Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Batteries

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

CXDI imaging reveals possible way to extend Li-ion battery lifetime, capacity

September 29, 2014

A new method developed for studying battery failures points to a potential next step in extending lithium-ion battery lifetime and capacity. Using a novel X-ray technique—coherent X-ray diffractive imaging (CXDI)—at the US Department of Energy’s Advanced Photon Source (APS) at Argonne National Laboratory, researchers have revealed surprising dynamics in the nanomechanics of operating batteries.

Their findings suggest a way to mitigate battery failures by minimizing the generation of elastic energy. A paper on their work is published in the ACS journal Nano Letters.

More... | Comments (3) | TrackBack (0)

Li-ion maker Boston-Power launches module system for EV and ESS applications; no-weld integration (updated with graphic)

September 22, 2014

Li-ion battery maker Boston-Power Inc. (earlier post) recently launched its Ensemble Module System; a “kit” of standard components that provides OEMs and pack assemblers with a simple, cost-effective way to assemble large format battery pack solutions for electric vehicle (EV) and energy storage system (ESS) applications. Available in 155 Wh and 116 Wh increments, module designs can be created to meet a wide variety of voltage and capacity requirements.

Key to the Ensemble solution is its novel pressure-connect approach to module assembly which completely eliminates the need for costly and time-consuming cell welding. Fully tested to automotive quality standards, the result is a mechanically robust module that can be assembled and disassembled in a fraction of the time of conventional methods.

More... | Comments (1) | TrackBack (0)

MIT team improves liquid metal batteries for grid-scale storage; lower operating temperature, cost

Researchers at MIT have improved a proposed liquid battery system that could enable renewable energy sources to compete with conventional power plants. Professor Donald Sadoway and colleagues have already started a company, Ambri (initially Liquid Metal Battery Corporation), to produce electrical-grid-scale liquid batteries, which comprise layers of molten material which automatically separate due to their differing densities. (Earlier post.)

In a paper published in the journal Nature, they describe a lithium–antimony–lead liquid metal battery comprising a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony–lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases.

More... | Comments (8) | TrackBack (0)

BMW using ams data acquisition IC for battery management system in i3

September 18, 2014

BMW is using the AS8510, an integrated automotive data acquisition front-end integrated circuit (IC) from ams AG, a leading provider of high performance analog ICs and sensors, to provide extremely accurate battery voltage and current measurements in its i3 electric vehicles (EVs).

The BMW i3 model in volume production today includes an AS8510 in the battery sensor. The battery management system (BMS) monitors battery voltage and battery current of the 400V li-ion battery powering the cars’ electric motors, and ensures the functional safety of the vehicle’s battery systems.

More... | Comments (0) | TrackBack (0)

GM researchers develop Li-Sulfur cathode material with improved cycling stability and efficiency

September 17, 2014

Master.img-000
Discharge capacities and Coulombic efficiency vs cycles for the new composite at 0.6C. Capacity values were calculated based on the mass of sulfur. Credit: ACS, Zhou et al. Click to enlarge.

A team from General Motors Global Research & Development Center in Michigan has developed a new double-layered core–shell structure of polymer-coated carbon–sulfur to confine better the sulfur/polysulfides in the electrode of lithium–sulfur (Li/S) batteries and to improve the batteries’ cycling stability and Columbic efficiency.

In a paper in the ACS journal Nano Letters, they report a stable capacity of 900 mAh g–1 at 0.2 C after 150 cycles and 630 mAh g–1 at 0.6 C after 600 cycles. They also demonstrated the feasibility of full cells using the sulfur cathodes coupled with silicon film anodes, which exhibited significantly improved cycling stability and efficiency.

More... | Comments (14) | TrackBack (0)

Freescale introduces new Li-ion battery cell controller for 48V systems

September 16, 2014

Freescale_MC33771_duo_angled_HR
Freescale MC 33771 controller addresses the needs of 48V Li-ion battery packs. Click to enlarge.

Some automakers such as Audi (earlier post) are turning to 48V electrical systems as a technical building block for facilitating the integration of new automotive technologies while increasing the power and efficiency of its cars. Freescale Semiconductor has now introduced a highly integrated 14-cell lithium-ion battery cell controller for industrial and automotive applications that cost-effectively addresses the requirements of 48 V Li-ion battery systems.

With fourteen cell balancing transistors, a current sensor with ±0.5% accuracy from milliamps to kiloamps, and 2 Mbps communication transceiver interface integrated into a single 64-pin QFP package, Freescale’s MC33771 battery cell controller and companion MC33664 isolated communications interface deliver robust, reliable performance for 48 V battery systems, and enable economical scalability beyond 1000 volts.

More... | Comments (3) | TrackBack (0)

Study finds rapid charging and draining doesn’t damage lithium-ion electrode as much as thought

September 14, 2014

Rectangular_scalebar
X-ray microscope snapshot of nanoparticles in a battery midway through charging. Particles range from fully charged (green) to intermediate charge (orange/yellow) to drained of charge (red) The scalebar equals 500 nm. (SLAC National Accelerator Laboratory) Click to enlarge.

A new study has found that rapid-charging a lithium-ion battery and using it to do high-power, rapidly draining work may not be as damaging as researchers had thought, and that the benefits of slow draining and charging may have been overestimated. The study, led by researchers from Stanford University and the Stanford Institute for Materials & Energy Sciences (SIMES) at the Department of Energy’s SLAC National Accelerator Laboratory, with colleagues from Sandia National Laboratories, Samsung Advanced Institute of Technology America and Lawrence Berkeley National Laboratory, is published in Nature Materials.

The results challenge the prevailing view that “supercharging” batteries is always harder on battery electrodes than charging at slower rates. The results also suggest that scientists may be able to modify electrodes or change the way batteries are charged to promote more uniform charging and discharging and extend battery life.

More... | Comments (7) | TrackBack (0)

Anderman report on Tesla’s battery prospects with the Gigafactory

September 12, 2014

In his new “Tesla Battery Report”, Dr. Menahem Anderman, independent battery expert, consultant and head of the Advanced Automotive Batteries conferences and publications, concludes that with the planned Gigafactory (earlier post), now targeted for Nevada, (earlier post), Tesla may succeed in accomplishing what the US Government failed to achieve—i.e., to establish a domestic Li-Ion battery industry.

However, there remain a number of questions and risk factors associated with the project for Tesla, Anderman notes, including profitability, participation of materials suppliers, and macro trends in the market such as demand, the continuation of government subsidies, competitive battery technology and the role played by ZEV credits.

More... | Comments (40) | TrackBack (0)

UK EPSRC awards almost $10M to two low-carbon vehicle technology projects; energy storage, engines and fuels

September 11, 2014

Two new low-carbon vehicle technology research projects will receive £6 million (US$9.7 million) funding from the Engineering and Physical Sciences Research Council (EPSRC), as part of the Research Councils UK (RCUK) Energy Programme. The two discrete projects—ELEVATE (ELEctrochemical Vehicle Advanced Technology) and Ultra Efficient Engines and Fuels—will involve academics from eight UK universities.

The announcement was made by UK Minister for Universities, Science and Cities, Greg Clark to coincide with the annual Low Carbon Vehicle Event - LCV Cenex 2014 at the Millbrook Proving Ground near Bedford.

More... | Comments (2) | TrackBack (0)

Proterra selects Toshiba SCiB cells for next-gen electric bus

September 10, 2014

Proterra Inc. has selected Toshiba as the battery supplier for its next-generation, all-electric bus from Proterra Inc. The new fleet will use Toshiba’s Rechargeable Batteries (SCiB), a safe rechargeable battery solution with high-rate performance and long-life capabilities that is used in a wide range of applications, from EVs to grid energy storage. (Earlier post.)

Featuring a Lithium Titanate Oxide (LTO), Toshiba’s SCiB batteries have excellent thermal performance, enabling their high-rate charging capability. The lithium-titanate chemistry contained in SCiB makes the batteries highly resistant to thermal runaway and lithium metal plating, providing exceptional battery safety characteristics.

More... | Comments (18) | TrackBack (0)

Ohio State researchers use neutron depth profiling to track flow of Li atoms into and out of anode in real time

September 09, 2014

Using a neutron beam, chemists and engineers at The Ohio State University have been able to track the flow of lithium atoms into and out of an anode in real time as a Li-ion battery charged and discharged. The study, published in the journal Angewandte Chemie International Edition, suggests that neutron depth profiling (NDP) could one day help explain why rechargeable batteries lose capacity over time, or sometimes even catch fire.

Ohio State researchers are using the technique to test new, high-capacity electrode materials, including ones containing tin, silicon, germanium and aluminum. These alternative electrodes could be capable of storing nearly three times as much energy as graphite, the material of choice in current lithium-ion batteries. They may also be less prone to overheating.

More... | Comments (0) | TrackBack (0)

Li-ion cell provider XALT Energy partners with Williams Advanced Engineering

September 08, 2014

Williams Advanced Engineering, the engineering services and technology business of the Williams Group, has entered a partnership agreement with XALT Energy, supplier of the lithium-ion cells for the Williams’ battery in the Formula E racing series. This new partnership will also see the two companies collaborate on future projects involving lithium-ion battery technology for a range of applications beyond motorsport.

Williams Advanced Engineering and XALT Energy have worked closely together since June 2013 after Williams was awarded the contract to produce the batteries that will power all 40 cars competing in Formula E, the world’s first fully electric racing series.

More... | Comments (12) | TrackBack (0)

Nevada the site for the Tesla Gigafactory pending legislative approval of incentive package estimated at up to $1.25B over 20 years

September 05, 2014

On Thursday, Nevada Governor Brian Sandoval and Elon Musk, Chairman and CEO of Tesla Motors, confirmed what had been widely leaked the day before: that Nevada and Tesla had reached an agreement—subject to legislative review and approval—that will result in the state being the site for the Tesla Gigafactory. (Earlier post.) Five states had been in contention for the prize.

According to the Reno Gazette-Journal, the incentive package assembled by the governor for Tesla is “unprecedented in size and scope for the state of Nevada” and is one of the largest in the country. The overall value of the package to Tesla is estimated to be $1.25 billion over 20 years.

More... | Comments (34) | TrackBack (0)

Lux: Tesla likely to miss 2020 vehicle target by >50%; Gigafactory to bring only modest reduction in costs, >50% overcapacity

September 03, 2014

Lux Research forecasts that Tesla Motors’ Gigafactory—the announced new 35 GWh lithium-ion cell production facility that is the target of hot competition between five states (earlier post)—will bring about only a modest reduction in Li-ion battery costs and create significant overcapacity, given likely Tesla EV sales in 2020 of less than half of the company’s targeted 500,000.

Tesla and its partner, Panasonic, will contribute about 45% and 35%, respectively, of the initial $4 billion required to build the Gigafactory, proposed to go on-stream in 2017. Lux Research’s new report—“The Tesla-Panasonic Battery Gigafactory: Analysis of Li-ion Cost Trends, EV Price Reduction, and Capacity Utilization”—projects sales of some 240,000 Tesla cars in 2020, leading to razor-thin margins to Panasonic and 57% overcapacity.

More... | Comments (39) | TrackBack (0)

High-capacity, long-life Li-S cathodes using ordered meso-microporous core-shell carbon

September 02, 2014

A team at Huazhong University of Science and Technology (China) has developed an ordered meso-microporous core–shell carbon (MMCS) as a sulfur container, which combines the advantages of both mesoporous and microporous carbon for use in high-capacity, long-life cathodes for Lithium-sulfur batteries.

This strategy, they suggest in a paper in the journal ACS Nano, can inspire some other related novel materials with multilayers and hierarchical porous structures, which have great potential applications not only in energy conversion and storage but also in catalysis, adsorption, separation, drug delivery, sensors, and so on.

More... | Comments (0) | TrackBack (0)

Study suggests OEMs should use a modular design for PHEV and EREV vehicle battery packs to offer capacity choices to customers

Redelbach2
TCO in € cents/km of EREV as a function of battery size for users with different annual mileages. Redelbach et al. Click to enlarge.

Car manufacturers should develop a modular design for plug-in hybrid and extended range electric vehicles (PHEVs and EREVs), allowing them to offer a choice of storage capacity to meet individual customer requirements rather than forcing a “one size fits all” approach, according to the results of a German-market-specific TCO study by a team from the Institute of Vehicle Concepts, German Aerospace Center (DLR).

The authors of the study, published in the journal Energy Policy, stress that they are not suggesting OEMs offer each customer an individual battery size, but rather than they offer, as an example, three different battery sizes dedicated to drivers with low, average and high mileage. The development of a modular design for battery packs could help OEMs to change the size with less effort and few implications on the rest of the vehicle, they suggested. (This is analogous to the approach taken by Tesla Motors with its two—originally three—pack capacity sizes offered in the Model S.)

More... | Comments (8) | TrackBack (0)

ORNL team tailors the structure of carbon black from waste tires to create higher performance carbon anode material for Li-ion batteries

August 28, 2014

Researchers at Oak Ridge National Laboratory (ORNL) have tailored the microstructural characteristics of carbon black recovered from discarded tires to produce a higher performance, low-cost carbon anode material for Li-ion batteries.

Electrochemical studies reported in their paper published in the journal RSC Advances showed that the recovered-carbon-based anode had a a reversible capacity of nearly 390 mAh/g of carbon anode after 100 cycles—exceeding the best properties of commercial graphite. Researchers attribute this to the unique microstructure of the tire-derived carbon. Anodes made with the sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon exhibited an initial coulombic efficiency of 71% and 45%, respectively.

More... | Comments (3) | TrackBack (0)

Rice University team develops new nanocomposite material for Li-sulfur battery cathode with high cycling stability

August 26, 2014

Image
Schematic illustration of the synthesis of SPGs. Credit: ACS, Li et al. Click to enlarge.

Researchers at Rice University led by Dr. James Tour have developed a hierarchical nanocomposite material of graphene nanoribbons combined with polyaniline and sulfur (Sulfur-PANI-GNRs, SPG) using an inexpensive, simple method. The composite shows good rate performance and excellent cycling stability for use as a cathode material in Lithium-sulfur batteries.

As reported in an an open access paper in the journal ACS Applied Materials & Interfaces, the stable reversible specific discharge capacity was 567 mAh/g at the 26th with only a 9% decay in the following 374 cycles, at the rate of 0.4 C.

More... | Comments (1) | TrackBack (0)

More work reported on approaches to stabilizing lithium metal anodes for high energy rechargeable batteries

August 25, 2014

Metallic lithium, with a high theoretical capacity of ~3,860 mAh g-1, is one of the most promising materials for anodes in next-generation high energy rechargeable battery systems for long-range electric vehicles. (Earlier post.) Indeed, in a paper in ACS’ Chemical Reviews, Arumugam Manthiram et al. from the University of Texas suggest that “it is reasonable to comment that the success of Li−S batteries requires a reliable lithium metal anode.

A reliable and stable lithium metal anode is extremely challenging, however; low cycle efficiency and lithium dendrite formation during charge/discharge processes consistently hinder its practical application in addition to raising safety issues. Accordingly, widespread effort is focused on devising solutions to the problem, tackling either the anode material itself, or the electrolyte, or both. The widely reported advance by Stanford researchers (earlier post) is but one of a number of such efforts underway (e.g., earlier post, earlier post, earlier post.)

More... | Comments (2) | TrackBack (0)

DOE awards $17M for vehicle technologies; batteries, PEEM, engines, materials, fuel

August 21, 2014

The US Department of Energy (DOE) is awarding $17.6 million in 14 cooperative agreements with small businesses and institutions of higher education to develop and to deploy efficient and environmentally friendly highway transportation technologies that will help reduce petroleum use in the United States. The awards made under an Incubator Funding Opportunity Announcement (DE-FOA-0000988) issued in January. (Earlier post.)

The newly selected projects are in five areas: energy storage; power electronics and electric motors (PEEM); advanced combustion engines; materials technologies, and fuels and lubricant technologies. Awardees are:

More... | Comments (0) | TrackBack (0)

MIT team proposes process to recycle lead-acid batteries to fabricate solar cells

August 18, 2014

Researchers at MIT have devised an environmentally-responsible process to recycle materials from discarded automotive lead-acid batteries to fabricate efficient organolead halide perovskite solar cells (PSCs)—a promising new large-scale and cost-competitive photovoltaic technology. The process simultaneously avoids the disposal of toxic battery materials and provide alternative, readily-available lead sources for PSCs.

The system is described in a paper in the RSC journal Energy and Environmental Science, co-authored by professors Angela M. Belcher and Paula T. Hammond, graduate student Po-Yen Chen, and three others.

More... | Comments (8) | TrackBack (0)

ORNL researcher suggests that most consumers better off with <100-mile EV range until battery costs drop to $100/kWh

Until battery cost is cut down to $100/kWh, the majority of US consumers for battery electric vehicles (BEV) will be better off by choosing an electric vehicle with a range below 100 miles, according to a new study by Oak Ridge National Laboratory (ORNL) researcher Zhenhong Lin.

The research, published in Transportation Science, a journal of the Institute for Operations Research and the Management Sciences (INFORMS), suggests reconsideration of the R&D goal that battery electric vehicles should have a driving range similar to that of conventional vehicles. It also implies that the focus of policy and R&D should be on continued reduction of battery costs to make short-range BEVs more price-competitive.

More... | Comments (23) | TrackBack (0)

U. Alberta team developing new high power and energy lithium-carbon battery system using induced fluorination; dual storage mechanism

Srep05310-f5
Ragone plot, comparing Li-CNT-F batteries with other batteries in terms of weight of cathode materials. The highest energy density for Li-CNT-F batteries, 4,113 Wh kgcarbon−1 is presented as a red star. Cui et al. Click to enlarge.

Researchers at the University of Alberta are developing, and, via their spin-out AdvEn Solutions working to commercialize, a new high power- and -energy density battery system: lithium-carbon-fluorine (Li-C-F). Their system is based on a lithium-carbon battery configuration, but with a different approach.

In a paper in Nature’s open access journal Scientific Reports, the team reported that a rechargeable Li-C-F battery (in this case, a Li-CNT-F battery given their use of carbon nanotubes) demonstrated a maximum discharging capacity of 2174 mAh gcarbon−1 and a specific energy of 4113 Wh kgcarbon−1 with good cycling performance.

More... | Comments (10) | TrackBack (0)

DOE to award more than $55M to 31 projects for plug-in and efficient vehicle technologies; Delphi receives $10M to further GDCI

August 14, 2014

The US Department of Energy (DOE) is awarding more than $55 million to 31 new projects to accelerate research and development of vehicle technologies that will improve fuel efficiency and reduce costs under a program-wide funding opportunity announced in January. (DE-FOA-0000991, earlier post.) These new projects are aimed at meeting the goals and objectives of the President’s EV Everywhere Grand Challenge (19 projects), as well as improvements in other vehicle technologies such as powertrains, fuel, tires and auxiliary systems (12 projects).

The largest single award ($10 million) goes to Delphi Automotive Systems to further the development of its Gasoline Direct-Injection Compression Ignition (GDCI) low-temperature combustion technology (earlier post) that provides high thermal efficiency with low NOx and PM emissions. The largest number of awards (9) in a single area of interest goes to developing beyond Li-ion battery technologies.

More... | Comments (0) | TrackBack (0)

Cornell researchers stabilize lithium metal anodes using halide salt in liquid electrolyte

A team at Cornell University led by Dr. Lynden Archer has used simple liquid electrolytes reinforced with halogenated salt blends to stabilize lithium metal anodes in a rechargeable battery. The cells exhibit stable long-term cycling at room temperature over hundreds of cycles of charge and discharge and thousands of operating hours.

In a paper published in the journal Nature Materials, they report that the addition of the salts to the electrolyte spontaneously creates nanostructured surface coatings on the lithium anode thats hinder the development of detrimental dendritic structures that grow within the battery cell. The discovery offers a potential pathway for the use of lithium metal anodes, which are enablers for cost-effective, higher-energy density systems such as Li-sulfur. (Earlier post, earlier post.)

More... | Comments (5) | TrackBack (0)

NASA selects proposals for advanced energy storage systems for future space missions: silicon-anode Li-ion and Li-S

August 08, 2014

NASA has selected four proposals for advanced Li-ion and Li-sulfur energy storage technologies that may be used to power the agency’s future space missions.

Development of these new energy storage devices will help enable NASA’s future robotic and human-exploration missions and aligns with conclusions presented in the National Research Council’s “NASA Space Technology Roadmaps and Priorities,” which calls for improved energy generation and storage “with reliable power systems that can survive the wide range of environments unique to NASA missions.” NASA believes these awards will lead to such energy breakthroughs.

More... | Comments (2) | TrackBack (0)

EV-Lite project closes with new EV battery design; lower weight, lower cost

August 07, 2014

Evlite
Click to enlarge.

Cenex, the UK-based not-for-profit consultancy focused on low carbon vehicles and associated energy infrastructure, announced the successful completion of the two-year project Sustainable Lightweight Low Cost Battery Systems for Extended Life Cycles (EV-Lite). (Earlier post.) The project was co-funded by the UK’s innovation agency, the Technology Strategy Board. The project consortium comprises the Manufacturing Technology Centre; Unipart Manufacturing; Electrovaya; RDVS; CRR; Bluebird Innovation Group; Loughborough University; and Cenex.

The project realized a 41% reduction in weight and a 63% reduction in cost of the non-cell components. This translates to a saving of 45 kg (99 lbs) at the battery pack level. The ultimate aim of the project is to enable volume manufacturing for electric vehicle battery packs in the UK through innovative design and, in doing so, help bring electrical vehicles to the mass market.

More... | Comments (5) | TrackBack (0)

Supercapacitors of nanocrystalline MOFs outperform activated carbon and graphene

Master.img-001
The construct for nMOF Supercapacitors. Credit: ACS, Choi et al. Click to enlarge.

Researchers at UC Berkeley led by Dr. Omar Yaghi and at the Korea Advanced Institute of Science and Technology led by Dr. Jeung Ku Kang have shown that metal–organic frameworks (MOFs) made as nanocrystals (nMOFs) can be doped with graphene and successfully incorporated into devices to function as supercapacitors.

In a paper in the journal ACS Nano, the team reported that, among a series of 23 different nMOFs they synthesized, a zirconium MOF (nMOF-867) exhibited exceptionally high capacitance. It has stack and areal capacitance of 0.64 and 5.09 mF cm–2—26 times that of the lowest performing member of the series and about 6 times that of the supercapacitors made from the benchmark commercial activated carbon materials. Performance was preserved over at least 10,000 charge/discharge cycles.

More... | Comments (3) | TrackBack (0)

BNL team uses hard x-ray microscopy to provide insight into why fast charging inhibits LiFePO4 performance

August 05, 2014

With a new approach using hard x-ray microscopy to track the electrochemical reactions in a lithium iron phosphate (LiFePO4) material under operating conditions (in operando), scientists at the US Department of Energy’s Brookhaven National Laboratory have provided new insight into why fast charging inhibits this material’s performance. Hard X-ray microscopy offers nanoscale resolution and deep penetration of the material, and takes advantage of elemental and chemical sensitivities.

The study also provides the first direct experimental evidence to support a particular model of the electrochemical reaction. The results, published in Nature Communications, could provide guidance to inform battery makers’ efforts to optimize materials for faster-charging batteries with higher capacity.

More... | Comments (0) | TrackBack (0)

Stanford team reports 3D electrode structure addressing major limiting characteristics of sulfur cathodes for Li-S batteries

Master.img-005
Rate performance of the composite cathode at different C rates ranging from 0.05C to 1C. Credit: ACS, Liang et al.Click to enlarge.

A team at Stanford University led by Prof. Yi Cui recently reported in a paper in the journal ACS Nano the development of a three-dimensional (3D) electrode structure for Li-sulfur batteries that simultaneously achieves both sulfur physical encapsulation and polysulfides binding. The composite electrode is based on hydrogen-reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling.

With such a TiO2-encapsulated sulfur structure, the sulfur cathode can deliver a high specific capacity of 1100 mAh/g in the beginning, with a reversible capacity of 890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. Coulombic efficiency was also maintained at around 99.5% during cycling. The researchers suggested that their results showed that the inverse opal structure of hydrogen-reduced TiO2 represents an effective strategy in improving the performance of lithium sulfur batteries.

More... | Comments (1) | TrackBack (0)

CD-adapco completes CAEBAT project for Li-ion battery simulation tools; combined flow, thermal and electrochemical

August 04, 2014

CD-adapco announced the successful completion of a project to develop advanced Li-ion battery stimulation tools to enable faster design and development of advanced electric drive vehicle power systems. This project, which began in August 2011, was co-funded by the US DOE’s Vehicle Technologies Office, and was part of the competitive Computer Aided Engineering of electric drive Batteries (CAEBAT) activity launched by DOE in 2010. (Earlier post.)

The methods developed within this program are now available within CD-adapco’s flagship software package STAR-CCM+ (earlier post) and also in the application-specific Battery Design Studio. These solutions combine flow, thermal and electrochemical simulation.

More... | Comments (0) | TrackBack (0)

New liquid alloy electrode significantly lowers operating temperature of sodium-beta batteries; improved performance

August 01, 2014

Researchers at Pacific Northwest National Laboratory (PNNL) have devised an alloying strategy that enables sodium-beta batteries to operate at significantly lower temperatures. The new electrode enables sodium-beta batteries to last longer, helps streamline their manufacturing process and reduces the risk of accidental fire. A paper on the work is published in Nature Communications.

The traditional design of sodium-beta batteries consists of two electrodes separated by a solid membrane made of the ceramic material beta alumina. There are two main types of sodium-beta batteries, based on the materials used for the positive electrode: those that use sulfur are called sodium-sulfur batteries, while those that use nickel chloride are known as ZEBRA batteries. Electricity is generated when electrons flow between the battery’s electrodes.

More... | Comments (2) | TrackBack (0)

China team reports high-rate, high-capacity, long lifecycle Li-sulfur cell using nitrogen-doped graphene cathode material

Master.img-006
Top. Long-term cycling performance test of the S@NG electrode at 2 C discharge/charge rate. Inset is its corresponding Coulombic efficiency at 2 C. Bottom. The corresponding voltage-capacity profiles at different cycles. Credit: ACS, Qiu et al.Click to enlarge.

Researchers in China, with colleagues from Lawrence Berkeley National Laboratory, have synthesized an additive-free nanocomposite cathode in which sulfur nanoparticles are wrapped inside nitrogen-doped graphene sheets (S@NG). Used as a cathode material for a Li-sulfur battery, the Li/S@NG can deliver high specific discharge capacities at high rates: 1167 mAh g–1 at 0.2 C; 1058 mAh g–1 at 0.5 C; 971 mAh g–1 at 1 C; 802 mAh g–1 at 2 C; and 606 mAh g–1 at 5 C.

The cells also exhibited an ultralong cycle life exceeding 2000 cycles and an extremely low capacity-decay rate (0.028% per cycle)—among the best performance demonstrated so far for Li/S cells, according to the researchers. Furthermore, the S@NG cathode can be cycled with an excellent Coulombic efficiency of above 97% after 2000 cycles.

More... | Comments (5) | TrackBack (0)

Panasonic and Tesla sign Gigafactory agreement

July 31, 2014

Panasonic Corporation and Tesla Motors, Inc. signed an agreement that lays out their cooperation on the construction of a large-scale battery manufacturing plant in the United States (the specific location yet to be announced) known as the Gigafactory. (Earlier post.) During Tesla’s Q4 earnings call in February, Tesla CEO Elon Musk had noted that because Panasonic is Tesla’s primary partner on battery production, the “default assumption” was that Panasonic would continue to partner with Tesla in the Gigafactory.

According to the agreement, Tesla will prepare, provide and manage the land, buildings and utilities. Panasonic will manufacture and supply cylindrical lithium-ion cells and invest in the associated equipment, machinery, and other manufacturing tools based on their mutual approval. A network of supplier partners is planned to produce the required precursor materials. Tesla will take the cells and other components to assemble battery modules and packs.

More... | Comments (15) | TrackBack (0)

PNNL team develops hybrid Mg-Li battery; excellent rate performance, safety and stability

July 30, 2014

Hybridbattery
Schematic illustration of the the hybrid Mg-Li battery designed in this work. This battery has a piece of Mg foil as the anode, Mo6S8 as the cathode, and the electrolyte contains both Mg2+ and Li+. Cheng et al. Click to enlarge.

Researchers at Pacific Northwest National Laboratory (PNNL) have devised hybrid batteries assembled with a magnesium (Mg) metal anode; a Li+ ion intercalation cathode (Mo6S8), and a dual-salt electrolyte containing Mg2+ and Li+ ions. The objective was to combine the advantages of lithium and magnesium electrochemistries.

In a paper in the RSC journal Chemical Communications, they reported that such hybrid batteries delivered strong rate performance (105 mAh g-1 at 15 C) and superior cycling stability (B5% capacity drop for 3000 cycles at 10 C), along with reasonable output voltages. The researchers suggested that the inherent safety and stability features of such devices make them very promising for many applications, especially for large-scale static energy storage.

More... | Comments (16) | TrackBack (0)

Stanford team reports progress toward stable Li-metal anode for high-energy-density batteries

July 28, 2014

Dr. Yi Cui and colleagues at Stanford University—including Dr. Steven Chu, Nobel Laureate and the former Secretary of Energy, now a professor in the Physics department at Stanford—report progress toward a stable lithium metal anode for use in high-energy-density batteries such as Li-sulfur or Li-air systems.

Lithium metal is a very promising anode material for rechargeable batteries due to its theoretical high capacity (3,860 mAh g−1—i.e., ~10x that of the 372 mAh g−1 of graphite anodes in Li-ion batteries), but it fails to meet cycle life and safety requirements due to electrolyte decomposition and dendrite formation on the surfaces of the lithium metal anodes during cycling. Thus, numerous efforts are being made to develop a safe, extended cycling lithium-metal electrode and/or supporting electrolyte (Earlier post, earlier post.)

More... | Comments (0) | TrackBack (0)

U Tokyo team proposes new high-capacity rechargeable battery system based on oxide-peroxide redox reaction

July 27, 2014

Srep05684-f1
(a) Charge and discharge voltage curves in repeated charge/discharge cycles at 45 mA g−1. (b) Charge and discharge voltage curves at various current densities (13.5–1080 mA g−1). Click to enlarge.

Researchers at the University of Tokyo, led by Dr. Noritaka Mizuno (“oxygen rocking”, earlier post), in collaboration with Nippon Shokubai Co., Ltd. are proposing a new sealed rechargeable battery system operating on a redox reaction between an oxide (O2-) and a peroxide (O22-) in the cathode. As described in a paper in the Nature open access journal Scientific Reports, the proposed battery system would have a theoretical specific energy of 2,570 Wh kg-1 (897 mAh g-1, 2.87 V)—about on par with Li-sulfur’s very high theoretical energy density of ~2,600 Wh kg-1 (based on lithium-sulfur redox couple, e.g., earlier post).

The team showed that a cobalt-doped Li2O cathode exhibited a reversible capacity above 190 mAh g-1, a high rate capability, and good cyclability with a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte in acetonitrile. The present specific capacity of the Co-doped Li2O cathode is lower than its theoretical capacity of 556 mAh g−1 (based on the weight of Li2O in the Co-doped Li2O).

More... | Comments (0) | TrackBack (0)

Kyoto team develops new cathode material for high-energy-density rechargeable magnesium batteries

July 25, 2014

Orikasa1
Charge–discharge profiles of ion-exchanged MgFeSiO4. Three-electrode cells using Mg metal counter electrode and silver reference electrode were used. Electrolyte was 0.5 M magnesium (trifluoromethylsulfonyl)imide (Mg(TFSI)2) in acetonitrile (solvent). Measurement temperature was 55°C. Current density was 6.62 mA·g−1 (MgFeSiO4). Orikasa et al. Click to enlarge.

A team of researchers from Kyoto University has demonstrated ion-exchanged MgFeSiO4 as a feasible cathode material for use in high-energy-density rechargeable magnesium batteries. A paper on their work is published in the Nature open access journal Scientific Reports.

The ion-exchanged MgFeSiO4 cathode materials provide a capacity of more than 300 mAh·g−1 at an average potential of 2.4 V vs. Mg2+/Mg, with good retention upon cycling. Batteries using a combination of ion-exchanged MgFeSiO4 and a magnesium bis(trifluoromethylsulfonyl)imide–triglyme electrolyte system represent a prototype for a low-cost, high-energy-density rechargeable magnesium battery in which no toxic or explosive components are used, the researchers concluded.

More... | Comments (3) | TrackBack (0)

Optimized Li-ion battery with LiFePO4 cathode and graphene nanoflake anode

July 24, 2014

Master.img-004
Schematic of graphene/lithium iron phosphate battery. Credit: ACS, Hassoun et al. Click to enlarge.

Researchers in Italy have developed an advanced lithium-ion battery based on a graphene nanoflake ink anode and a lithium iron phosphate cathode. By balancing the cell composition and suppressing the initial irreversible capacity of the anode in the round of few cycles, they reported an optimal specific capacity of 165 mAhg–1, of an estimated energy density of about 190 Wh kg–1 and a stable operation for more than 80 charge–discharge cycles.

In a paper published in the ACS journal Nano Letters, they observed that—to the the best of their knowledge—complete, graphene-based, lithium-ion batteries having comparable performances are rarely reported. They suggested that their results disclosed might open up new opportunities for exploiting graphene in lithium-ion battery science and development.

More... | Comments (0) | TrackBack (0)

ABB and Volvo Buses partnering on fast-charging system for hybrid and electric buses

July 22, 2014

ABB and Volvo Buses are partnering to co-develop and to commercialize electric and hybrid buses with open standards-based direct current (DC) fast charging systems. The cooperation will create a city-wide standardized charging system for electric and electric hybrid buses that can charge buses quickly through an automatic roof-top connection system at bus stops or through cabled charging systems overnight.

This approach, based on internationally accepted standards (EN61851-23), enables maximum re-use of existing e-mobility technologies, thereby ensuring a rapid deployment of urban e-mobility. The first joint project will be the implementation of Volvo Electric Hybrids and ABB’s automatic e-bus chargers in the Luxembourg public transport system, where as many as 12 Volvo Electric Hybrid buses operated by Sales-Lentz will be running on existing lines by 2015.

More... | Comments (1) | TrackBack (0)

USABC awards $7.7M contract to Envia Systems for advanced EV battery development; layered-layered cathode, Si-based anode

July 21, 2014

The United States Advanced Battery Consortium LLC (USABC), a collaborative organization operated by Chrysler Group LLC, Ford Motor Company and General Motors, has awarded a $7.7-million advanced battery technology development contract for electric vehicle applications to Envia Systems. The competitively bid contract award is co-funded by the US Department of Energy (DOE) and includes a 50% Envia Systems cost-share.

The 36-month, lithium-ion layered-layered cathode/silicon-based anode program will focus on the development of high-energy cathode and anode material appropriate for vehicle applications and the development and scale up of pouch cells that exhibit performance metrics that exceed the minimum USABC targets for electric vehicles.

More... | Comments (15) | TrackBack (0)

CALEB and CalBattery to combine their Li-ion battery materials in new line-up; 2nd gen to use SiGr anode, targeting EVs

CALEB Technology and California Lithium Battery (CalBattery)—both based in California—signed an MOU to establish a joint venture to produce a new line of safe, high performance lithium ion batteries for consumer electronic devices, power tools, and electric vehicles (EVs). The new line of advanced LIBs will initially be made in the Los Angeles area starting in 2016.

The JV will combine the best LIB materials developed by both Calbattery and CALEB over the past 5 years. The first Calbattery/CALEB LIB will utilize novel high-voltage lithium cobalt oxide cathode, high voltage dual-phase electrolyte, and conventional anode materials that can be used for power tools, laptops, and cell phones.

More... | Comments (2) | TrackBack (0)

Driving the VW e-Golf; strategy, assembly in Wolfsburg, Braunschweig battery plant

E-golf_3587
The e-Golf. Click to enlarge.

The e-Golf (“Das e-Auto” earlier post), the Volkswagen brand’s second series production battery-electric vehicle after the e-up!, is a key model, as it is the best and most current implementation of its strategic decision to begin providing e-mobility based on large-scale production models rather than special “small niche” cars. The Golf is core to Volkswagen; the company has sold more than 30 million units worldwide since the first introduction in 1974. The e-Golf is based on current 7th generation Golf, itself based on the strategic MQB toolkit.

Put another way, Volkswagen’s goal, based on its strategic approach, is for the e-Golf to deliver the performance and handling of a Golf which happens to have a battery-electric powertrain. Based on a second, and slightly longer, chance to drive the new e-Golf unsupervised, we think Volkswagen has succeeded splendidly in this goal; we find the e-Golf to be a nimble and quiet electric delight.

More... | Comments (14) | TrackBack (0)

New process for nanocomposite silicon-based powders for high-capacity Li-ion anodes

July 15, 2014

Homma
Capacity change with number of cycles for PS-PVD powders with different C/Si ratios. The battery was charged at a constant current of 0.1 mA for the first three cycles and at 0.5 mA for the rest of the cycles. Homma et al. Click to enlarge.

Researchers at the University of Tokyo have developed an approach which potentially has industrially compatible high throughputs to produce nano-sized composite silicon-based powders as a strong candidate for the anode of next-generation high density lithium ion batteries. The powders are fundamentally an aggregate of primary ∼20 nm particles, which are composed of a crystalline Si core and SiOx shell structure.

In an open access paper published in the journal Science and Technology of Advanced Materials, they report that half-cell batteries made with their nanocomposite Si/SiOx powders exhibited improved initial efficiency and maintenance of capacity as high as 1000 mAh g−1 after 100 cycles.

More... | Comments (0) | TrackBack (0)

BMW Group and Samsung SDI expand partnership on electric drive batteries; i3, i8 and additional hybrid models

The BMW Group and Samsung SDI have signed a memorandum of understanding (MoU) to expand their supply relationship for battery cells for electro-mobility. Samsung SDI will supply the BMW Group with battery cells for the BMW i3, BMW i8 and additional hybrid models over the coming years.

The most important elements of the agreement are the increase in quantities delivered over the medium-term in response to growing demand for electro-mobility, and further technological development of battery cells.

More... | Comments (1) | TrackBack (0)

High capacity, long-life porous nano-silicon Li-ion anode material from beach sand

July 09, 2014

Researchers at the University of California, Riverside’s Bourns College of Engineering have synthesized a porous nano-silicon material from beach sand (SiO2) via a highly scalable heat scavenger-assisted magnesiothermic—i.e., using a combination of heat and magnesium—reduction. The addition of NaCl as a heat scavenger for the highly exothermic magnesium reduction process promotes the formation of an interconnected 3D network of nano-silicon with a thickness of 8-10 nm.

Coated with carbon, the nano-silicon electrodes achieve high electrochemical performance with a capacity of 1024 mAhg−1 at 2 Ag−1 after 1,000 cycles. A paper on their work is published in the Nature open access journal Scientific Reports.

More... | Comments (7) | TrackBack (0)

PNNL silicon sponge delivers high capacity with long cycle life as Li-ion anode material

14413252470_51c7511ff1_o
The porous, sponge-like nanomaterial made of silicon. Source: PNNL. Click to enlarge.

Researchers at Pacific Northwest National Laboratory (PNNL), with colleagues at UC San Diego, have developed a “mesoporous silicon sponge” material that, when applied as an anode in a lithium-ion battery, can deliver capacity of up to ~750 mAh g−1 based on the total electrode weight with more than 80% capacity retention over 1,000 cycles.

In a paper published in the journal Nature Communications, they also report that the first cycle irreversible capacity loss of the pre-lithiated electrode is less than 5%. Bulk electrodes with an area-specific-capacity of ~1.5 mAh cm−2 and ~92% capacity retention over 300 cycles were also demonstrated.

More... | Comments (1) | TrackBack (0)

Researchers use bacterial biogeneous iron oxide particles as anode material for Li-ion batteries

July 07, 2014

Master.img-000
Left. High-magnification SEM images of L- BIOX. Right. Discharge−charge curves at 33.3 mA/g (0.05 C) between 0.5 and 3.0 V. Insets show the cycle-life performance. Credit: ACS, Hashimoto et al. Click to enlarge.

Researchers in Japan report in a paper in the journal ACS Applied Materials & Interfaces that amorphous Fe3+-based oxide nanoparticles produced by Leptothrix ochracea, an aquatic bacteria living worldwide, show a potential as an Fe3+/Fe0 conversion anode material for lithium-ion batteries. The presence of minor components of silicon (Si) and phosphorous (P), in the original nanoparticles leads to a specific electrode architecture with Fe-based electrochemical centers embedded in a Si, P-based amorphous matrix.

They reported relatively high capacity and good cyclability were found for L-BIOX (L. ochracea’s biogeneous iron oxide), which was used as produced, by simple washing and drying steps. After an “unreasonably high capacity” for the first discharge of ~1500 mAh/g (which they attributed to an extrinsic phenomenon resulting from the formation of the solid−electrolyte interface), the material settled down to reduced yet still high reversible capacity of ~ 900 mAh/g for the second and subsequent cycles.

More... | Comments (0) | TrackBack (0)

USC team develops novel organic redox flow battery for large-scale energy storage

June 27, 2014

Image
Schematic of ORBAT. Click to enlarge.

Scientists at USC have developed a novel water-based Organic Redox Flow Battery (ORBAT) for lower cost, long lasting large-scale energy storage. An open access paper on their work is published in the Journal of the Electrochemical Society.

ORBAT employs two different water-soluble organic redox couples on the positive and negative side of a flow battery. Redox couples such as quinones are particularly attractive for this application, the researchers said. (Quinones are oxidized derivatives of aromatic compounds.) No precious metal catalyst is needed because of the fast proton-coupled electron transfer processes. Furthermore, in acid media, the quinones exhibit good chemical stability. These properties render quinone-based redox couples very attractive for high-efficiency metal-free rechargeable batteries, they found.

More... | Comments (32) | TrackBack (0)

DOE awards $100M in 2nd funding round for 32 Energy Frontier Research Centers

June 24, 2014

The US Department of Energy (DOE) is awarding $100 million in the second round of funding for Energy Frontier Research Centers (EFRCs); research supported by this initiative will enable fundamental advances in energy production, storage, and use.

The 32 projects receiving funding were competitively selected from more than 200 proposals. Ten of these projects are new while the rest received renewed funding based both on their achievements to date and the quality of their proposals for future research.

More... | Comments (1) | TrackBack (0)

6 DOE-funded applied battery research projects targeting Li-ion cells with >200 Wh/kg for PHEVs and EVs

June 19, 2014

The US Department of Energy (DOE) has six recently launched applied battery research (ABR) projects as part of its Vehicle Technologies portfolio. ABR, noted Peter Faguy, the DOE manager of the applied battery research program, during his presentation at the Annual Merit Review in Washington, DC, is the difficult regime between the discovery of materials and their application in batteries that can be commercialized.

The objective of the projects is to develop cells that provide more than 200 Wh/kg energy density, along with long cycle life and excellent abuse tolerance to enable 40-mile-range plug-in hybrid (PHEV) and electric vehicles (EVs). One common attribute of all the projects is the use of some form of silicon-based material for the anode. The projects end in 2015.

More... | Comments (7) | TrackBack (0)

A123 Systems acquires lithium titanate and Li-imide electrolyte technology from Leyden Energy; micro-hybrid focus

June 16, 2014

A123 Systems LLC, a developer and manufacturer of advanced lithium-ion batteries and systems, has acquired Leyden Energy’s intellectual property in battery materials covering lithium titanate (LTO) and non-flammable electrolyte (Li-imide) developments for an undisclosed amount. As a part of the deal, key technical staff of Leyden Energy have also agreed to join A123 Systems’ R&D organization.

Leyden is the recent recipient of significant development funding from United States Advanced Battery Consortium LLC (USABC), an organization whose members include Chrysler Group LLC, Ford Motor Company and General Motors. (Earlier post.) Under that program, Leyden achieved progress on development of its technology for micro-hybrid (i.e., start-stop vehicles, SSVs) applications in the automotive market. In particular, the inherent LTO properties of long cycle life and exceptional power capability were extended to operate over a substantially wider temperature range.

More... | Comments (2) | TrackBack (0)

Team TAISAN and Power Japan Plus form partnership to develop electric go-kart powered by Ryden Dual Carbon Battery

Racing group Team TAISAN and materials engineer Power Japan Plus—a company that is commercializing a dual carbon battery technology (earlier post)—have formed a partnership to develop an electric racing vehicle, which will be the first to use the Ryden dual carbon battery.

Under this partnership, Power Japan Plus will provide Ryden cells and Team TAISAN will leverage its international racing experience to optimize the battery and develop a battery pack and management circuit. A go-kart powered by the Ryden dual carbon battery will begin test driving August of this year.

More... | Comments (3) | TrackBack (0)

Elastic wire-shaped lithium-ion batteries with high electrochemical performance

June 13, 2014

Wire
Structure of the flexible wire-shaped lithium-ion battery. The aligned MWCNT/LTO and MWCNT/LMO composite yarns are paired as the anode and cathode, respectively. Ren et al. Click to enlarge.

A team led by Huisheng Peng from Fudan University in Shanghai has developed a stretchable wire-shaped lithium-ion battery produced from two aligned multi-walled carbon nanotube/lithium oxide composite yarns as the anode and cathode without extra current collectors and binders. As the researchers report in the journal Angewandte Chemie, they were able to weave their batteries into light, flexible, elastic, and safe textile batteries with a high energy density.

The two composite yarns can be well paired to obtain a safe battery with energy densities of 27 Wh kg−1 or 17.7 mWh cm−3 and power densities of 880 W kg−1 or 0.56 W cm−3, which are an order of magnitude higher than the densities reported for lithium thin-film batteries. These wire-shaped batteries are flexible and light, and 97% of their capacity was maintained after 1,000 bending cycles.

More... | Comments (5) | TrackBack (0)

Toyota working on all-solid-state batteries as mid-term advanced battery solution; prototype cell with 400 Wh/L

June 12, 2014

Yada
Ragone plot showing various types of secondary batteries. An internal combustion engine and Toyota’s targeted “Sakichi battery” are added for reference. Toyota reports that it has developed prototype cells of all-solid-state batteries and Li-air batteries with energy densities of 400 Wh/L and 1000 Wh/L, respectively. Source: Iba and Yada 2014. Click to enlarge.

Toyota Motor, like many automakers and suppliers, is pursuing the development of Li-air batteries as a very high energy density technology that would enable battery-powered vehicles with a much greater range. In an invited presentation at the 17th International Meeting on Lithium Batteries (IMLB 2014) in Como, Italy, Dr. Hideki Iba from Toyota’s Battery Research Division and Dr. Chihiro Yada from Toyota Motor Europe’s Advanced Technology group noted that Li-air batteries—assuming the attendant issues are resolved—may not be commercialized until FY 2030.

Concurrent with its work on Li-air, Toyota is also pursuing the development of all-solid-state batteries, and has already developed prototype cells with an energy density of 400 Wh/L. These, the Toyota researchers noted (again, assuming development challenges are overcome), could be commercialized by FY 2020 and see subsequent substantial improvement by FY 2025. (Earlier post.)

More... | Comments (29) | TrackBack (0)

New DuraBlue ultracaps from Maxwell increase shock and vibration tolerance, energy and power capacity

June 11, 2014

Maxwell_2.85 w DuraBlue cell
DuraBlue cell. Click to enlarge.

Maxwell Technologies, Inc. has introduced its new DuraBlue Shock and Vibration Technology with the latest addition to its K2 series of ultracapacitor cells. The new 2.85-volt, 3400-farad DuraBlue ultracapacitor cell increases the range of available specific power by 17% and stored energy by 23% in the industry-standard 60 mm cylindrical “K2” form factor. The new cells offer up to 1,000,000 duty cycles, with up to 18 kW/kg of specific power and up to 4.00 Wh of stored energy. The cells offer threaded terminals or laser-weldable posts.

The DuraBlue cell also increases vibrational resistance by approximately 300% and shock immunity by 400% when compared to ultracapacitor-based competitive offerings. This enhanced shock and vibration tolerance is particularly important in the transportation market—especially mass transit—and in developing markets in which the road infrastructure might not be quite as smooth as in more developed ones, noted Chad McDonald, director of product marketing.

More... | Comments (8) | TrackBack (0)

MIT team reveals inner workings of LiFePO4 cathodes in Li-on batteries; direct observation of predicted SSZ

June 09, 2014

New observations by researchers at MIT have revealed the inner workings of a lithium iron phosphate (LiFePO4) cathode—a material widely used in lithium-ion batteries. The new findings, published in a paper in the ACS journal Nano Letters, explain the unexpectedly high power and long cycle life of such batteries, the researchers say.

The MIT researchers found that inside this electrode during charging, a solid-solution zone (SSZ) forms at the boundary between lithium-rich and lithium-depleted areas—the region where charging activity is concentrated, as lithium ions are pulled out of the electrode. Professor Ju Li, one of the authors, noted that the SSZ “has been theoretically predicted to exist, but we see it directly for the first time” in transmission electron microscope (TEM) videos taken during charging.

More... | Comments (2) | TrackBack (0)

Sulfur/carbon nanotube composite for high performance Li-Sulfur cathode material

June 07, 2014

Master.img-000
Left. Rate performance of the S-SACNT cathode. Inset is a photograph of the binder-free nano S-SACNT composite. Right. Cartoon of the S-SACNT composite. Credit: ACS, Sun et al. Click to enlarge.

Researchers from Tsinghua University have developed another approach to high-capacity cathode materials for Lithium-sulfur batteries: a binder-free nano sulfur/carbon nanotube composite featuring clusters of sulfur nanocrystals anchored across a super-aligned carbon nanotube (SACNT) matrix.

In a paper in the ACS journal Nano Letters, the team from the Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center report that the nano S-SACNT composite cathode delivered an initial discharge capacity of 1,071 mAh g–1, a peak capacity of 1,088 mAh g–1, and capacity retention of 85% after 100 cycles with high Coulombic efficiency (100%) at 1 C. At high current rates the nano S-SACNT composite displays capacities of 1,006 mAh g–1 at 2 C, 960 mAh g–1 at 5 C, and 879 mAh g–1 at 10 C.

More... | Comments (8) | TrackBack (0)

Carbon nanotube additive increases charge acceptance and performance of lead-acid batteries

June 06, 2014

Carbon nanotube engineering company Molecular Rebar Design has developed Molecular Rebar Lead Negative, a new additive for lead acid batteries comprising discrete carbon nanotubes (dCNT) which uniformly disperse within battery pastes during mixing.

In an open access paper published in the Journal of Power Sources, a Molecular Rebar team reports that NS40ZL 12V automotive lead-acid batteries containing dCNT showed enhanced charge acceptance of more than 200%, reserve capacity, and cold-cranking performance; decreased risk of polarization; and no detrimental changes to paste properties, when compared to dCNT-free controls. The study focused on the dCNT as Negative Active Material (NAM) additives only, but early-stage research is underway to test their functionality as a Positive Active Material (PAM) additive as well.

More... | Comments (7) | TrackBack (0)

ANSYS Fluent now includes Li-ion battery models; ANSYS, GM, NREL, ESim CAEBAT project

June 05, 2014

ANSYS Fluent software—a leading, fully featured fluid dynamics solution for modeling flow and other related physical phenomena—now includes as standard Li-ion battery models, due to the efforts of ANSYS, GM, the Energy Department’s (DOE) National Renewable Energy Laboratory (NREL) and ESim.

Over the last two and half years, the team worked on a DOE-funded project, Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) (earlier post), to combine new and existing battery models into engineering simulation software to shorten design cycles and optimize batteries for increased performance, safety and lifespan.

More... | Comments (0) | TrackBack (0)

Swedish researchers explore use of carbon fiber as active electrode in structural battery for electric vehicles

De gör batterier av kolfiber_kolfiber
Woven carbon fiber can act as an electrode for lithium ion batteries. (Photo: Peter Larsson) Click to enlarge.

Researchers in Sweden are exploring the use of carbon fiber as an active electrode in a multifunctional structural Li-ion battery in an electric car; i.e., electrical storage is incorporated into the body of the car. Carbon fiber material is a good candidate for structural electrodes since it has high specific tensile stiffness and ultimate tensile strength (UTS) as well as high lithium (Li)-intercalation capability.

Mats Johansson at Sweden’s KTH Royal Institute of Technology says the work is about improving the mechanical properties of batteries so that it not only stores energy but is part of the design. For example, he suggests, the hood of the car could be part of the battery. The concept of such a multifunctional structural vehicle battery has attracted a great deal of other research interest, including:

More... | Comments (1) | TrackBack (0)

Ford and Samsung outline R&D efforts for next-generation non-hybrid battery technology; dual-battery systems and lightweight Li-ion

June 04, 2014

In an event in San Francisco, Ford Motor Company and Samsung SDI, an affiliate of Samsung Group, outlined several collaborative research efforts on next-generation battery technology for non-hybrid vehicles. For the near term, they have been working on a dual-battery combining a lithium-ion battery with a 12-volt lead-acid battery that could enable regenerative braking technology in non-hybrid vehicles for greater fuel savings. Ford suggested the dual battery system might go into production soon.

Ford and Samsung SDI said they are also are researching a longer-term (e.g., about 10 years) ultra-lightweight lithium-ion battery that could one day supplant lead-acid batteries. The research advances lithium-ion battery technology currently available on Ford’s electrified vehicles.

More... | Comments (0) | TrackBack (0)

New binder/solvent system from Argonne, FMC facilitates use of stabilized Li metal powder in Li-ion electrodes; lower cost, higher energy density

June 01, 2014

As part of a four-year DOE-funded project, researchers at the US Department of Energy’s Argonne National Laboratory, working with FMC Corporation, have developed a novel polymer binder and solvent system facilitating the use of FMC’s unique Stabilized Lithium Metal Powder (SLMP) as a performance-enhancing additive in Li-ion battery electrodes.

SLMP-based materials can enable commercialization of batteries with simplified formation process, lower irreversible capacity losses (leading to higher energy densities) and allow for a wider range of cathode materials—e.g., non-lithium-providing materials—to be utilized for transportation applications. Argonne has patents pending on the polymer binder and solvent technologies, as well as a new activation method.

More... | Comments (11) | TrackBack (0)

Industry study finds lead-acid to remain most wide-spread automotive energy storage for foreseeable future; new chemistries continue to grow

May 28, 2014

Eurobat1
Overview of the three vehicle classes identified in the study, and their corresponding battery technologies. Click to enlarge.

There would be a significant impact on the overall performance and cost of vehicles, plus an effect on targets for fuel efficiency and reduced CO2 emissions, if established battery applications were to be replaced with alternative technologies, according to a new study published by associations representing the European, Japanese and Korean automotive industry (ACEA, JAMA and KAMA); EUROBAT (the Association of European Automotive and Industrial Battery Manufacturers) and the International Lead Association (ILA).

The study, which provides a joint industry analysis of how different types of batteries are used in different automotive applications, concludes that lead-based batteries will by necessity remain the most wide-spread energy storage system in automotive applications for the foreseeable future.

More... | Comments (6) | TrackBack (0)

Researchers present lower temperature version of ultra-high capacity molten air battery

May 27, 2014

Last year, researchers at George Washington University led by Dr. Stuart Licht introduced the principles of a new class rechargeable molten air batteries that offer amongst the highest intrinsic electric energy storage capabilities. (Earlier post.) The iron, carbon and VB2 molten air batteries they proposed offered intrinsic volumetric energy capacities of 10,000 (for Fe to Fe(III)); 19,000 (C to CO32-) and 27,000 Wh liter-1 (VB2 to B2O3 + V2O5), compared to 6,200 Wh liter-1 for a lithium-air battery.

Now, in a new paper in the RSC’s Journal of Materials Chemistry A, Baochen Cui and Licht report on a lower-temperature iron molten air battery that they suggest would be more compatible with electric vehicle applications.

More... | Comments (3) | TrackBack (0)

MIT/Stanford team develops battery technology for the conversion of low-grade waste heat to power; TREC

May 22, 2014

Researchers at MIT and Stanford University have developed new battery technology for the conversion of low-temperature waste heat into electricity in cases where temperature differences are less than 100 degrees Celsius. Their approach is based on a phenomenon called the thermogalvanic effect—the dependence of electrode potential on temperature—and is described in a paper published in the journal Nature Communications by postdoc Yuan Yang and professor Gang Chen at MIT, postdoc Seok Woo Lee and professor Yi Cui at Stanford, and three others.

The MIT and Stanford team devised an electrochemical system using a copper hexacyanoferrate cathode and a Cu/Cu2+ anode to convert heat into electricity. The thermally regenerative electrochemical cycle (TREC) entails a four-step process: (1) heating up the cell with waste heat; (2) charging at high temperature; (3) cooling down the cell; (4) discharging at low temperature.

More... | Comments (1) | TrackBack (0)

NEI Corporation developing Li-ion batteries with water-based electrolyte; targeting energy densities of 250 Wh/kg and 750 Wh/l

May 21, 2014

NEI Corporation, a nanotech materials company (earlier post), is developing a lithium-ion battery in which the electrolytes are dissolved in water instead of an organic solvent. Such an aqueous-based lithium-ion battery has the potential to eliminate the risks associated with conventional lithium-ion batteries, in which the organic solvents are highly flammable. In addition, there are toxicity and other environmental concerns associated with the non-aqueous electrolyte solvents. Aqueous-based lithium-ion batteries also have the potential to reduce cost.

However, while the concept of a lithium-ion cell using a water-based electrolyte has been known and studied, a major limitation is the narrow electrochemical stability window for water, which restricts the cell voltage. The electrochemical stability window for water is within the range of 0 to 1.25V; electrolysis of water occurs outside this voltage range.

More... | Comments (2) | TrackBack (0)

New ruthenium oxide/graphene and CNT foam material improves supercapacitor performance

May 20, 2014

Srep04452-f1
Microstructure of RGM electrode. (a) Schematic illustration of the preparation process of RGM nanostructure foam. SEM images of (b–c) as-grown GM foam (d) Lightly loaded RGM, and (e) heavily loaded RGM. Source: UCR. Click to enlarge.

Researchers at the University of California, Riverside have developed a novel nanometer scale ruthenium oxide (RuO2) anchored graphene and CNT foam architecture (RGM) for high-performance supercapacitor electrodes.

In an open access paper in the Nature journal Scientific Reports, the team reports that supercapacitors based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g−1, areal capacitance: 1.11 F cm−2) which leads to a high energy density (for supercapacitors) of 39.28 Wh kg−1 and power density of 128.01 kW kg−1. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications, the researchers suggest.

More... | Comments (4) | TrackBack (0)

New hybrid carbon/sulfur cathode material enables high-energy, high-power Li-sulfur battery; “matching the level of engine-driven systems”

May 16, 2014

Researchers at Tsinghua University have combined two types of carbon materials to create a new composite sulfur cathode material for a high-energy and high-power lithium-sulfur battery. In a paper in the journal Advanced Functional Materials, they report the composite cathode (a hierarchical all-carbon nanostructure hybridized with small cyclo-S8 clusters) has a high specific capacity of 1121 mAh g−1 at 0.5 C; a favorable high-rate capability of 809 mAh g−1 at 10 C; a very low capacity decay of 0.12% per cycle; and cycling stability of 877 mAh g−1 after 150 cycles at 1 C.

As sulfur loading in the cathode increases from 50 wt% to 77 wt%, high capacities of 970, 914, and 613 mAh g−1 are available at current densities of 0.5, 1, and 5 C, respectively. Based on the total mass of packaged devices, gravimetric energy density of the cell consisting of the composite cathode and a lithium-metal anode (GSH@APC-S//Li) is expected to be 400 Wh kg−1 at a power density of 10 kW kg−1—“matching the level of engine-driven systems,” according to the team.

More... | Comments (11) | TrackBack (0)

UC Riverside opening Sustainable Integrated Grid Initiative; integration of solar energy, battery storage and electric and hybrid vehicles

May 15, 2014

SIGI-graphic
Schematic of the “New Grid Testbed” components, including renewable energy generation, energy storage, smart distribution and electric transportation Click to enlarge.

The University of California, Riverside is opening its Sustainable Integrated Grid Initiative to research the integration of: intermittent renewable energy, such as photovoltaic solar panels; energy storage, such as batteries; and all types of electric and hybrid electric vehicles. It is the largest renewable energy project of its kind in California.

The first two years of operation is supported by a $2-million contract from the South Coast Air Quality Management District, awarded in January 2012. Construction of the initial testbed platform was also supported by an additional $10 million in contributions from UC Riverside and private partners. The testbed, which is located at UC Riverside’s Bourns College of Engineering Center for Environmental Research and Technology (CE-CERT), includes:

More... | Comments (7) | TrackBack (0)

Gamma Technologies and Sendyne introducing comprehensive hybrid and EV simulation with integrated battery model

May 14, 2014

Gamma Technologies, in cooperation with Sendyne Corp., is introducing an advanced technology platform for comprehensive electric and hybrid vehicle simulation that combines Gamma’s GT-Suite vehicle simulator with Sendyne’s CellMod CPM and RTSim real-time solver. This new platform provides total electric and hybrid vehicle multi-physics simulation including engine, vehicle, electric machines, cooling, and aftertreatment systems, along with a Compact Physical Model (CPM)-based virtual battery pack.

Total vehicle simulation can reduce time to market, improve performance and cut costs by aiding in the optimization of the power delivery system. In order to ensure high accuracy of complete hybrid powertrain simulations, it is important that models capture the temperature-sensitive behavior of the involved components and the flow of energy between subsystems.

More... | Comments (0) | TrackBack (0)

GM’s Brownstown Battery Assembly expands; building new battery system for 2015 Chevrolet Spark EV

Cq5dam.web.1280.1280
General Motors Brownstown Battery Assembly Plant worker Tina Oaks attaches wiring harnesses on a Spark EV battery pack. Click to enlarge.

General Motors will bring all its electric vehicle battery pack building capabilities in-house with production of battery systems for the 2015 Chevrolet Spark EV at its expanded battery assembly plant in Brownstown, Mich.

A newly designed battery system features an overall storage capacity of 19 kWh and uses 192 lithium ion cells. The cells are produced at LG Chem’s plant in Holland, Mich. The battery system weight of 474 lbs (215 kg)—86 pounds (39 kg) lighter than the system in the 2014 Spark EV. The Spark EV battery is built on a dedicated production line at Brownstown, which also manufactures complete battery packs for the Chevrolet Volt, Opel Ampera and Cadillac ELR.

More... | Comments (10) | TrackBack (0)

Japanese start-up seeks to commercialize dual-carbon battery technology; anion intercalation

Photo15
Capacity vs. cycle number. Source: Power Japan Plus. Click to enlarge.

Start-up Power Japan Plus announced plans to commercialize a dual-carbon battery technology, which it calls the Ryden dual carbon battery. Power Japan Plus says that its battery currently offers energy density comparable to a lithium-ion battery, but with a much more rapid rate of charge and the ability for full discharge over a much longer functional lifetime with improved safety and cradle-to-cradle sustainability.

Dual-carbon (also called dual-graphite) batteries were first introduced by McCullough and his colleagues at Dow Chemical in a 1989 patent, and were subsequently studied by Carlin et al. (1994) and Seel and Dahn (2000), along with many others. The basic concept of the cell is that lithium ions from the electrolyte are inserted/deposited into/on the anode (negative electrode), while the corresponding electrolyte anions are intercalated into the cathode (positive electrode). Both electrodes are carbon (e.g., graphite). During discharge, both anions and lithium ions are released back into the electrolyte. As Rothermel et al. noted in their 2013 review of challenges and opportunities for the technology, the electrolyte in such a system thus not only acts as charge carrier, but also as the active material.

More... | Comments (13) | TrackBack (0)

Smith Electric Vehicles secures new strategic investor and battery supplier; production to resume in Kansas City in mid-2014

May 13, 2014

Smith Electric Vehicles (SEV) has secured a $42-million commitment from Li-ion battery developer and manufacturer Sinopoly Battery Limited for a conditional subscription of Series AA convertible promissory notes, Series E preferred stock and common stock of post-listing of SEV in the amounts of US$2 million, US$10 million and US$30 million, respectively.

The $42-million investment will position Sinopoly as a strategic shareholder in Smith Electric. Under the agreement, Sinopoly will become Smith Electric’s exclusive supplier for batteries in vehicle applications that are compatible with Smith Electric’s platforms and customer requirements. Sinopoly will also become a preferred supplier for certain electric vehicle components that can be manufactured in its Hangzhou facility. The first $2 million in funding closed Monday, and the remainder will be invested in two tranches pending milestones to be achieved by both companies in the coming months.

More... | Comments (14) | TrackBack (0)

Lux: Panasonic has 39% share of plug-in vehicle batteries, thanks to its deal with Tesla

May 07, 2014

246275_LuxResearchGraphic5_6_14
Panasonic jumps to top of the plug-in vehicle battery leaderboard, overtaking NEC and LG Chem. Source: Lux Research. Click to enlarge.

Batteries for hybrids and plug-in vehicles are growing fast, more than tripling over the past three years to reach 1.4 GWh per quarter, according to the Automotive Battery Tracker from Lux Research. Panasonic has emerged as the leader thanks to its partnership with Tesla, capturing 39% of the plug-in vehicle battery market, overtaking NEC (27% market share) and LG Chem (9%) in 2013.

Lux Research analysts used historical and current vehicle sales, detailed battery specifications for each car, and supplier relationships to create the Automotive Battery Tracker.

More... | Comments (7) | TrackBack (0)

Li-air battery research needs as seen by team from US, China and Korea

May 05, 2014

Master.img-002
Schematic cell configurations for the four types of Li−air batteries. Credit ACS, Lu et al. Click to enlarge.

A new review of Li-air battery technology by a team from Argonne National Laboratory, Beijing Institue of Technology and Hanyang University focuses on the most critical issues that must be addressed for the successful development and commercialization of high energy density Li-air batteries. The review appears in the ACS journal Chemical Reviews.

Li-air batteries are of great interest (as evidenced by more than 300 research papers on the topic in the past 3 years). The Li−air battery potentially offers densities of up to 2−3 kWh/kg on the cell level. A fully developed Li−air battery system (i.e., with the full balance of plant required) is expected to surpass battery technology under development for deployment in the medium term (400 Wh/kg), and meet the requirements for plug-in vehicle applications. However, the reviewers noted,

More... | Comments (13) | TrackBack (0)

Two new germanium-free ultrafast solid Li electrolytes

April 30, 2014

Researchers from the Max Planck Institute for Solid State Research in Germany report the development of two ultrafast solid Li electrolytes which are germanium-free—i.e., based exclusively on abundant elements. Both compounds—Li10SnP2S12 and Li11Si2PS12 feature extremely high Li ion diffusivities, with the Si-based material even surpassing the present record holder, the electrolyte Li10GeP2S12 (LGPS) which was first reported by Toyota researchers and their academic partners in 2011 (earlier post).

While the Li diffusivity of the Si-based electrolyte compound (Li11Si2PS12) establishes a new record for solid Li conductors, preparation is more costly. Upscaling the synthesis of the Li10SnP2S12 compound should be straightforward, the team suggested. Both germanium free compounds are promising candidates for the development of a new generation of all-solid-state batteries, they concluded.

More... | Comments (3) | TrackBack (0)

Argonne researchers propose new composite germanium oxide material for Li-ion anodes

April 28, 2014

Master.img-007
Cyclic performance of the new composite GeO2/Sn-Co-C composite compared to GeO2 and Sn-Co-C anodes. Credit: ACS, Liu et al. Click to enlarge.

Researchers at Argonne National Lab have proposed a novel composite Li-ion anode material of GeO2–Sn30Co30C40, which combines the advantageous properties of Sn–Co–C (long cycle life) and GeO2 (high capacity).

In a paper published in ACS Journal of Physical Chemistry C, they report that the composite anode shows a reversible capacity of more than 800 mAh g-1 with good capacity retention. First-cycle Coulombic efficiency is 80%, much higher than the 34.6% obtained for pure GeO2. Comparison testing with GeO2 and Sn-Co-C anodes showed that the composite electrode “indicates great progress in terms of combining capacity and lifespan.

More... | Comments (1) | TrackBack (0)

RPI researchers develop safe, long-cycling Li-metal rechargeable battery electrode; demonstrate Li-carbon battery

April 27, 2014

Lipgn
Capacity and coulombic efficiency versus cycle index of Li-PGN cathodes at a rate of ~1C. The performance of various other cathode materials (LiCoO2, LiFePO4, LiNi0.75Co0.10Mn0.15O2 and Li3V1.98Ce0.02(PO4)3/C) measured at comparable current densities has been included for comparison. Mukherjee et al. Click to enlarge.

Researchers at Rensselaer Polytechnic Institute have developed a safe, extended cycling lithium-metal electrode for rechargeable Li-ion batteries by entrapping lithium metal within a porous graphene network (Li-PGN). The graphene “cage” prevents dendritic growth, enabling extended cycling of the electrode.

In a paper in the journal Nature Communications, the team reported that the plating of lithium metal within the interior of the porous graphene structure results in very high specific capacities in excess of 850 mAh g-1. Extended testing for over 1,000 charge/discharge cycles indicates excellent reversibility and coulombic efficiencies above 99%. The RPI team also demonstrated the use of the PGN material as a high-capacity anode, and demonstrated a full-cell configuration with a PGN anode and a lithium-metal/PGN cathode, thus creating a Li-carbon rechargeable battery.

More... | Comments (19) | TrackBack (0)

TIAX spins out Li-ion Advanced Battery Materials & Design Division to become separate company

April 24, 2014

CAM7-Figure-2
Capacity and rate performance of CAM-7 cathode material. Click to enlarge.

Lab-based technology development company TIAX will spin out its Advanced Battery Materials & Design Division on 1 May to become a separate company—CAMX Power LLC—to be co-located with TIAX and operate as its subsidiary.

CAMX Power will focus on licensing, customer support, and further enhancing its nickel-based high-energy and high-power cathode material CAM-7 for lithium-ion batteries. It will continue the development of other cell components and expand its work on battery safety technologies. CAMX Power will also engage in targeted services, co-development and sales and marketing partnerships.

More... | Comments (3) | TrackBack (0)

DOE issues draft loan solicitation for up to $4B for renewable energy and energy efficiency projects; drop-in biofuels a key area

April 16, 2014

The US Department of Energy (DOE) issued a draft loan guarantee solicitation for renewable energy and energy efficiency projects located in the US that avoid, reduce, or sequester greenhouse gases. The Renewable Energy and Efficient Energy Projects Loan Guarantee solicitation is intended to support technologies that will have a catalytic effect on commercial deployment of future projects, are replicable, and are market ready.

When finalized, the solicitation is expected to make as much as $4 billion in loan guarantees available to help commercialize technologies that may be unable to obtain full commercial financing.

More... | Comments (10) | TrackBack (0)

PNNL team develops composite sulfur/Ni-MOF composite cathode for Li-S batteries showing excellent capacity retention

April 15, 2014

Researchers at Pacific Northwest National Laboratory (PNNL) have used a novel Ni-based metal organic framework (Ni-MOF) significantly to improve the performance of Li-sulfur batteries by immobilizing polysulfides within the cathode structure through physical and chemical interactions at molecular level.

In a study reported in the ACS journal Nano Letters, the use of a sulfure/Ni-MOF composite cathode resulted in capacity retention of up to 89% after 100 cycles at 0.1 C. The research team attributed the excellent performance to the synergistic effects of the interwoven mesopores (2.8 nm) and micropores (1.4 nm) of Ni-MOF, which provide an ideal matrix to confine polysulfides, as well as the strong interactions between Lewis acidic Ni(II) center and the polysulfide base, which significantly slow down the migration of soluble polysulfides out of the pores.

More... | Comments (7) | TrackBack (0)

Hyundai Motor researchers report improved Li-sulfur battery performance with new sulfone-based electrolyte

April 12, 2014

Researchers from Hyundai Motor have found that the use of a new sulfone-based electrolyte greatly improved the capacity and reversible capacity retention of a Li-sulfur battery compared to the performance of ether-based electrolytes. In a paper presented at the SAE 2104 World Congress in Detroit, they reported that use of the sulfone-based electrolyte increased capacity by 52.1% to 715 mAh/g and capacity retention by 63.1% to 72.6%.

Lithium-sulfur systems are of great interest as a “beyond Li-ion” solution with increased energy densities that would enable much greater electric vehicle range. The Li/S system has a high theoretical specific energy of 2600 Wh kg-1; however, rapid fading of charge capacity is a well-known issue (e.g., earlier post). The poor long-term performance has been associated with both the shuttling of polysulfides dissolved into the electrolyte, in addition to irreversible deposition of solid lithium sulfide (Li2S) and other mixtures of insoluble discharge products on the cathode.

More... | Comments (15) | TrackBack (0)

New mesoporous crystalline Si exhibits increased rate of H2 production; potential use in Li-ion batteries also

April 11, 2014

Scheme of Mesoporous Silicon
Schematic of mesoporous silicon Image: Donghai Wang/Penn State. Click to enlarge.

Researchers at Penn State have devised a new process for the bottom-up synthesis of mesoporous crystalline silicon materials with high surface area and tunable primary particle/pore size via a self-templating pore formation process.

The nanosized crystalline primary particles and high surface areas enable an increased rate of photocatalytic hydrogen production from water and extended working life. These advantages also make the mesoporous silicon a potential candidate for other applications, such as optoelectronics, drug delivery systems and even lithium-ion batteries. A paper on their work is published in Nature Communications.

More... | Comments (0) | TrackBack (0)

GM investing $449M in Hamtramck and Brownstown for next-gen electrification; vehicles and batteries

April 08, 2014

In preparation for the next generation of electric vehicles and advanced battery technologies, General Motors will invest $449 million to upgrade manufacturing processes at its Detroit-Hamtramck Assembly and Brownstown Battery Assembly plants.

The investment is the largest to date at both facilities and includes $384 million at Detroit-Hamtramck for new body shop tooling, equipment, and additional plant upgrades to build the next generation Chevrolet Volt and two future products. This brings GM’s total investment at Detroit-Hamtramck to more than $1 billion over the last five years.

More... | Comments (2) | TrackBack (0)

DOE releases five-year strategic plan, 2014-2018; supporting “all of the above” energy strategy

The US Department of Energy (DOE) released its five-year 2014-2018 Strategic Plan. The plan is organized into 12 strategic objectives aimed at three distinct goals: Science and Energy; Nuclear Security; and Management and Performance. These objectives represent broad cross-cutting and collaborative efforts across DOE headquarters, site offices, and national laboratories.

The overarching goal for Science and Energy is: “Advance foundational science, innovate energy technologies, and inform data driven policies that enhance US economic growth and job creation, energy security, and environmental quality, with emphasis on implementation of the President’s Climate Action Plan to mitigate the risks of and enhance resilience against climate change.” Under that, the plan sketches out 3 strategic goals:

More... | Comments (1) | TrackBack (0)

California ARB posts final modifications for ZEV rule on fast refueling/battery exchange for public comment

April 05, 2014

The staff of the California Air Resources Board (ARB) has posted for public comment current final modifications for the Zero Emission Vehicle Regulation for 15 days. (Earlier post.) Statutorily, depending upon the comments received, ARB staff may either make further modifications and resubmit to Board for further consideration; failing that, the Board will adopt the new regulatory language.

These final tweaks to the ZEV rule involve the allocation of ZEV credits for different types of ZEV vehicles and the handling of the associated fast-refueling accreditation, which includes the possible use of battery-swapping.

More... | Comments (9) | TrackBack (0)

BASF and Toda Kogyo enter negotiations to form a joint venture for Li-ion cathode active materials in Japan

April 03, 2014

BASF and Toda Kogyo Corp., one of the industry leaders in the development and manufacture of cathode materials for lithium-ion batteries, are entering exclusive negotiations to form a joint venture for cathode active materials (CAM) based in Japan. The proposed joint venture will focus on the production, marketing and sales of a broad range of cathode materials including NCA (Nickel Cobalt Aluminum Oxide); LMO (Lithium Manganese Oxide); and NCM (Nickel Cobalt Manganese) in Japan.

These materials are used in lithium-ion batteries for the automotive, consumer electronics and stationary storage markets. Toda Kogyo and BASF would combine their respective CAM businesses, intellectual property and production assets in Japan to offer the broadest cathode materials product portfolio in the industry. BASF would have a majority ownership stake in the proposed joint venture.

More... | Comments (1) | TrackBack (0)

Bulk antimony sulfide electrodes for Li-ion batteries show high capacity, cycle stability; small particle size not necessary

April 02, 2014

Researchers at Nanyang Technological University (NTU) report in an open access paper in Scientific Reports that bulk antimony sulfide (Sb2S3) with a size of 10–20 μm used as a Li-ion electrode material exhibits a high capacity and stable cycling of 800 mAh g−1. Despite the large particle size, bulk antimony sulfide also showed excellent rate performance with a capacity of 580 mAh g−1 at a rate of 2000 mA g−1—the highest ever recorded for materials with 10–20 μm size.

The mechanical and chemical stabilities of the electrodes were ensured by an optimal electrode-electrolyte system design, with a polyimide-based binder together with fluoroethylene carbonate in the electrolyte, the authors said.

More... | Comments (2) | TrackBack (0)

Torotrak-led consortium wins $4M towards manufacturability of core variable drive technologies

A consortium of British high-technology companies led by Torotrak PLC has won £2.4 million (US$4 million) in funding from the UK government’s Technology Strategy Board towards the development of an optimized manufacturing route for key components of the company’s variable drive systems.

Called S-CONTACCT, the program, with a total project value of £3.8 million (US$6.3 million), will establish new manufacturing processes for the traction drive disks and rollers at the heart of Torotrak’s portfolio of automotive CO2 and fuel consumption reduction technologies, which includes variable drive superchargers; infinitely variable toroidal transmissions; and an advanced flywheel kinetic energy recovery system (KERS).

More... | Comments (3) | TrackBack (0)

Daimler buys out Evonik from Li-Tec and Deutsche ACCUmotive Li-ion companies; Daimler sole owner

April 01, 2014

Daimler AG and Evonik Industries AG are restructuring their joint venture activities in the field of electric mobility. Daimler will acquire all of the shares held by Evonik in Li-Tec Battery GmbH (50.1%) and in Deutsche ACCUmotive GmbH & Co. KG (10%). This will make Daimler the sole owner of the two companies. The parties have agreed not to divulge the details of the agreement.

The two companies originally established their strategic alliance on automotive Li-ion cells in December 2008 (earlier post), with the resulting formation of the new joint venture (Deutsche ACCUmotive GmbH & Co. KG) and with Daimler’s acquisition of 49.9% of what was Evonik’s subsidiary Li-Tec. From the beginning, both partners sought the involvement of a third shareholder in Li-Tec with expertise in electrical and electronic systems integration.

More... | Comments (4) | TrackBack (0)

USC Viterbi team integrating silicon anode and sulfur-based cathode for Lithium-sulfur battery with low fabrication cost

USC Viterbi School of Engineering professor Chongwu Zhou and his research team have developed a silicon nanoparticle anode and a sulfur-based cathode with low fabrication cost and high electrode performance for rechargeable lithium-sulfur batteries.

The effort builds on their earlier work in developing nanostructured silicon materials for use as high performance lithium-ion battery anodes (earlier post), with a focus on developing a cost-effective method for producing Si nanoparticles, which they accomplish via ball-milling of metallurgical Si and inexpensive stain-etching. In a paper in the ACS journal Nano Letters, they report nanoporous Si anodes with a reversible capacity of 2,900 mAh/g attained at a charging rate of 400 mA/g (0.1 C), with 10 cycles measured and a capacity above 1100 mAh/g at 2000 mA/g (0.5 C) with extended 600 cycles measured.

More... | Comments (3) | TrackBack (0)

DOE awards $17M to FY 2014 SBIR Phase II projects; includes Si/graphene anodes, motor windings, exhaust treatments

March 31, 2014

The US DOE recently awarded $17 million to 17 FY 2014 Small Business Innovation Research (SBIR) Phase II projects to further develop Phase I projects and to produce a prototype or equivalent within two years. The selected 17 awards represent the best of nearly 1,000 ideas submitted for the FY 2012/13 Broad Based Topic Solicitation, DOE said.

The selected projects include 6 vehicle-related technologies and 2 hydrogen and fuel cell technologies, as well as new hydropower, heat pump, solar and manufacturing technologies. Vehicle technologies span a range from new Si/graphene Li-ion anode materials and composites for motor windings to diesel aftertreatment and advanced lubricants. Selected vehicle and hydrogen technology projects are:

More... | Comments (0) | TrackBack (0)

MIT Energy Initiative announces 2014 seed grant awards

March 30, 2014

The MIT Energy Initiative (MITEI) announced its latest round of seed grants to support early-stage innovative energy projects. A total of more than $1.6 million was awarded to 11 projects, each lasting up to two years. With this latest round, the MITEI Seed Fund Program has supported 129 early-stage research proposals, with total funding of about $15.8 million.

This year’s winners address a wide range of topics including new methods of designing and using catalysts; assessment of natural gas technologies; novel design concepts for batteries, energy harvesters, and capacitors; integrated photovoltaic–electrochemical devices to reduce CO2 for fuel production; and investigations into public opinion on various state energy policies.

More... | Comments (0) | TrackBack (0)

Researchers synthesize Li2S spheres with size control for high-performance Li/S battery cathodes

March 27, 2014

Master.img-005
Electrochemical performance of 1 μm Li2S@C spheres at different C-rates. (a) Cycling performances and Coulombic efficiency. (b) Rate capability of the 1 μm Li2S@C cathodes. (c) Voltage profiles of the 1 μm Li2S@C spheres. Credit: ACS, Nan et al. Click to enlarge.

Researchers from UC Berkeley, Lawrence Berkeley National Laboratory, and Tsinghua University have synthesized lithium sulfide (Li2S) spheres that, with protective and conductive carbon shells, show promising specific capacities and cycling performance as a lithium/sulfur cell cathode material, with a high initial discharge capacity of 972 mAh g–1 Li2S (1,394 mAh g–1 S) at the 0.2C rate.

When no carbon black was added to the electrode mixture, a very high Li2S content (88 wt % Li2S) electrode composed of 98 wt % 1 μm Li2S@C spheres and 2 wt % binder showed rather stable cycling performance, and little morphology change after 400 cycles at the 0.5C rate. A paper on their work is published in the Journal of the American Chemical Society.

More... | Comments (10) | TrackBack (0)

Li-ion maker A123 Systems sells Energy Solutions business to NEC for ~$100M; focus on micro-hybrids and transportation

March 24, 2014

A123 Systems LLC, a developer and manufacturer of advanced Nanophosphate lithium iron phosphate batteries and systems, is selling its grid storage business and other assets related to energy storage for telecom and IT data storage applications to NEC Corporation for approximately $100 million.

A123, which is retaining its all of its existing cell manufacturing and sales, research and development, and automotive operations, is increasingly focused on the transportation market with a particular emphasis on micro-hybrids (earlier post). NEC will incorporate the former A123 Energy Solutions Business into a new “NEC Energy Solutions” company, which will begin operation in June 2014.

More... | Comments (2) | TrackBack (0)

Nitrogen‐doped coral-like carbon fiber arrays shown to be highly efficient air electrodes for high-performance Li-air batteries

Master.img-001-2
a) SEM image of a VA-NCCF array grown on a piece of Si wafer. (b) TEM image of an individual VA-NCCF. (c) The sketch of Li2O2 grown on a coral-like carbon fiber. Credit: ACS, Shui et al. Click to enlarge.

Researchers at Case Western Reserve University and Kent State University have developed highly efficient oxygen electrodes for nonaqueous Li-O2 batteries by using vertically aligned nitrogen-doped coral-like carbon fiber (VA-NCCF) arrays supported with a stainless steel cloth as the current collector.

In a paper in the journal ACS Nano, they reported obtaining a narrow voltage gap (0.3 V) between the charge and discharge plateaus and an unusually high energy efficiency of 90%. Electrolyte decomposition—a problem with Li-air batteries—was minimized due to the low overpotential, and the battery could run for more than 150 cycles with a good reversibility under considerably high specific capacities (up to 1,000 mAh g-1) per cycle.

More... | Comments (3) | TrackBack (0)

Brown U, GM researchers calculate optimum design geometries for Si/C core-shell materials for Li-ion anodes

March 23, 2014

Master.img-008
Conditions of fracture and debonding. The shaded regions demonstrate the safe regimes of operation as a function of top shell thickness and bottom core size with state of charge. Credit: ACS, Stournara et al. Click to enlarge.

A team from Brown University and General Motors Global Research and Development has calculated optimum design geometries that will avert fracture and debonding in silicon/carbon heterostructures—such as the hollow core-shell nanostructure proposed by Prof. Yi Cui (e.g., earlier post) and others—used as high-capacity anodes in advanced Li-ion batteries.

In their work, reported in a paper published in the ACS journal Nano Letters, they combined properties calculated from ab initio simulations of lithiated a-Si/a-C interface structures with linear elastic fracture mechanics to construct a continuum level diagram which outlines the safe regimes of operation in terms of the core and shell thickness and the state of charge. Among their findings, they determined that high states of charge are achieved and failure is prevented if the thickness of the core is less than 200 nm and the thickness of the shell is approximately 5 nm.

More... | Comments (4) | TrackBack (0)

Johnson Controls and Fraunhofer Gesellschaft collaborate on next-gen cooling systems for Li-ion battery packs; focus on 48V micro-hybrid system

March 20, 2014

Johnson Controls and Fraunhofer Gesellschaft have signed a collaboration agreement to develop the next generation of more energy efficient, cost-effective cooling systems for vehicle batteries. The scope of the work will initially focus on 48V Micro Hybrid battery technology, which is designed to deliver strong fuel and emissions efficiency, and load management at a lower price than hybrid and electric vehicle technology. (Earlier post.)

Scientists and engineers at Johnson Controls will work with both Fraunhofer’s Institute for Environmental, Safety and Energy Technology (UMSICHT) and with its Institute for Manufacturing Technology and Advanced Materials (IFAM).

More... | Comments (1) | TrackBack (0)

Antimony nanocrystals as high-capacity anode materials for both Li-ion and Na-ion batteries

March 19, 2014

70284_web
TEM image (false colored) of monodisperse antimony nanocrystals. (Photo: Maksym Kovalenko Group / ETH Zürich) Click to enlarge.

Researchers from ETH Zürich and Empa have succeeded for the first time in producing uniform (monodisperse) antimony (Sb) nanocrystals (NCs). The nanocrystals possess high and similar Li-ion and Na-ion charge storage capacities of 580−640 mAh g−1 at moderate charging/discharging current densities of 0.5−1C (1C-rate is 660 mA g−1).

At all C-rates (0.5−20C), capacities of 20 nm Sb particles are systematically better than for both 10 nm and bulk Sb. At 20C-rates, retention of charge storage capacities by 10 and 20 nm Sb nanocrystals can reach 78−85% of the low-rate value, indicating that rate capability of Sb nanostructures can be comparable to the best Li-ion intercalation anodes and is so far unprecedented for Na-ion storage. A paper on their work appears in the ACS journal Nano Letters.

More... | Comments (3) | TrackBack (0)

Green Car Congress © 2014 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group