Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Aviation

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Port of Seattle, Boeing and Alaska Airlines release aviation biofuel infrastructure findings

January 17, 2017

​The Port of Seattle, Boeing and Alaska Airlines released a first-of-its-kind study that identifies the best infrastructure options for delivering aviation biofuel to Seattle-Tacoma International Airport. In pursuit of its goal to power every flight at Sea-Tac with sustainable aviation biofuel, Sea-Tac is among the first airports in North America to work with aviation, energy and research partners to systematically evaluate all aspects to developing a commercial-scale program from scratch.

The objective of the study was to identify the best approach to deliver up to 50 million gallons (and to double to 100 million after 2025) of aviation biofuel per year into the fuel hydrant delivery system at Sea-Tac International Airport. A total of 29 sites across the state were identified and screened. The sites were located in King, Pierce, Whatcom, Skagit, Grays Harbor and Franklin Counties, Washington.

More... | Comments (1)

DOE awards LanzaTech $4M for low-carbon jet & diesel demo plant; 3M gpy; Audi evaluating fuel properties

December 30, 2016

LanzaTech has been selected by the Department of Energy’s Bioenergy Technologies Office (BETO) to receive a $4-million award to design and plan a demonstration-scale facility using industrial off gases to produce 3 million gallons/year of low-carbon jet and diesel fuels. The LanzaTech award was one of six totaling $12.9 million. (Earlier post.)

The LanzaTech facility will recycle industrial waste gases from steel manufacturing to produce a low cost ethanol intermediate: “Lanzanol.” Both Lanzanol and cellulosic ethanol will then be converted to jet fuel via the Alcohol-to-Jet" (ATJ) process developed by LanzaTech and the Pacific Northwest National Laboratory (PNNL). (Earlier post.)

More... | Comments (0)

Researchers in China develop new process for direct synthesis of drop-in jet-fuel-range blendstock from lignocellulose

December 29, 2016

Researchers in China have developed an integrated two-bed continuous flow reactor process for the direct synthesis with high carbon yields (~70%) of dodecanol (C12H26O) or 2,4,8- trimethylnonane (C12H26O2)—a jet-fuel-range C12 branched alkane—from methyl isobutyl ketone (MIBK), which can be derived from lignocellulose.

The dodecanol as obtained can be used as the feedstocks in the production of sodium dodecylsulphate (SDS) and sodium dodecyl benzene sulfonate (SDBS)—widely used as surfactants or detergents. The 2,4,8-trimethylnonane as obtained can be blended into conventional jet fuel without hydroisomerization. A paper on their work is published in the journal ChemSusChem.

More... | Comments (1)

Study: growth in aviation and shipping GHG emissions will undo 43% of savings from rest of transport in Europe through 2030

December 12, 2016

Growth in greenhouse gas (GHG) emissions from shipping and aviation, based on demand for liquid fossil fuels, will undo nearly half (43%) of the

savings expected to be made by the rest of transport in Europe through to 2030, according to a new study by consultant CE Delft, commissioned by environmental NGO Transport & Environment.

Under measures already in place, land transport is expected to consume 43 Mtoe (million tonnes of oil equivalent) less energy per year in 2030 than it did in 2010, according to calculations on the European Commission’s projections for greenhouse gas emissions to 2050 by consultant CE Delft. Even this 43 Mtoe cut is less than half of what will be required from land transport under the EU’s proposed 2030 Effort Sharing Regulation.

More... | Comments (2)

NASA testing new boundary layer ingesting (BLI) propulsor; 4-8% fuel burn savings over current advanced engines

Engineers at NASA Glenn are testing a new boundary layer ingesting (BLI) inlet-fan combination—the first of its kind ever to be tested. Originally conceived of as a propulsion system for generation-after-next (N+2), the BLI system could increase fuel efficiency by 4-8% more than the advanced engines airlines are beginning to use.

On today’s jet aircraft, the engines are typically located away from the aircraft’s body to avoid ingesting the layer of slower flowing air that develops along the aircraft’s surfaces, called boundary layer. Aerospace engineers believe they can reduce fuel burn by embedding an aircraft’s engines into these surfaces and ingesting the boundary layer air flow to propel the aircraft through its mission.

More... | Comments (3)

WSU Tri-Cities researchers receive $50K NSF grant to test market potential for lignin pathway for biojet

December 03, 2016

Researchers at Washington State University Tri-Cities have been awarded a $50,000 National Science Foundation I-Corps grant to explore the commercialization potential of their new pathway for biojet from biomass waste. The WSU process, described in a 2015 paper in the RSC journal Green Chemistry, uses hydrodeoxygenation (HDO) of dilute alkali extracted corn stover lignin catalyzed by a noble metal catalyst (Ru/Al2O3) and acidic zeolite (H+-Y) to produce lignin-substructure-based hydrocarbons (C7-C18), primarily C12-C18 cyclic structure hydrocarbons in the jet fuel range. (Earlier post.)

Current biorefineries undervalue lignin’s potential, largely because selective conversion of lignin has proven to be challenging. Processes that have been successful at breaking the lignin bonds have typically resulted in shorter chain monomers as opposed to the longer chain hydrocarbons needed for fuel. In contrast, the output of the WSU processis a mix of hydrocarbons that are long-chain and can be made into nearly the right mix for jet fuel.

More... | Comments (1)

New pathway for producing jet fuel range alkanes from plastics

November 21, 2016

Researchers at Washington State University have developed a novel route for the production of jet fuel range alkanes at high carbon yields from plastics. The process combines catalytic microwave-assisted degradation of low-density polyethylene (a model compound of plastics waste) followed by hydrogenation.

In a paper published in the journal Fuel, the team reported that, depending on the catalyst, the overall carbon yields of organics from raw plastics were approximately 54 or 63%. The raw organics (with the higher yield) could be hydrogenated to fit JP-5 navy fuel at 200 °C, while the raw organics (with the lower yield) could be hydrogenated to match high energy-density jet fuels (e.g. RJ-5 and JP-10) under very low-severity conditions.

More... | Comments (0)

BP takes $30M stake in Fulcrum Bioenergy; 500M gallon renewable jet offtake agreement

November 08, 2016

Fulcrum BioEnergy and BP signed a major strategic partnership that includes a $30-million equity investment in Fulcrum by BP. With Fulcrum’s first plant under construction, this partnership accelerates the construction schedule for Fulcrum’s next renewable jet fuel plants.

Fulcrum and Air BP, the aviation division of BP, have also agreed to terms on a 500-million gallon jet fuel offtake agreement that will provide Air BP with 50 million gallons per year of low-carbon, drop-in jet fuel. Air BP will also have the opportunity to provide fuel supply chain services for the blending, certification and delivery of Fulcrum’s jet fuel to commercial and military aviation customers.

More... | Comments (11)

In-flight wireless power transfer for drones

October 21, 2016

Scientists at Imperial College London have demonstrated a highly efficient inductive method for wirelessly transferring power to a drone while it is flying. Theoretically, this wireless power transfer (WPT) technology could allow flying drones to stay airborne indefinitely by simply hovering over a ground support vehicle to recharge. The team estimates it is one year away from a commercially available product.

The technology uses inductive coupling, similar to the technology being developed for WPT for electric vehicles. To demonstrate their approach, the Imperial College London researchers bought an off-the-shelf quadcopter drone—around 12 cm (4.7 inches) in diameter—and altered its electronics and removed its battery. They made a copper foil ring receiving antennae that encircles the drone’s casing. On the ground, a transmitter device made out of a circuit board was connected to electronics and a power source, creating a magnetic field.

More... | Comments (3)

NASA to test in-flight folding spanwise adaptive wing (SAW) to enhance aircraft efficiency; advanced actuators

October 18, 2016

NASA is developing and validating a system that will allow part of an aircraft’s wing to fold in flight to increase efficiency through wing adaptation.

Engineers at NASA’s Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Glenn Research Center in Ohio, are working on the Spanwise Adaptive Wing concept, or SAW. The concept would permit the outboard portions of the wings to move to the optimal position during operation. This could increase efficiency by reducing drag and increasing lift and performance.

More... | Comments (0)

NASA Electric Aircraft Testbed (NEAT) began testing in September; advancing electric propulsion for aircraft

Engineers at the NASA Electric Aircraft Testbed (NEAT) at NASA Glenn Research Center ran the new facility’s first test in September. Dr. Rodger Dyson, NASA Glenn Hybrid Gas Electric Propulsion technical lead, and his team used 600 volts of electricity and successfully tested an electrical power system that could realistically power a small, one or two person aircraft.

NEAT’s mission is to help engineers design, develop and test systems for electric aircraft. Once complete, NEAT will be a world-class, reconfigurable testbed that will be used to assemble and test the power systems for large passenger airplanes with over 20 Megawatts of power.

More... | Comments (0)

New three-step process for conversion of vegetable oils into cycloparaffinic and aromatic biofuels in jet fuel range

October 17, 2016

A team from the University of Science & Technology of China in Hefei has developed a three-step process for the conversion of vegetable oils (triglycerides) into cycloparaffinic and aromatic biofuels in jet fuel range.

This process cracks vegetable oils into light aromatics over the zeolite catalyst (HZSM-5(80)), followed by the aromatic alkylation of the resulting light aromatics using the ionic liquid [bmim]Cl-2AlCl3, followed by the hydrogenation of the aromatics over a Pd/AC catalyst. As reported in a paper in the journal Fuel, the process produced 86.2 wt% of C8–C15 aromatics after alkylation, yielding 84.3 wt% monocyclic cycloparaffins after hydrogenation.

More... | Comments (0)

Gevo produces first cellulosic renewable jet fuel specified for use on commercial airline flights

October 12, 2016

Gevo, Inc. has completed production of the world’s first cellulosic renewable jet fuel that is specified for commercial flights. Gevo successfully adapted its patented technologies to convert cellulosic sugars derived from wood waste into renewable isobutanol, which was then further converted into Gevo’s Alcohol-to-Jet fuel (ATJ) fuel. (Earlier post.)

This ATJ meets the ASTM D7566 specification allowing it to be used for commercial flights. The revisions to the ASTM D7566 specification, which occurred earlier this year, includes ATJ derived from renewable isobutanol, regardless of the carbohydrate feedstock (i.e. cellulosics, corn, sugar cane, molasses, etc.). (Earlier post.)

More... | Comments (1)

ICAO agrees to market-based measure to address aviation CO2

October 07, 2016

The UN International Civil Aviation Organization (ICAO) has agreed to recommend adoption of a final Resolution text on a new global market-based measure (GMBM) to control CO2 emissions from international aviation.

ICAO’s Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) is designed to complement the basket of mitigation measures the air transport community is already pursuing to reduce CO2 emissions from international aviation. These include technical and operational improvements and advances in the production and use of sustainable alternative fuels for aviation.

More... | Comments (1)

New ICCT study identifies significant potential to reduce aviation fuel consumption by up to 40% by 2034

September 27, 2016

A new report from the International Council on Clean Transportation (ICCT) identifies significant potential to reduce aviation emissions through emerging fuel efficiency technologies.

The study summarizes the results of the first independent, bottom-up cost assessment of near- (2024) and mid-term (2034) technologies to improve new aircraft fuel efficiency. Carried out in cooperation with a panel of top technical experts and consultants using NASA and DoD-approved models to evaluate aviation technology programs, the study concludes that the rate of fuel efficiency improvement for new aircraft can be more than doubled through 2034, from about 1% today to 2.2% annually, by the adoption of cost effective technologies to improve engine efficiency, reduce aerodynamic drag, and trim aircraft empty weight.

More... | Comments (2)

Navy tests 100-percent CHCJ advanced biofuel in EA-18G

September 20, 2016

The US Navy has completed flight testing of a 100% advanced biofuel in the EA-18G “Green Growler” at Naval Air Station Patuxent River, Maryland. The US Navy is a leader in incorporating alternative fuel into operational supplies, in order to increase mission capability and flexibility.

The catalytic hydrothermal conversion-to-jet (CHCJ) process 100% alternative fuel performed as expected during a ground test 30 August at NAWCAD’s Aircraft Test and Evaluation Facility (ATEF), followed by the first test flight 1 September, said Rick Kamin, energy and fuels lead for Naval Air Systems Command (NAVAIR). Kamin also leads the alternative fuel test and qualification program for the Navy.

More... | Comments (0)

JetBlue enters 10-year renewable HEFA SPK jet fuel purchase agreement with SG Preston; 33M gallons of 30% blend per year

September 19, 2016

JetBlue announced a ten-year renewable jet fuel purchase agreement with SG Preston, a bioenergy company. The airline will purchase renewable jet fuel made from rapidly renewable, bio-based feedstocks that do not compete with food production. This marks one of the largest renewable jet fuel purchase agreements yet, and the largest, long-term, binding commitment by any airline globally for HEFA (hydro-processed esters and fatty acids) SPK (synthetic paraffinic kerosene) -based renewable jet fuel.

To launch the strategic relationship with SG Preston, JetBlue plans to purchase more than 33 million gallons of blended jet fuel per year for at least 10 years. The fuel will consist of 30% renewable jet fuel blended with 70% traditional Jet-A fuel.

More... | Comments (3)

LanzaTech produces 1,500 gallons of alcohol-to-jet fuel from waste gases for Virgin Atlantic

September 14, 2016

In a milestone for the low-carbon fuel project, LanzaTech has produced 1,500 gallons of jet fuel from waste industrial gases from steel mills via a fermentation process for Virgin Atlantic. Virgin Atlantic and LanzaTech have been working together on the project since 2011. HSBC joined the partnership in 2014.

The “Lanzanol” was produced in China at the RSB (Roundtable of Sustainable Biomaterials) certified Shougang demonstration facility. The innovative alcohol-to-jet (ATJ) process was developed in collaboration with Pacific Northwest National Lab (PNNL) with support from the US Department of Energy (DOE) and with the help of funding from HSBC.

More... | Comments (0)

China team develops pathway for producing renewable aviation-range hydrocarbons and aromatics from oleic acid without added H2

August 25, 2016

Researchers from Zhejiang University; SINOPEC’s Fushun Research Institute of Petroleum and Petrochemicals; Nanjing Tech University; and Xinjiang Technical Institute of Physics and Chemistry have developed an “atom-economic” approach to produce renewable drop-in aviation-range hydrocarbons and aromatics from oleic acid (C18H34O2, a fatty acid that occurs naturally in various animal and vegetable fats and oils) without an added hydrogen donor. A paper on their work is published in the ACS journal Energy & Fuels.

The conversion of oleic acid in the process was 100%, and the yield of heptadecane (C17H36, the main product) can reach 71% after 80 min at 350 °C. The process also produced an aromatics yield of 19%; aromatics are a critical component of aviation fuels due to their ability to maintain the swelling of fuel system elastomers. The results, said the researchers, indicate that their process is a complicated reaction system including in situ hydrogen transfer, aromatization, decarboxylation, and cracking.

More... | Comments (0)

MIT team calculates lead emissions from avgas fuel in US contribute to ~$1B in annual damages due to IQ losses

August 24, 2016

Researchers at MIT have produced the first assessment of the annual costs of IQ losses from aircraft lead emissions in the US. Their study, published in the ACS journal Environmental Science & Technology, found that that atmospheric lead pollution attributable to leaded aviation gas (avgas) contributes to US$1.06 billion (the mean from a range of $0.01–$11.6 billion) in annual damages from lifetime earnings reductions, and that dynamic economy-wide methods result in damage estimates that are 54% larger.

Because the marginal costs of atmospheric lead pollution are dependent on background concentration, the researchers also expect the costs of piston-driven aircraft lead emissions to increase over time as regulations on other emissions sources are tightened.

More... | Comments (3)

PNNL-Lanzatech team hits milestone on waste-gas-to-ethanol-to-jet project

August 23, 2016

With funding from Bioenergy Technologies Office (BETO), Pacific Northwest National Laboratory (PNNL) has been working with industry-partner LanzaTech to convert alcohols derived from captured carbon monoxide, a byproduct in the production of steel, into synthetic paraffinic kerosene, a non-fossil-based jet fuel. The technology not only provides a viable source of sustainable jet fuel but also reduces the amount of greenhouse gasses emitted into the atmosphere.

The team recently reached a significant milestone on the project, producing over five gallons of synthetic paraffinic kerosene in a lab environment. Five gallons is the quantity needed for “fit-for-purpose” testing.

More... | Comments (0)

Solar Impulse 2 used Kokam Ultra High Energy NMC batteries in round-the-world solar flight

August 17, 2016

The Solar Impulse 2—the solar airplane that recently completed a round-the-world flight—used batteries from Kokam, based on that company’s advanced Ultra High Energy Lithium Nickel Manganese Cobalt (NMC) Oxide (Ultra High Energy NMC) technology.

The Solar Impulse uses four 38.5 kWh Kokam Ultra High Energy NMC battery packs—one in each motor housing—with 150 Ah cells totaling 154 kWh of energy storage. Over the course of 17 flights totaling 26,744 miles (43,041 kilometers), the Solar Impulse 2’s 17,248 mono-crystalline silicon solar cells—mounted atop the wings, fuselage and horizontal stabilizer—produced 11,000 kWh of electricity, much of which was stored in its Kokam Ultra High Energy NMC batteries and then discharged to power the plane at night.

More... | Comments (5)

China researchers develop new pathway for jet-range bio-cycloalkanes from acetone and hydrogen

August 12, 2016

Researchers from the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, have developed a new route for the synthesis of jet-fuel range C10 and C12 cycloalkanes using diacetone alcohol (the self-aldol condensation product of acetone under mild conditions)—which can be derived from lignocellulosic biomass—and hydrogen. A paper on their work is published in the RSC journal Green Chemistry.

The branched cycloalkanes are synthesized with high carbon yield (~76%), have high density (0.83 g mL-1) and a low freezing point (216.5 K). As a potential application, they can be used as additives to conventional bio-jet fuel comprising C8-C16 chain alkanes.

More... | Comments (0)

Tufts team finds aviation impact on particle number concentrations downwind of airport; correlation with flight activity

August 08, 2016

Jet aircraft emit ultrafine particles (UFPs; aerodynamic diameter of <100 nm) at high rates. In a study with implications for populated areas near airports, a team from Tufts University in Boston has found that the impact of aviation on ambient ultrafine particle number concentrations (PNCs) extend many kilometers downwind of Boston’s Logan airport.

In the study, published in the ACS journal Environmental Science & Technology, the Tufts team analyzed PNCs measured from 3 months to 3.67 years at three sites within 7.3 km of the airport. At sites 4.0 and 7.3 km from the airport, average PNCs were 2- and 1.33-fold higher, respectively, when winds were from the direction of the airport compared to other directions. This indicated that aviation impacts on PNC extend many kilometers downwind of Logan airport, the researchers said.

More... | Comments (0)

CNT nanostiches strengthen laminated composites

August 03, 2016

A team from MIT and Saab AB has found a way to bond composite layers in such a way that the resulting material is substantially stronger and more resistant to damage than other advanced composites. Their results are published this week in the journal Composites Science and Technology.

The team reinforced aerospace-grade unidirectional carbon fiber laminate interfaces with high densities (>10 billion fibers per cm2) of aligned carbon nanotubes (A-CNTs) that act as nano-scale “stitches”. Such nano-scale fiber reinforcement of the ply interfaces has already been shown to increase interlaminar fracture toughness; the MIT researchers showed that laminate in-plane strengths are also increased via the technique.

More... | Comments (0)

US releases Federal alternative jet fuels R&D strategy

July 29, 2016

The Obama Administration has released the Federal Alternative Jet Fuels Research and Development (R&D) Strategy (FAJFS), which maps out a unified federal plan to advance R&D as well as science and technology solutions to support deployment of alternative jet fuels (AJFs) in both civil and military aviation.

The strategy provides a prioritized list of R&D goals and objectives addressing specific scientific, technical, analytical, and logistics challenges that hinder the development, production, and wide-scale economic deployment of AJFs. In releasing the FAJFS, the federal government hopes to accelerate the development of the AJF industry by minimizing technical uncertainty to encourage further private sector interest, facilitate the development and approval of new AJF pathways, and reduce the cost of AJF production in the United States.

More... | Comments (0)

Orbital ATK and ECAPS partner on high performance green propulsion system; bringing LMP-103S to market

July 26, 2016

Orbital ATK signed an agreement with leading European green propulsion technology firm ECAPS to develop, demonstrate and market a high performance green propulsion (HPGP) system. The HPGP system, which offers significant cost advantages and reduces the environmental risks associated with traditional monopropellants, is aimed at both attitude control and main propulsion.

Orbital ATK’s team will leverage exclusive use of ECAPS’ LMP-103S, a very-low toxicity monopropellant technology designed as a direct replacement for hydrazine-based systems. LMP-103S—a blend of ammonium dinitramide (ADN), water, methanol and ammonia—offers a specific impulse 6% higher and a propellant density 24% higher than hydrazine-based systems—resulting in a 30% increase in density-specific impulse.

More... | Comments (0)

Lux: biojet fuel to account for 56% of targeted 2050 CO2 emissions reductions in aviation

July 19, 2016

Biojet fuels will be key to achieving the aviation industry’s pledge to cut CO2 emissions to 0.2 billion tons (GT) in 2050—half the 2005 figure—as opposed to the staggering 2.1 GT projected by current growth rates, according to a new report from Lux Research, “Biojet Fuel Technology Roadmap.”

Lux forecasts that biojet fuel innovations, led globally by Honeywell UOP and Boeing, will account for 56% of the targeted CO2 emissions reductions, while a third of the requisite cuts will come from new aircraft technology, and optimization of operations and infrastructure.

More... | Comments (1)

Boeing, South African Airways and Mango celebrate Africa’s 1st commercial flights with sustainable aviation biofuel from tobacco

July 15, 2016

Boeing, South African Airways (SAA) and low-cost carrier Mango celebrated Africa’s first passenger flights with sustainable aviation biofuel. The flights coincided with Boeing’s 100th anniversary and centennial celebrations worldwide.

The SAA and Mango flights carried 300 passengers from Johannesburg to Cape Town on Boeing 737-800s using a blend of 30% aviation biofuel produced from Sunchem’s nicotine-free tobacco plant Solaris, refined by AltAir Fuels and supplied by SkyNRG. (Earlier post.)

More... | Comments (0)

GE Aviation hits Farnborough at full throttle; $7.5B in R&D investments since 2010; ceramic matrix composites and 3D printing

July 10, 2016

GE Aviation will enter the Farnborough Air Show on Monday with a wave of new product and technology introductions while expanding its factory network to deliver on a record $154-billion industrial backlog of product and services.

From running the first full GE9X engine for the Boeing 777X (earlier post)—fired more than seven months ahead of a typical engine program schedule—to certifying the Passport jet engine for the Bombardier Global 7000 and Global 8000 (earlier post), GE Aviation this year is introducing new jet engines for business jets to wide-body airline aircraft. GE Aviation has announced eight new factories in eight years to respond to record engine orders. By year’s end, GE and CFM International (the 50/50 joint company of GE and Safran) will have more than 15,000 commercial engines on back order.

More... | Comments (0)

Skeleton Technologies joins Flying Whales program to develop next generation of heavy-lift, large-capacity airships

July 05, 2016

European ultracapacitor manufacturer Skeleton Technologies will join French firm Flying Whales’ program to build a 60-ton Large Capacity Airship (LCA60T, for the global transport market.

Skeleton Technologies will join the program to help design and build hybrid propulsion for the LCA60T’s electric power systems. Average operational power is expected to be approximately 1.5 MW with the company’s graphene-based ultracapacitors assisting to cover the additional 2 MW peaks for hovering, lifting and stabilisation in reasonable and turbulent environments.

More... | Comments (1)

First public flight of Siemens 260kW electric motor; to be used in development of hybrid-electric aircraft

July 04, 2016

Siemens researchers have developed a new type of electric motor that, with a weight of just 50 kilograms, delivers a continuous output of about 260 kilowatts—five times more than comparable drive systems. (Earlier post.) This record-setting propulsion system successfully completed its first public flight at Schwarze Heide Airport near Dinslaken, Germany, where it powered an Extra 330LE aerobatic airplane.

The new drive system made its maiden flight on 24 June 2016. Siemens will be contributing this technology to the cooperative project that Siemens and Airbus agreed to in April 2016 for driving the development of electrically powered flight. (Earlier post.)

More... | Comments (19)

NASA electric research plane designated the X-57, nickname: “Maxwell”; SCEPTOR

June 18, 2016

NASA will test new propulsion technology using an experimental airplane now designated the X-57 and nicknamed “Maxwell.” The X-57 features 14 electric motors turning propellers, all of them integrated into a uniquely-designed wing. NASA researchers ultimately envision a nine-passenger aircraft with a 500 kW power system in 2019.

NASA Administrator Charles Bolden highlighted the agency’s first X-plane designation in a decade during his keynote speech Friday in Washington at the American Institute of Aeronautics and Astronautics (AIAA) annual Aviation and Aeronautics Forum and Exposition, commonly called Aviation 2016.

More... | Comments (9)

EU investing >€3M in research into ultra-efficient aero engines; ULTIMATE project

June 14, 2016

The EU is investing more than €3 million in innovative aero-engine technologies in the three-year ULTIMATE project, short for Ultra Low emission Technology Innovations for Mid-century Aircraft Turbine Engines. The 3-year project, which launched in September 2015, targets radical concepts for new aero engines, in line with the EU’s long-term emissions reduction target for 2050. The project is being presented in a paper (Grönstedt et al.) at the ASME Turbo Expo 2016 conference this week in Seoul, South Korea.​

The project team, coordinated by Chalmers University of Technology, includes four of the largest engine manufacturers in Europe: Rolls-Royce (UK), MTU Aero Engines (Germany), Safran Aircraft Engines (France) and GKN Aerospace (Sweden), four universities: Chalmers University of Technology (Sweden), Cranfield University (UK), Aristotle University of Thessaloniki (Greece) and Institut Supérieur de l’Aéronautique et de l’Espace (France), the research institute Bauhaus Luftfahrt (Germany) and the technology management company Arttic (France).

More... | Comments (0)

New catalyst system for converting castor-oil-derived ricinoleic acid methyl ester into jet fuel; up to 90% carbon selectivity

June 13, 2016

Researchers at Beijing University of Chemical Technology have developed a catalytic process for the selective conversion of ricinoleic acid methyl ester—derived from castor oil—into jet fuel. A paper on their work is published in the RSC journal Green Chemistry.

A common challenge in bio-jet fuel production is the high cost due to the feedstock and processing technology. Although hydro-processing of lipid and fatty acid is well-known, the yield of jet fuel from typical lipid based oil with mainly C18 fatty acid is quite low (about 35–40%). The major reason for the low overall yield is the necessity of a hydrocracking step for converting the C18 or C16 alkane into jet fuel range paraffin (C9–C15), the researchers explained. A key improving lipid-to-jet production technology is thus to avoid the un-selective cracking.

More... | Comments (0)

NASA awards Aerojet Rocketdyne $67M to develop advanced solar electric propulsion system for space

April 20, 2016

NASA has awarded Aerojet Rocketdyne a $67-million contract to design and develop an Advanced Electric Propulsion System (AEPS) for spaceflight. Work performed under the contract could potentially increase spaceflight transportation fuel efficiency by 10 times over current chemical propulsion technology and more than double thrust capability compared to current electric propulsion systems.

Such a system could significantly advance the nation’s commercial space capabilities, and enable deep space exploration missions, including the robotic portion of NASA’s Asteroid Redirect Mission (ARM) and its Journey to Mars, NASA said.

More... | Comments (3)

JBEI team engineers E. coli for one-pot production of bio-jet fuel precursor from ionic-liquid-pretreated biomass

April 13, 2016

A team led by researchers at the DOE’s Joint BioEnergy Institute (JBEI) in Emeryville, CA, has engineered E. coli bacteria for the one-pot production of the monoterpene bio-jet fuel precursor D-limonene from ionic-liquid-pretreated cellulose and switchgrass. A paper on their work is published in the RSC journal Green Chemistry.

The ionic liquid 1-ethyl-3-methylimidazolium acetate is highly effective in deconstructing lignocellulose, but leaves behind residual reagents that are toxic to standard saccharification enzymes and the microbial production host. The JBEI researchers discovered a strain of E. coli that is tolerant to that ionic liquid due to a specific mutation. They engineered this strain to express a D-limonene production pathway.

More... | Comments (0)

Airbus Group and Siemens sign long-term agreement to develop hybrid-electric propulsion systems for aircraft

April 07, 2016

Airbus Group and Siemens have signed a collaboration agreement in the field of hybrid electric propulsion. In doing so, the Chief Executive Officers (CEO) of both companies, Tom Enders and Joe Kaeser, have launched a major joint project towards the electrification of aviation with the goal of demonstrating the technical feasibility of various hybrid/electric propulsion systems by 2020.

Airbus Group and Siemens plan to develop prototypes jointly for various propulsion systems with power classes ranging from a few 100 kilowatts up to 10 and more megawatts, i.e. for short, local trips with aircraft below 100 seats, helicopters or UAVs up to classic short and medium-range journeys.

More... | Comments (5)

ASTM ballot greenlights approval of ATJ-SPK biojet from alcohol; Gevo 1st commercial test flight with Alaska Airlines

March 29, 2016

Renewable isobutanol company Gevo announced that the ASTM International Committee D02 on Petroleum Products, Liquid Fuels, and Lubricants and Subcommittee D02.J on Aviation Fuel passed a concurrent ballot this week approving the revision of ASTM D7566 (Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons) to include alcohol-to-jet synthetic paraffinic kerosene (ATJ-SPK) (the “D02.J Ballot”). (Earlier post.)

This approval prepares the way for the use of Gevo ATJ—as well as ATJ-SPK fuels produced by other manufacturers—in commercial operations. As previously announced, Alaska Airlines is now poised to fly the first commercial test flight using Gevo’s renewable ATJ-SPJ fuel. (Earlier post.) Gevo is preparing the shipment of ATJ to Alaska Airlines for this first flight. Alaska Airlines will work with the Federal Aviation Administration to schedule the flight using Gevo’s ATJ.

More... | Comments (0)

United Airlines begins commercial-scale use of renewable jet fuel; 15M gallons over 3-year period

March 12, 2016

United Airlines has become the first US airline to begin use of commercial-scale volumes of sustainable aviation biofuel for regularly scheduled flights, beginning with the departure of United Flight 708 from Los Angeles International Airport (LAX). The launch marks a milestone in the commercial aviation industry by moving beyond demonstration flights and test programs to the use of advanced biofuels for United’s ongoing revenue operations.

United has agreed to purchase up to 15 million gallons of sustainable biofuel from AltAir Paramount over a three-year period. The biofuel will be mixed with traditional jet fuel at a 30/70 blend ratio: 30% biofuel, 70% traditional fuel. The airline has begun using the biofuel in its daily operations at LAX, storing and delivering it in the same way as traditional fuel.

More... | Comments (0)

NASA awards Lockheed Martin team $20M for preliminary design work on new quiet supersonic passenger aircraft

March 04, 2016

NASA has awarded a contract for the preliminary design of a quiet, “low boom” supersonic flight demonstration aircraft—the first in a new series of ‘X-planes’ in NASA’s New Aviation Horizons initiative, introduced in the agency’s Fiscal Year 2017 budget. The 10-year New Aviation Horizons initiative has the goals of reducing fuel use, emissions and noise through innovations in aircraft design that departs from the conventional tube-and-wing aircraft shape.

NASA selected a team led by Lockheed Martin Aeronautics Company to complete a preliminary design for Quiet Supersonic Technology (QueSST). Lockheed Martin will receive about $20 million over 17 months for QueSST preliminary design work. The Lockheed Martin team includes subcontractors GE Aviation and Tri Models Inc.. The work will be conducted under a task order against the Basic and Applied Aerospace Research and Technology (BAART) contract at NASA’s Langley Research Center in Hampton, Virginia.

More... | Comments (0)

New route to renewable diesel and jet from biomass-derived platform compounds

February 29, 2016

Researchers in China have developed a new route to the production of renewable diesel and jet fuel-range branched alkanes by combining the hydroxyalkylation/alkylation (HAA) of 2-methylfuran (MF)—a biomass-derived platform compound—with angelica lactone—another biomass-derived compound—and subsequent hydrodeoxygenation.

Under solvent-free conditions, the researchers obtained 81.3% yield of HAA products; after the HDO of the hydrogenated HAA products over 5 wt% Pd/C catalyst, they achieved 81.0% carbon yield of diesel or jet fuel-range alkanes. Compared to a 2-MF–levulinic acid (or ester) route proposed in their earlier work, the new 2-MF–angelica lactone route offers higher HAA reactivity.

More... | Comments (0)

Process for production of jet-range hydrocarbons from crude Jatropha oil using hydrogen produced in-situ from formic acid

February 16, 2016

A team at the Korea Institute of Energy Research has developed a catalytic process for the production of jet-range oxygen-free hydrocarbons from crude Jatropha oil, using hydrogen produced in-situ from formic acid.

In a fixed bed reaction using a mixture of crude Jatropha oil and formic acid, normal hydrocarbon in the range of C10–C18 (mostly C15 and C17) was the main product—about 97% in the liquid product—and the degree of deoxygenation was about 99.5%. A paper on their work is published in the journal Fuel.

More... | Comments (0)

New ICAO aircraft CO2 standard one step closer to final adoption after recommendation by CAEP

February 09, 2016

An aircraft CO2 emissions standard has made further and important headway at the UN’s International Civil Aviation Organization (ICAO). The new environmental measure was unanimously recommended by the 170 international experts on ICAO’s Committee on Aviation Environmental Protection (CAEP), paving the way for its ultimate adoption by the UN agency’s 36-State Governing Council.

Under the CAEP recommendation, the new CO2 emissions standard would not only be applicable to new aircraft type designs as of 2020, but also to new deliveries of current in-production aircraft types from 2023. A cut-off date of 2028 for production of aircraft that do not comply with the standard was also recommended. In its current form, the standard equitably acknowledges CO2 reductions arising from a range of possible technology innovations, whether structural, aerodynamic or propulsion-based.

More... | Comments (0)

First UAV test flight with Cella solid-state hydrogen storage and fuel-cell power system

February 08, 2016

The Scottish Association for Marine Science (SAMS) recently completed a UAV test flight using Cella Energy’s hydrogen-based power system. The system is based on Cella’s solid, nanostructured chemical hydride hydrogen storage material which is capable of releasing large quantities of hydrogen when heated. Cella Energy is a spin-off from STFC’s Rutherford Appleton Laboratory in the UK. (Earlier post.)

Cella designed and built a gas generator using this material, which when combined with a fuel cell, creates electrical power. The complete system—Cella gas generator along with a fuel cell supplied and integrated by Arcola Energy—is considerably lighter than the lithium-ion battery it replaced.

More... | Comments (12)

Oslo Airport first to supply Air BP renewable biojet via main fuel hydrant system; initial batch from Neste

January 23, 2016

In a first for commercial aviation, Air BP, together with Norwegian airport operator Avinor, and sustainable biofuel specialist SkyNRG, announced that all airlines landing at Oslo Airport can have jet biofuel delivered from the airport’s main fuel farm, via the existing hydrant mechanism.

Lufthansa Group was the first airline to confirm that it will uplift the Air BP aviation biofuel at Oslo, and began by refueling an Airbus A320 aircraft. Further airlines including Scandinavian national carrier SAS and KLM Royal Dutch Airlines confirmed they will also purchase jet biofuel at Oslo.

More... | Comments (1)

Green Car Congress © 2017 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group