonstration plant in Leuna, Germany, will soon be able to produce alternative jet fuel from sugars. Earlier this year, the company reported the successful conversion of renewable resources first into gaseous isobutene via fermentation, which was then subsequently catalytically oligomerized into a mix of fuel-range liquid hydrocarbons. (Earlier post.) The resulting product slate contained isooctane; isododecane (C12H26, a highly branched alkane well-suited for the aviation market); isocetane; as well as longer strings.

More... | Comments (0)

ICCT: industry lagging UN fuel efficiency goals for new commercial aircraft by about 12 years; need for a CO2 standard

September 03, 2015

Reductions in the average fuel burn of new commercial aircraft have returned to the long-term average after stagnating from 2000 to 2010. However, according to a new report from the International Council on Clean Transportation (ICCT), manufacturers continue to lag the UN’s fuel efficiency goals for new aircraft; on average, industry is about 12 years behind the 2020 and 2030 aspirational goals established by the International Civil Aviation Organization (ICAO).

The authors of the ICCT report, which updates its 2009 report on the topic (earlier post), do expect to see an accelerating improvement rate in the foreseeable future due to the introduction of new, more efficient aircraft designs such as the a320neo, 737 MaX, and 777X. Despite that, when comparing the ICAO fuel burn technology goals (a 40% improvement in fuel efficiency for new single-aisle (SA) and small twin-aisle (STA) aircraft in 2020 relative to 2000 levels) with fuel burn trend projections, they found the 12-year time lag between the projected fuel burn improvement and the time needed to reach ICAO’s goals.

More... | Comments (1)

Butamax and Gevo cross-license & settle litigation on bio-isobutanol; Butamax to lead w/ gasoline blending, Gevo w/ alcohol-to-jet

August 24, 2015

Gevo, Inc. and Butamax Advanced Biofuels, LLC, a joint venture between BP and DuPont, have entered into worldwide patent cross-license and settlement agreements, ending a patent dispute that stretches back to 2011 related to technologies for the production of bio-based isobutanol. (Earlier post.)

This settlement ends all of the lawsuits and creates a new relationship between the companies, aimed at leveraging each other’s strengths and accelerating development of competitive supply for bio-based isobutanol.

More... | Comments (1)

RedRock Biofuels to supply 3M gallons/year of renewable jet fuel to FedEx through 2024

July 21, 2015

Red Rock Biofuels LLC will produce approximately three million gallons of low-carbon, renewable jet fuel per year for FedEx Express, a subsidiary of FedEx Corporation. The agreement runs through 2024, with first delivery expected in 2017. FedEx joins Southwest Airlines, which signed a purchase agreement with RedRock in November 2014 for about 3 million gallons per year, in purchasing Red Rock’s total planned available volume of jet fuel. (Earlier post.)

Red Rock’s first refinery, funded in part by a $70-million Title III DPA grant from the U.S. Departments of Agriculture, Energy and Navy, is scheduled to break ground this fall in Lakeview, Ore. and will convert approximately 140,000 dry tons of woody biomass into 15 million gallons per year of renewable jet, diesel and naphtha fuels.

More... | Comments (0)

Boeing, Japanese aviation industry unveil biofuel roadmap to 2020 Olympics

July 09, 2015

The Initiatives for Next Generation Aviation Fuels (INAF)—a consortium of 46 organizations including Boeing, ANA (All Nippon Airways), Japan Airlines, Nippon Cargo Airlines, Japan’s government, the University of Tokyo and other Japanese aviation industry stakeholders—has developed a five-year roadmap to develop sustainable aviation biofuel for flights during the 2020 Olympic and Paralympic Games in Tokyo.

The roadmap offers a rough sketch of a path leading to the introduction of next-generation aviation fuels, and brings together the entire supply chain from the procurement of raw materials; production of next-generation aviation fuels; their mixture with conventional aviation fuels to produce alternative aviation fuels; and refueling of aircraft after the fuel has been transported to the airport. For business development, the report authors noted, “more substantive discussions are needed” which are based on the plan.

More... | Comments (0)

United Airlines invests $30M in Fulcrum BioEnergy; renewable jet fuel offtake agreement, potential joint development of production

June 30, 2015

United Airlines made a $30-million equity investment in US-based Fulcrum BioEnergy, Inc., the developer of a process for converting municipal solid waste into low-cost sustainable aviation biofuel. (Earlier post.) The investment is so far the largest single investment by a US airline in alternative fuels.

In addition to the equity investment, United and Fulcrum have entered into an agreement that contemplates the joint development of up to five projects located near United’s hubs expected to have the potential to produce up to 180 million gallons of fuel per year.

More... | Comments (3)

Boeing ecoDemonstrator 757 expands testing; green diesel blend, energy harvesting windows, 3D-printed flight deck component

June 20, 2015

Boeing announced the next phase in ecoDemonstrator 757 testing today, including its first flight with US-made “green diesel” (earlier post) and two new environment-related technologies. These developments advance the ecoDemonstrator program's mission to accelerate the testing and use of technologies to improve aviation's environmental performance.

In cooperation with NASA, the 757 flew on 17 June 17 from Seattle to NASA’s Langley Research Center in Hampton, Va., using a blend of 95% petroleum jet fuel and 5% sustainable green diesel, a renewable drop-in bio-hydrocarbon fuel meeting ASTM International’s standard for Diesel Fuel Oils (D-975). Boeing is working with the aviation industry to approve green diesel for commercial aviation by amending the HEFA (Hydroprocessed Esters And Fatty Acids) biojet specification approved in 2011.

More... | Comments (0)

Etihad Airways and partners launch roadmap for sustainable aviation biofuels in UAE

June 18, 2015

Etihad Airways, together with Boeing, Total, Takreer and the Masdar Institute of Science and Technology, launched a joint industry roadmap for the sustainable production of aviation biofuels in the United Arab Emirates (UAE). The BIOjet Abu Dhabi: Flight Path to Sustainability report outlines a set of recommended industry actions to create a commercially viable domestic aviation biofuel industry—a first for the Middle East. (Earlier post, earlier post.)

The BIOjet Abu Dhabi roadmap is the culmination of a year-long dialogue between Etihad Airways, its four BIOjet Abu Dhabi partners, and UAE and global stakeholders. It explains Abu Dhabi’s potential to produce aviation biofuel locally, in a sustainable way, taking account of all elements of the supply chain from feedstock supplies to biorefining and distribution.

More... | Comments (0)

New catalytic method for converting algal oil to gasoline- or jet-fuel-range hydrocarbons

June 16, 2015

A new catalytic method for converting algal oil to gasoline- or jet-fuel-range hydrocarbons has been developed by the research group of Prof. Keiichi Tomishige and Dr. Yoshinao Nakagawa from Tohoku University’s Department of Applied Chemistry, and Dr. Hideo Watanabe from the University of Tsukuba.

The new method uses a highly dispersed ruthenium catalyst supported on cerium oxide. Squalane (C30H62)—easily obtained by the hydrogenation of squalene (C30H50) rapidly produced by the heterotrophic alga Aurantiochytrium from organics in wastewater—reacts with hydrogen over this catalyst, producing smaller branched alkanes with simple distribution and without aromatics. These molecules have high stability and low freezing points. A paper describing the system is published in the journal ChemSusChem.

More... | Comments (0)

EBI ketone condensation process for drop-in jet fuel or lubricant base oil from biomass; up to 80% lifecycle GHG savings

Researchers at the Energy Biosciences Institute (EBI), a partnership led by the University of California (UC) Berkeley that includes Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of Illinois at Urbana-Champaign, and BP, have developed a new method for producing drop-in aviation fuel as well as automotive lubricant base oils from sugarcane biomass. The strategy behind the process could also be applied to biomass from other non-food plants and agricultural waste that are fermented by genetically engineered microbes, the researchers said.

The catalytic process, described in an open-access paper in the Proceedings of the National Academy of Sciences (PNAS), selectively upgrades alkyl methyl ketones derived from sugarcane biomass into trimer condensates with better than 95% yields. These condensates are then hydro-deoxygenated into a new class of cycloalkane compounds that contain a cyclohexane ring and a quaternary carbon atom. These cycloalkane compounds can be tailored for the production of either jet fuel, or automotive lubricant base oils, resulting in products with superior cold-flow properties, density and viscosity that could achieve net life-cycle greenhouse gas savings of up to 80%, depending upon the optimization conditions.

More... | Comments (0)

EPA takes first steps toward regulating commercial aviation GHGs with endangerment finding under CAA

June 11, 2015

The US Environmental Protection Agency (EPA) is proposing to find under section 231(a) of the Clean Air Act that greenhouse gas (GHG) emissions from commercial aircraft engines endanger the health and welfare of Americans by contributing to climate change. At the same time, the agency issued an Advance Notice of Proposed Rulemaking (ANPR) that provides information on the process for setting international CO2 emissions standards for aircraft at the International Civil Aviation Organization (ICAO), and describes and seeks input on the potential use of section 231 of the Clean Air Act to adopt a corresponding standard domestically.

The finding applies to GHG emissions from engines used in US subsonic jet aircraft with a maximum takeoff mass (MTOM) greater than 5,700 kilograms and in subsonic propeller driven (e.g., turboprop) aircraft with a MTOM greater than 8,618 kilograms. Examples of covered aircraft would include smaller jet aircraft such as the Cessna Citation CJ2+ and the Embraer E170, up to and including the largest jet aircraft: the Airbus A380 and the Boeing 747. Other examples of covered aircraft would include larger turboprop aircraft, such as the ATR 72 and the Bombardier Q400. The actions do not apply to small piston-engine planes or to military aircraft.

More... | Comments (1)

Gevo’s cellulosic alcohol-to-jet (ATJ) fuel to be used in NARA test flight; “wood-to-wing”

June 04, 2015

Gevo, Inc. announced a development in its fermentation technology that will allow it to produce isobutanol from cellulosic feedstocks such as wood waste; the isobutanol can then be converted into Gevo’s alcohol-to-jet fuel. In 2011, the company was awarded $5 million from the US Department of Agriculture (USDA) for the development of biojet fuel from woody biomass and forest product residues. (Earlier post.)

Gevo is a member of the Northwest Advanced Renewables Alliance (NARA) and is providing the organization with technology to enable the commercial scale processing of cellulosic sugars from wood waste into valuable products. The cellulosic jet fuel made using Gevo’s technologies will be used in a 1,000-gallon renewable fuel demonstration test flight by Alaska Airlines that NARA announced yesterday. Gevo’s isobutanol and ATJ-SPK technologies are both planned to be licensed by NARA as part of this project.

More... | Comments (0)

Fulcrum Bioenergy awards $200M EPC contract to Abengoa for MSW-to-jet plant

May 07, 2015

Fulcrum BioEnergy has awarded a $200-million fixed-price engineering, procurement and construction (EPC) contract to Abengoa for the construction of Fulcrum’s first municipal solid waste (MSW) to transportation fuels facility, the Sierra BioFuels Plant. The Sierra BioFuels Plant will utilize Fulcrum’s process for converting MSW into renewable syncrude that will then be upgraded to jet fuel. (Earlier post.)

The Fulcrum process begins with the gasification of the organic material in the MSW feedstock to a synthesis gas (syngas) which consists primarily of carbon monoxide, hydrogen and carbon dioxide. This syngas is purified and processed through the Fischer-Tropsch (FT) process to produce a syncrude product which is then upgraded to jet fuel or diesel.

More... | Comments (5) | TrackBack (0)

WSU team engineers fungus to produce jet-range hydrocarbons from biomass

May 06, 2015

Aspergillus carbonarius. Source: JGI MycoCosm. Click to enlarge.

Researchers at Washington State University have engineered the filamentous fungus Aspergillus carbonarius ITEM 5010 to produce jet-range hydrocarbons directly from biomass. The researchers hope the work, reported in the journal Fungal Biology, leads to economically viable production of aviation biofuels in the next five years.

The team led by Birgitte Ahring, director and Battelle distinguished professor of the Bioproducts, Sciences and Engineering Laboratory at WSU Tri-cities, found that the production of hydrocarbons was dependent on the type of media used. Therefore, they tested ten different carbon sources (oatmeal, wheat bran, glucose, carboxymethyl cellulose, avicel, xylan, corn stover, switch grass, pretreated corn stover, and pretreated switch grass) to identify the maximum number and quantity of hydrocarbons produced.

More... | Comments (0) | TrackBack (0)

SOLARJET demonstrates full process for thermochemical production of renewable jet fuel from H2O & CO2

April 28, 2015

The European consortium SOLARJET (Solar chemical reactor demonstration and Optimization for Long-term Availability of Renewable JET fuel) (earlier post) has experimentally demonstrated the entire process chain for the first production of renewable jet fuel via a thermochemical H2O/CO2-splitting cycle using simulated concentrated solar radiation.

The solar-to-fuel energy conversion efficiency was 1.72%, without sensible heat recovery. A total of 291 stable redox cycles were performed, yielding 700 standard liters of syngas of composition 33.7% H2, 19.2% CO, 30.5% CO2, 0.06% O2, 0.09% CH4, and 16.5% Ar, which was compressed to 150 bar and further processed via Fischer–Tropsch synthesis to a mixture of naphtha, gasoil, and kerosene. Their paper is published in the ACS journal Energy & Fuels.

More... | Comments (3) | TrackBack (0)

NASA-led analysis characterizes the impact of jet fuel composition on emitted aerosols

April 03, 2015

Using data gathered during four different, comprehensive ground tests conducted over the past decade, researchers from NASA and their colleagues have statistically analyzed the impact of jet fuel properties on aerosols emitted by the NASA Douglas DC-8 CFM56-2-C1 engines burning 15 different aviation fuels. The analysis, reported in a paper in the ACS journal Energy & Fuels, linked changes in aerosol emissions to fuel compositional changes.

Among the results was the finding that reducing both fuel sulfur content and naphthalenes to near-zero levels would result in roughly a 10-fold decrease in aerosol number emitted per kilogram of fuel burned. The study can inform future efforts to model aircraft emissions changes as the aviation fleet gradually begins to transition toward low-aromatic, low-sulfur alternative jet fuels from bio-based or Fischer–Tropsch production pathways.

More... | Comments (0) | TrackBack (0)

HRL developing a new material for hypersonic vehicles; proof-of-concept for DARPA MDP program

HRL Laboratories, LLC (formerly Hughes Research Labs) will be developing new materials for hypersonic vehicles under the Materials Development for Platforms (MDP) program through the Defense Advanced Research Projects Agency (DARPA-BAA-14-52). These new materials aim to reduce the weight and cost of vehicle aeroshells while withstanding the extreme environment encountered during hypersonic flight.

Currently, the applied material development sequence takes 10+ years. This is out of step with vehicle programs with much shorter design cycles, limiting new aerospace platforms from using new materials until they are proven. The goal of DARPA’s MDP program is to connect designers and material developers together more effectively and to compress this applied material development process by at least 75% to 2.5 years using a hypersonic vehicle’s aerodynamic outer shell (boost-glide hot structure aeroshell) as the initial test case.

More... | Comments (0) | TrackBack (0)

Navy researchers produce 100% bio-derived high-density renewable diesel and jet by blending sesquiterpanes with synthetic paraffinic kerosene

March 06, 2015

A team at the Naval Air Warfare Center Weapons Division (NAWCWD) at China Lake has produced 100% bio-derived high-density renewable diesel and jet fuels by blending multicyclic sesquiterpanes with a synthetic paraffinic kerosene (5-methylundecane). The resulting renewable fuels have densities and net heats of combustion higher than petroleum-based fuels while maintaining cetane numbers high enough (between 45 and 57) for use in conventional diesel engines.

The team said that its results show that full-performance and even ultra-performance fuels can be generated by combining bio-derived sesquiterpanes and paraffins. All components can be generated from biomass sugars by a combination of fermentation and chemical catalysis which may allow for their production at industrially relevant scale, they noted. An open access paper on the work has been accepted for publication in the ACS journal Energy & Fuels.

More... | Comments (0) | TrackBack (0)

Neste Oil now the world’s largest producer of renewable fuels from waste and residues

March 05, 2015

Over the last few years, Neste Oil has become the world’s largest producer of renewable fuels from waste and residues. In 2014, the company produced nearly 1.3 million tonnes (1.6 billion liters, 423 million gallons US) of renewable fuel from waste and residues. In practical terms, this is enough to power for two years all the 650,000 diesel-powered passenger cars in Finland with NEXBTL renewable diesel manufactured from waste and residues.

Examples of Neste Oil’s waste and residue-based raw materials include animal and fish fats; used cooking oil; and various residues generated during vegetable oil refining such as palm fatty acid distillate (PFAD) and technical corn oil. These raw materials accounted for 62% of Neste Oil’s renewable inputs in 2014 (52% in 2013, 35% in 2012).

More... | Comments (0) | TrackBack (0)

Boeing, Embraer open joint aviation biofuel research center in Brazil

January 15, 2015

Boeing and Embraer have opened a joint sustainable aviation biofuel research center in a collaborative effort to further establish the aviation biofuel industry in Brazil.

At the Boeing-Embraer Joint Research Center in the São José dos Campos Technology Park, the companies will coordinate and co-fund research with Brazilian universities and other institutions. The research will focus on technologies that address gaps in creating a sustainable aviation biofuel industry in Brazil, such as feedstock production, techno-economic analysis, economic viability studies and processing technologies.

More... | Comments (1) | TrackBack (0)

Cambridge team successfully tests hybrid light aircraft; 30% fuel savings

December 23, 2014

Hybrid in flight. Click to enlarge.

Researchers from the University of Cambridge, in association with Boeing, have successfully tested a light aircraft powered by a parallel hybrid-electric propulsion system, in which an electric motor and gasoline engine work together to drive the propeller. The demonstrator aircraft—based on a single-seat, ultralight Song motor glider—uses up to 30% less fuel than a comparable plane with a gasoline-only engine. The aircraft is also able to recharge its batteries in flight, the first time this has been achieved.

The hybrid system was designed and built by engineers at Cambridge with Boeing funding support. The hybrid aircraft uses a combination of a ~7 kW Honda 4-stroke piston engine and a 10 kW electric motor/generator, coupled through the same drive pulley to spin the propeller. The hybrid system delivers approximately the same power as the standard engine for the Song—a 15 kW Bailey V5 single-cylinder 4-stroke.

More... | Comments (9) | TrackBack (0)

Boeing conducts world’s first flight with 15% blend of NExBTL renewable diesel as aviation biofuel

December 04, 2014

Boeing has completed the world’s first flight using “green diesel,” a renewable, drop-in hydrocarbon biofuel that is widely available and used in ground transportation. The company powered its ecoDemonstrator 787 flight test airplane with a blend of 15% NExBTL renewable diesel from Neste Oil and 85% petroleum jet fuel in the left engine. (Neste Oil can also produce a NExBTL synthetic paraffinic kerosene as a discrete, and already approved, commercial aviation fuel.)

Boeing previously found that renewable diesel is chemically similar to HEFA (hydro-processed esters and fatty acids) aviation biofuel approved in 2011. With a renewable diesel production capacity of 800 million gallons (3 billion liters) in the US, Europe and Asia, the on-road fuel could rapidly supply as much as 1% of global jet fuel demand. With a wholesale cost of about $3 per gallon, inclusive of US government incentives, green diesel approaches price parity with petroleum jet fuel.

More... | Comments (0) | TrackBack (0)

Lifecycle analysis of Amyris renewable jet from sugar cane finds “substantial potential” to mitigate GHG emissions, but a wide range of potential outcomes

November 25, 2014

Monte Carlo results for the net life cycle emissions of the renewable jet fuel from sugar cane. Credit: ACS, Moreira et al.. Click to enlarge.

Brazilian researchers evaluating the lifecycle GHG emissions of a renewable jet fuel produced from sugar cane in Brazil using Amyris’ proprietary technology platform (earlier post) found that the farnesane-based renewable fuel presents “a substantial potential” to mitigate the GHG emissions of the aviation sector. Their paper is published in the ACS journal Environmental Science & Technology.

In their base case, the researchers calculated a “rather optimistic” GHG footprint of 8.5g CO2eq/MJ; lifecycle emissions of fossil jet fuel usually lie within the 80−95g CO2eq/MJ range. However, they noted, the estimation is highly uncertain, with a number of factors—especially related to electricity exports, sugar cane farming itself, and agrochemicals production and use—significantly affect the outcome. The results of the Monte Carlo analysis indicate life cycle emissions of 21 ± 11 g CO2eq/MJ (mean ± SD), with substantial influence from the LUC factor.

More... | Comments (0) | TrackBack (0)

Researchers develop JP-8 enzymatic biofuel cell; electricity from alkanes under mild conditions

November 05, 2014

Representative schematic of hardware employed for testing of a complete biofuel cell. Credit: ACS, Ulyanova et al. Click to enlarge.

A team from the University of Utah and CFD Research Corporation (CFDRC) reports the first bioelectrocatalysis of alkanes to produce electricity. In an paper published in the journal ACS Catalysis, they describe the use of a two-enzyme cascade in an enzymatic biofuel cell to oxidize hexane, octane and then JP-8, a jet fuel (C6-C16) comprising a mixture of alkanes.

An enzymatic biofuel cell contains many of the same components as a hydrogen/oxygen fuel cell—i.e., anode, cathode, and separator. However, instead of metallic electrocatalysts at the anode and the cathode, the enzymatic biofuel cell uses enzymes as the catalysts. The enzyme cascade reported in this new work is efficient, sulfur-tolerant, and produces power densities up to 3 mW/cm2 in a JP-8 enzymatic biofuel cell at room temperature without preprocessing of the fuel—as opposed to traditional metal catalysts which require fuel pre-processing. This output is comparable to high power density sugar and alcohol biofuel cells, the researchers said.

More... | Comments (0) | TrackBack (0)

Neste Oil de-emphasizing microbial oil R&D for renewable diesel; seeking other uses for cellulosic biomass

October 07, 2014

Neste Oil, the producer of NExBTL renewable diesel, is realigning its long-term R&D and switching from an emphasis on research into the production of microbial oil as a feedstock for NExBTL renewable diesel and renewable jet fuel (earlier post) to other areas of technology for using cellulosic forestry and agricultural waste, due in part to feedstock cost issues.

Despite the decision to de-emphasize microbial oil, Neste Oil emphasized that cellulosic waste will continue to play an important role in its research strategy, adding that it remains committed to its goal of further extending its feedstock base and making greater use of waste and residues in this area in particular.

More... | Comments (1) | TrackBack (0)

Green Car Congress © 2015 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group