Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search



[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Silicon/soft-carbon nanohybrid as high-performance anode for Li-ion batteries

July 28, 2016

A team from Samsung R&D and Shinshu University has developed a silicon/soft-carbon nanohybrid anode material for high performance lithium-ion batteries (LIBs). The material, which is composed of micronized silicon coated with “soft-carbon” dispersed in soft-carbon matrix at nanometer level, is characterized with abundant nanosized voids (nanovoids) (diameter of ~70 nm) and hard bulk skeletal structure.

As described in a paper in the Journal of Power Sources, the material’s volume expansion ratio is 6.9% at a capacity level of 1100 mAh/g. This electrode capacity is approximately three times larger than that of graphite-based electrode currently used in LIB. Furthermore, the electrode retained 80.9% of its capacity at 250 cycles in a full cell with a LiCoO2 counter electrode. Addition of 5 wt % fluoroethylene carbonate (FEC) to the electrolyte improved the retention up to 81.3% after 300 cycles.

More... | Comments (0)

$50M Battery500 consortium targeting battery pack with specific energy of 500 Wh/kg

July 27, 2016

Announced last week as one of the Obama Administration’s new initiatives to advance electric vehicle adoption (earlier post), the Battery500 consortium, led by Pacific Northwest National Laboratory (PNNL), aims to build a battery pack with a specific energy of 500 watt-hours per kilogram, compared to the 170-200 watt-hours per kilogram in today’s typical EV battery.

The team in this 5-year project hopes to reach these goals by focusing on lithium-metal batteries, which use lithium instead of graphite for the battery’s anode. The team will pair lithium with two different materials for the cathode. While studying these materials, the consortium will work to prevent unwanted side reactions in the whole battery that weaken a battery’s performance.

More... | Comments (3)

Porsche ramping up hiring for Mission E; leveraging the 919 Hybrid

July 26, 2016

Porsche said it will hire more than 1,400 new employees in the Stuttgart region to work on the development and production of the first all-electric sports car from Porsche, the Mission E. (Earlier post, earlier post.)

The company plans to recruit in the fields of digitalization, e-mobility, smart mobility and vehicle connectivity. Porsche will also focus on recruiting production planners familiar with Factory 4.0 and digital production and will hire more than 100 IT specialists as well.

More... | Comments (0)

Northwestern study finds Li3PO4 promising coating to limit dissolution of transition metals from Li-ion cathodes

The dissolution of transition metals (TMs) from Li-ion battery cathodes is a major contributor to cell degradation during cycling and aging. First, such dissolution decreases the amount of cathode material, directly contributing to loss of capacity. Secondly, dissolved TMs can migrate through the electrolyte to the anode, causing chaneges to the Solid Electrolyte Interphase (SEI), resulting in increased impedance, decreased cell capacity, and decreased lifespan.

A study by a team at Northwestern University has found that Li3PO4 is a promising candidate as a stable coating on oxide materials to limit such dissolution of transition metals into the Li-ion electrolyte. An open access paper on their work is published in the Journal of The Electrochemical Society.

More... | Comments (3)

New nanolithia cathodes may address technical drawbacks of Li-air batteries; scalable, cheap and safer Li-air battery system

July 25, 2016

An international team from MIT, Argonne National Laboratory and Peking University has demonstrated a lab-scale proof-of-concept of a new type of cathode for Li-air batteries that could overcome the current drawbacks to the technology, including a high potential gap (>1.2 V) between charge and discharge, and poor cyclability due to the drastic phase change of O2 (gas) and Ox− (condensed phase) at the cathode during battery operations.

As described in a paper in the journal Nature Energy, the cathode consisting of nanoscale amorphous lithia (nanolithia) confined in a cobalt oxide enabled charge/discharge between solid Li2O/Li2O2/LiO2 without any gas evolution. The cathode has a theoretical capacity of 1,341 Ah kg−1, a mass density exceeding 2.2 g cm−3, and a practical discharge capacity of 587 Ah kg−1 at 2.55 V versus Li/Li+.

More... | Comments (3)

FMC accelerates battery-grade lithium hydroxide expansion following multi-year supply agreement with major manufacturer of EVs; path to 30K tonnes

FMC Corporation will accelerate the expansion of its global lithium hydroxide production capacity as a result of a new multi-year supply agreement with a major manufacturer of electric vehicles.

FMC had previously announced plans to triple its global lithium hydroxide production capacity to serve the growing electric vehicle market, with the first 4,000 metric tons per year scheduled to come on line in mid-2017. As a result of the new announcement, an additional 4,000 metric ton expansion will come on line in 2017, raising the company’s total global lithium hydroxide capacity to 18,000 metric tons.

More... | Comments (0)

European Strategy for low-emission mobility stresses digital tech, electrification and ZEVs

July 22, 2016

Earlier this week, the European Commission published a strategy for low-emission mobility, which sets out guiding principles to Member States to prepare for the future. EU legislation currently refers to low-emission vehicles as vehicles having tailpipe emissions below 50 g/km. This would include some plug-in hybrids, full electric cars and hydrogen fuel cell vehicles. The latter two examples also represent zero-emission vehicles.

The low-emission mobility strategy will frame the initiatives that the Commission is planning in the coming years, and it maps the areas in which it is exploring options. It also shows how initiatives in related fields are linked and how synergies can be achieved. In parallel to this strategy, the Commission is launching public consultations on the approach towards reducing emissions from road transport: cars and vans as well as trucks, buses and coaches.

More... | Comments (0)

Obama Administration launches series of actions to accelerate EV adoption; inc. $4.5B in loan guarantees, pursuing 350 kW fast charge

July 21, 2016

The Obama Administration has announced a series of actions from the Federal government, private sector, and states, as well as a new framework for collaboration for vehicle manufacturers, electric utilities, electric vehicle charging companies, and states, all geared towards accelerating the deployment of electric vehicle charging infrastructure and putting more electric vehicles on the road.

The collaboration, forged by the White House in partnership with DOE and the Department of Transportation (DOT), the US Air Force and US Army, and the Environmental Protection Agency, is centered on a set of Guiding Principles to Promote Electric Vehicles and Charging Infrastructure. 46 organizations have signed on to the principles so far.

More... | Comments (12)

Opinion: Why Lithium Will See Another Price Spike This Fall

July 20, 2016

by James Stafford of

So far, lithium has been the hottest metal of 2016, beating out gold, with exponential demand expected over the coming years. Although the price trajectory of the metal has been subdued in recent months, the fundamentals behind the long-term trajectory suggest strong potential for long-term growth. Price doubling from 2014/2015 was first seen in China and is now being felt worldwide, with lithium hydroxide prices from $16-20 and carbonate prices from $12-14 thousand USD per ton.

Automotive Thrust. There is no doubt as to the push that Tesla has given the current automotive transition to electric vehicles (EVs). Since 2014, when Tesla first announced the Gigafactory with Panasonic, other manufacturers have begun to take notice and take action. Volkswagen AG announced last week that it was considering LG Chem Ltd. or Panasonic Corp. as partners for several US$2-billion factories, according to Bloomberg, with confirmation expected later in the year. Previous announcements of billion-dollar investments in battery factories by Volkswagen were largely brushed off by investors as deflections from their “Dieselgate” scandal. But with LG and Panasonic in the picture, concrete plans appear to be crystalizing.

More... | Comments (6)

Li-ion startup Cadenza Innovation raises $5+M in oversubscribed Series A; ex Boston Power team

July 18, 2016

Cadenza Innovation, a Li-ion battery startup founded in 2012 by Dr. Christina Lampe-Onnerud, former CEO and founder of Boston Power (earlier post), has raised more than $5 million in growth capital. The company says it will use the new funds to expand product development, secure additional certifications, extend initial deployments, make key new hires and fuel revenue growth.

Cadenza Innovation is bringing to market a low-cost and high-performance technology platform—cell design and housing—for licensing to lithium-ion battery manufacturers worldwide.

More... | Comments (2)

ECS and Toyota North America announce 2016-2017 Fellowship winners for projects in green energy technology

July 16, 2016

The ECS Toyota Young Investigator Fellowship Selection Committee has selected three recipients who will receive a minimum of $50,000 each for fellowships for projects in green energy technology. The winners are Professor Elizabeth Biddinger, City College of New York; Professor Joaquin Rodriguez Lopez, University of Illinois at Urbana-Champaign; and Professor Joshua Snyder, Drexel University.

The ECS Toyota Young Investigator Fellowship, a partnership between The Electrochemical Society (ECS) and Toyota Research Institute of North America (TRINA), an advanced research arm of Toyota Motor North America, Inc. (TMNA), is in its second year. (Earlier post.)

More... | Comments (0)

CCM: LiPF6 industry in China may face overcapacity in 2017

July 12, 2016

Soaring prices for and profits from LiPF6—lithium hexafluorophosphate, the dominant Li-salt used in electrolytes in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3–4 V cathode material—has encouraged enterprises in China to expand LiPF6 production while also attracting new players. However, according to market analyst firm CCM, based on the current planned capacity expansions, the LiPF6 industry may face overcapacity in 2017.

In a Li-ion battery electrolyte, LiPF6 is combined with an organic solvent and additives. The resulting electrolytes allow for both high energy densities and appreciable power densities, providing a medium to transfer charge between the electrodes via the Li+ cations and the counter-anions.

More... | Comments (1)

Caltech team uses computational topology optimization to design silicon anode structures for Li-ion batteries

July 10, 2016

Researchers at Caltech have used computational topology optimization methods to design optimal multifunctional silicon anode structures for lithium-ion batteries. A paper on their work is published in the Journal of Power Sources.

Sarah Mitchell and Michael Ortiz set out to address two problems related to silicon anodes: lithiation-induced mechanical degradation due to volumetric expansion and the low intrinsic electrical conductivity of silicon.

More... | Comments (1)

Researchers boost performance of lithium-rich cathode material 30-40% by creating oxygen vacancies

July 07, 2016

An international team of researchers has demonstrated a new way to increase the robustness and energy storage capability of a particular class of “lithium-rich” cathode materials by using a carbon dioxide-based gas mixture to create oxygen vacancies at the material’s surface. Researchers said the treatment improved the energy density of the cathode material by up to 30 to 40%.

As described in an open access paper in Nature Communications, the target material (Li[Li0.144Ni0.136Co0.136Mn0.544]O2, denoted as LR-NCM) delivers a discharge capacity as high as 301 mAh g−1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g−1 still remains without any obvious decay in voltage. The discovery sheds light on how changing the oxygen composition of lithium-rich cathode materials could improve battery performance, particularly in high-energy applications such as electric vehicles.

More... | Comments (1)

Silatronix, developer of organosilicon electrolytes for Li-ion batteries, raises $8M

Silatronix, a developer of unique organosilicon (OS) electrolytes for use in lithium-ion batteries (LIBs) (earlier post), has raised US$8 million in new equity capital, and secured partnerships for distribution and joint technological development. These funds and partnerships will allow Silatronix to capitalize on the commercial value of its portfolio of OS materials in the high-growth LIB market.

The capital comes from the company’s existing investors and two strategic partners in Japan with strong business interests in the LIB market: Hitachi Chemical Co., Ltd. and Inabata & Co Ltd. Inabata will serve as Silatronix’s exclusive distributor to key LIB customers across Asia. Silatronix and Hitachi Chemical will jointly evaluate the potential performance benefits of several OS additive materials with Hitachi Chemical’s LIB products, especially anode materials. Silatronix, a spin-out from the University of Wisconsin-Madison, has introduced its first commercial product, a third-generation organosilicon material (OS3)—an advanced functional solvent that provides multiple benefits to LIB performance at additive levels.

More... | Comments (1)

Swiss researchers devise simple procedure to enhance performance of conventional Li-ion batteries without changing chemistries

July 06, 2016

Materials researchers at the Swiss Paul Scherrer Institute PSI in Villigen and the ETH Zurich have developed a very simple and cost-effective procedure for significantly enhancing the performance of conventional Li-ion rechargeable batteries by improving only the design of the electrodes without changing the underlying materials chemistry. The procedure is scalable in size, so the use of rechargeable batteries can be optimized in all areas of application—e.g., in wristwatches, smartphones, laptops or cars.

Battery storage capacity can be significantly extended, and charging times reduced. The researchers reported on their results in the latest issue of the journal Nature Energy.

More... | Comments (6)

Skeleton Technologies joins Flying Whales program to develop next generation of heavy-lift, large-capacity airships

July 05, 2016

European ultracapacitor manufacturer Skeleton Technologies will join French firm Flying Whales’ program to build a 60-ton Large Capacity Airship (LCA60T, for the global transport market.

Skeleton Technologies will join the program to help design and build hybrid propulsion for the LCA60T’s electric power systems. Average operational power is expected to be approximately 1.5 MW with the company’s graphene-based ultracapacitors assisting to cover the additional 2 MW peaks for hovering, lifting and stabilisation in reasonable and turbulent environments.

More... | Comments (1)

Powin Energy introduces advanced battery managemenet system bp-OS

June 30, 2016

Powin Energy, a designer and developer of safe and scalable energy storage solutions for utilities, C&I, and EV fast-charging stations, is publicly introducing its advanced battery management software—the Battery Pack Operating System (bp-OS)—by announcing that it has been patented (US20140015469 A1).

The patented bp-OS utilizes a unique algorithm to balance batteries actively and passively down to the cell level, enabling the minimization of voltage differentials across all battery cells over the system’s lifetime. The bp-OS also delivers visibility into battery health through real-time battery monitoring, state-of-charge management, and detailed diagnostics to ensure safety, optimize performance, and extend the operational lifetime of batteries used in stationary storage systems and EV fast-charging systems.

More... | Comments (0)

Kreisel Electric introduces Li-ion home energy storage systems; 9.6 kW output for faster EV charging

June 29, 2016

Austrian manufacturer of high-performance batteries Kreisel Electric (earlier post) has introduced the MAVERO home energy storage system. The Li-ion battery packs are available in four different sizes, with usable capacity ranging from 8 kWh to 22 kWh. The casing is available in two colors and communicates all charge and discharge activities by means of LEDs. First deliveries are planned for early 2017.

MAVERO is a wall-mounted home energy storage system that stores electricity from any renewable energy source. Featuring a sophisticated design and a compact size of 105cm x 140 cm (41" x 55"), the discharge power of the system ranges from 4.8 to 9.6 kW in the voltage range from 288 to 384 V. The system enables accelerated EV charging with 100% self-generated electricity.

More... | Comments (6)

Ford, LG Chem team reports 1st cradle-to-gate LCA for mass-produced battery pack in commercial BEV; cell manufacturing key GHG contributor

A team from Ford’s Research and Innovation Center and LG Chem’s Corporate R&D group has reported the first cradle-to-gate (i.e., the factory gate—before delivery to the consumer) emissions assessment for a mass-produced battery in a commercial battery electric vehicle (BEV)—the lithium-ion battery pack used in the Ford Focus BEV. Their paper is published in the ACS journal Environmental Science & Technology.

The researchers based their assessment on the bill of materials and energy and materials input data from the battery cell and pack supplier (LG). They calculated that the cradle-to-gate greenhouse gas (GHG) emissions for the 24 kWh Ford Focus lithium-ion battery are 3.4 metric tonnes of CO2-eq (140 kg CO2-eq per kWh or 11 kg CO2-eq per kg of battery). Cell manufacturing is the key contributor accounting for 45% of the GHG emissions.

More... | Comments (12)

Lux: plug-in vehicle battery market to hit $10B in 2020; 6 carmakers = 90% of demand; VW to show most growth

June 28, 2016

Led by Tesla, China’s BYD, and Volkswagen, the battery market for plug-in vehicles will rise to $10 billion in 2020, with electric vehicles (EV) emerging as the drivetrain of choice, according to a new forecast by Lux Research. Volkswagen will show the most growth as it focuses on plug-ins following its emissions scandal, while Toyota will continue to lag in plug-in sales as it focuses more on hybrids and fuel cells.

Just six large carmakers will account for 90% of the battery demand: Tesla, BYD, Volkswagen, General Motors (GM), Renault-Nissan and BMW. Among battery-makers, Panasonic will keep its lead with 46% market share, followed by BYD, LG Chem, NEC, Samsung SDI and others.

More... | Comments (5)

Argonne Lab partners with Strem Chemicals to bring next-gen battery materials to market

June 24, 2016

Strem Chemicals, a manufacturer and distributor of specialty chemicals founded in 1964, has licensed 23 separate pieces of intellectual property for next-generation battery materials from Argonne. Strem will manufacture and distribute nine resulting battery solvents and additives via its extensive marketing and global distribution networks.

The materials were all invented at Argonne’s Electrochemical Energy Storage Center and scaled at Argonne’s Materials Engineering Research Facility (MERF). Since its founding, MERF has scaled up and distributed more than 30 kilograms of materials in the form of more than 150 different samples.

More... | Comments (0)

UMD team develops new nanocomposite sulfur electrode for high-performance all-solid-state Li-S batteries

A team at the University of Maryland have synthesized a mixed conducting nanocomposite sulfur electrode that consists of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic and electronic conductivities.

As described in a paper published in the ACS journal Nano Letters, the new nanocomposite serves as a mechanically robust and mixed conductive (ionic and electronic conductive) sulfur electrode for all-solid-state lithium–sulfur batteries (ASSLSBs). The team achieved a reversible capacity of 830 mAh/g (71% utilization of Li2S) at 50 mA/g for 60 cycles with a high rate performance at room temperature even at a high loading of Li2S (∼3.6 mg/cm2).

More... | Comments (3)

UMD team develops new high-performance solid-state ion-conducting membrane for Li batteries

June 23, 2016

Researchers at the University of Maryland have developed a novel, flexible, solid-state, ion-conducting membrane based on a 3D ion-conducting ceramic nanofiber network. The researchers said that their work, published in the Proceedings of the National Academy of Sciences (PNAS), represents a significant breakthrough to enable high performance lithium batteries. The all-solid ion-conducting membrane can be applied to flexible Li-ion batteries and other electrochemical energy storage systems, such as lithium–sulfur batteries.

The 3D ion-conducting network is based on percolative garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) solid-state electrolyte nanofibers, which enhance the ionic conductivity of the solid-state electrolyte membrane at room temperature and improve the mechanical strength of the polymer electrolyte.

More... | Comments (0)

DOE selects SiiLion for $1M SBIR Phase II award; ionic-liquid-enabled high-energy li-ion battery

June 22, 2016

The US Department of Energy (DOE) has selected SiiLion, Inc. to receive a $1-million Small Business Innovation and Research (SBIR) Phase II award. The company is developing high-energy batteries featuring pure silicon anodes and high voltage cathodes—including lithium-manganese-rich and nickel-rich chemistries—enabled using a non-flammable ionic liquid electrolyte.

SiiLion was one of 23 companies receiving a 2016 SBIR FY 2016 Phase II award. The $1-million awards are intended to help small businesses advance promising concepts toward commercialization. SiiLion had received a $150,000 SBIR Phase I award in 2015.

More... | Comments (0)

DOE awarding $16M to 54 projects to help commercialize promising energy technology from national labs

The US Department of Energy (DOE) announced nearly $16 million in funding to help businesses move promising energy technologies from DOE’s National Laboratories to the marketplace. This first Department-wide round of funding through the Technology Commercialization Fund (TCF) will support 54 projects at 12 national labs involving 52 private-sector partners. Among the selected technologies are a number addressing advanced vehicle and transportation needs.

The TCF is administered by DOE’s Office of Technology Transitions (OTT), which works to expand the commercial impact of DOE’s portfolio of research, development, demonstration and deployment activities. In February of 2016, OTT announced the first solicitation to the DOE National Laboratories for TCF funding proposals. It received 104 applications from across the laboratory system, for projects in two topic areas:

  • Topic Area 1: Projects for which additional technology maturation is needed to attract a private partner; and

  • Topic Area 2: Cooperative development projects between a lab and industry partner(s), designed to bolster the commercial application of a lab developed technology.

All projects selected for the TCF will receive an equal amount of non-federal funds to match the federal investment.

A selected list of transportation-related TCF selections, as well as the Topic Area 2 projects and their private sector partners is below.

Transportation-related TCF Awards
Technology National Lab Partner Funding
Manufacturing Of Advanced Alnico Magnets for Energy Efficient Traction Drive Motors Ames Carpenter Powder Products $325,000
Direct Fabrication of Fuel Cell Electrodes by Electrodeposition of High-performance Core-shell Catalysts Brookhaven $100,000
Nitride-Stabilized Pt Core-Shell Electrocatalysts for Fuel Cell Cathodes Brookhaven $100,000
Enhancing Lithium-Ion Battery Safety for Vehicle Technologies and Energy Storage Idaho $119,005
Vehicle Controller Area Network (CAN) Bus Network Safety and Security System Idaho Mercedes-Benz R&D North America $150,000
Large Area Polymer Protected Lithium Metal Electrodes with Engineered Dendrite-Blocking Ability Lawrence Berkeley $73,831
Cryo-Compressed Hydrogen Tank Technology in an Internal Combustion Engine Application Lawrence Livermore GoTek Energy $431,995
Scaled Production Of High Octane Biofuel From Biomass-Derived Dimethyl Ether NREL Enerkem $740,000
Thermal Management for Planar Package Power Electronics NREL John Deere Electronic Solutions (JDES) $250,000
Assembly Of Dissimilar Aluminum Alloys For Automotive Application PNNL $500,000
Development of Electrolytes for Lithium Ion Batteries in Wide Temperature Range Applications PNNL Farasis Energy, Navitas Systems $375,000
Direct Extruded High Conductivity Copper for Electric Machines Manufactured Using the ShAPE Process PNNL General Motors R&D $600,000
| Comments (0)

BMW i home energy storage system integrates 2nd-life i3 vehicle batteries

June 21, 2016

BMW i announced a home stationary energy storage system solution integrating its BMW i3 vehicle battery at EVS 29 in Montréal.

The system utilizes BMW i3 high-voltage batteries and can be expanded to incorporate second-life batteries as they become available in the market. This strategy will extend the useful life of the battery for the owner, even beyond in-vehicle use, BMW said.

More... | Comments (0)

USABC awards $4M to SiNode Systems to develop advanced silicon-graphene anode materials for EV batteries

June 20, 2016

The United States Advanced Battery Consortium LLC (USABC), a collaborative organization of FCA US LLC, Ford Motor Company and General Motors, awarded a $4-million contract to SiNode Systems Inc. for development of advanced anode materials for automotive lithium-ion battery applications. The competitively bid contract award is 50% cost share-funded by the US Department of Energy (DOE).

The 30-month program will focus on the development of silicon-graphene high-energy anode material appropriate for vehicle applications and the development and scale-up of pouch cells that exhibit anode performance metrics that exceed the minimum USABC targets for active materials development for electric vehicles.

More... | Comments (2)

VW Group strategy calls for >30 new BEVs by 2025 with annual EV sales of 2-3M units; mobility services

June 16, 2016

Volkswagen Group CEO Matthias Müller presented the company’s new new strategic plan—TOGETHER - Strategy 2025—in Wolfsburg. With regard to vehicles and drivetrains, the new strategy places special emphasis on e-mobility.

The Group is planning a broad-based initiative in this area: it intends to launch more than 30 purely battery-powered electric vehicles (BEVs) over the next ten years. The Company estimates that such vehicles could then account for around a quarter of the global passenger car market. The Volkswagen Group forecasts that its own BEV sales will be between two and three million units in 2025, equivalent to some 20 to 25 percent of the total unit sales expected at that time.

More... | Comments (4)

Low-cost N-doped interlayer derived from loofah sponge enables high-performance Li-S, Li-Se and LiI2 batteries

Researchers from Griffith University in Australia and Peking University in China have synthesized low-cost, hierarchically porous, and nitrogen-doped loofah sponge carbon (N-LSC) derived from the loofah sponge via a simple calcining process and applied it as a multifunctional blocking layer for Li–S, Li–Se, and Li–I2 batteries.

As a result of the ultrahigh specific area (2551.06 m2 g–1), high porosity (1.75 cm3 g–1), high conductivity (1170 S m–1), and heteroatoms doping of N-LSC, the resultant Li–S, Li–Se, and Li–I2 batteries with the N-LSC-900 membrane deliver outstanding electrochemical performance stability in all cases, i.e., high reversible capacities of 623.6 mAh g–1 at 1675 mA g–1 after 500 cycles; 350 mAh g–1 at 1356 mA g–1 after 1000 cycles; and 150 mAh g–1 at 10550 mA g–1 after 5000 cycles, respectively. A paper on their work is published in the journal ACS Applied Materials & Interfaces.

More... | Comments (2)

Daimler developing new dedicated architecture for battery-electric vehicles; debut at Paris Motor Show in September; 500 km

June 13, 2016

Daimler is developing a dedicated, multi-model electric vehicle architecture for battery-powered vehicles. (Earlier post.) The global debut will take place at the Paris Motor Show this fall, and the first model is to be launched onto the market before the end of the decade.

Mercedes-Benz said it will benefit not only from its internal development and production expertise but also from the group’s multi-model series modular strategy for alternative drive systems and direct access to key components for electromobility.

More... | Comments (2)

Mercedes-Benz expands plug-in hybrid rollout with 2 models this year; new battery tech in S 500 e in 2017

Later this year, Mercedes-Benz will add the seventh and eighth plug-in hybrids to its line up. (Earlier post.) The new GLC Coupé 350 e 4MATIC and the E 350 e will join the S 500 e; C 350 e (Sedan, Wagon and long version for China); the GLE 500 e 4MATIC; and the GLC 350 e 4MATIC. The hybrid (plug-in and conventional) portfolio from Mercedes-Benz currently comprises 13 models.

The E 350 e will use the 9G-TRONIC plug-in-hybrid transmission and the latest generation of electric motors to deliver top rankings in fuel consumption, ride comfort and dynamism. The E 350 e is also the first hybrid from Mercedes-Benz with a high trailer towing capacity of up to 2,100 kg.

More... | Comments (2)

Hunan team develops new strategy to prolong cycle life of Li-S batteries

Researchers at Hunan University, China, have developed a new strategy to suppress the diffusion of polysulfides into the electrolyte in Li-Sulfur batteries, resulting in improved performance.

As described in a paper in the Journal of Power Sources, the research tea used hydrophilic carbon paper anchored by hierarchically porous cobalt disulfides as an interlayer for capturing polysulfides through physical absorption and chemical bonding. The sulfur-graphene composite with a sulfur content of 70.5% delivers a high initial capacity of 1239.5 mAh g−1 at 0.2 C and retains a reversible capacity of 818 mAh g−1 after 200 cycles.

More... | Comments (1)

Materials Project releases trove of data to public; support for work on multivalent battery chemistries and electrolytes

June 10, 2016

The Materials Project, a Google-like database of material properties aimed at accelerating innovation (earlier post), has released an enormous trove of data to the public, giving scientists working on batteries, fuel cells, photovoltaics, thermoelectrics, and other advanced materials a powerful tool to explore new avenues of research.

Two sets of data were released: nearly 1,500 compounds investigated for multivalent intercalation electrodes and more than 21,000 organic molecules relevant for liquid electrolytes as well as a host of other research applications. Batteries with multivalent cathodes (which have multiple electrons per mobile ion available for charge transfer) are promising candidates for reducing cost and achieving higher energy density than that available with current lithium-ion technology. (Earlier post.)

More... | Comments (0)

OXIS Energy and Lithium Balance partner on Li-sulfur battery system for China e-scooter market; targeting spring 2018

June 08, 2016

Li-sulfur battery developer OXIS Energy UK (earlier post) and Lithium Balance of Denmark are partnering to build a prototype Lithium-sulfur battery system primarily for the e-scooter market in China. Lithium Balance is a battery management expert which has supplied its BMS systems for Li-ion based e-scooters for a decade. The E-scooter itself will be manufactured in China.

The current prototype battery has a capacity of 1.2 kWh using 10Ah OXIS Long Life cells; weighs 60% less than the current lead acid battery; and delivers a significant increase in range. The next stage is to build a second prototype using an improved Long Life chemistry (up to 20Ah) which will increase battery capacity at a reduced weight.

More... | Comments (9)

ORNL, XALT show nanoscale alumina coating on layered oxide cathode materials substantially improves Li-ion battery performance

June 06, 2016

A team from Oak Ridge National Laboratory (ORNL) and XALT Energy, with colleagues from the University of Michigan and Energy Power Systems, have shown that atomic layer deposition (ALD) of alumina (Al2O3) on Ni-rich full concentration gradient (FCG) NMC and NCA cathode materials can substantially improve Li-ion battery performance and allow for increased upper cutoff voltage (UCV) during charging—delivering significantly increased specific energy utilization.

As described in an open-access paper published in Scientific Reports, their results showed that Al2O3 coating improved NMC cycling performance by 40% and NCA cycling performance by 34% at 1 C/−1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells.

More... | Comments (2)

A novel method for energy efficient warmup of lithium-ion batteries from sub-zero temperatures using predictive control

by Paul N. Blumberg, PhD

Many of the machines and appliances that are in common use today require that their power be available immediately, regardless of adverse ambient conditions such as sub-zero temperatures. For example, on a 0 °F day, we expect to be able to start our cars or trucks, which may have cooled down to near ambient conditions, and proceed to use them in the same manner as if we were in more moderate climates. To accomplish this, engineers and scientists have worked hard to ensure that in extremely cold temperature environments, the engine oil does not become too viscous and that there are sufficient high volatility components in the fuel so that vaporization and ignition within the engine are possible on an almost instantaneous basis.

The same requirement holds true for battery-powered devices or vehicles. The Lithium-ion battery has emerged as the current “battery of choice” for automotive hybrid and electric vehicle applications. Over the last decade, significant improvements in its energy and power density have been made through research in all aspects of its fundamental electrochemistry and materials. Nevertheless, due to fundamental electrochemical factors, the availability of “instantaneous” power at temperatures below approximately 15 ˚F remains a challenge.

More... | Comments (0)

Daimler establishes Mercedes-Benz Energy GmbH for stationary energy storage

June 02, 2016

Daimler AG has established Mercedes-Benz Energy GmbH to take over the development and global sale of Mercedes-Benz brand stationary energy storage (earlier post) with immediate effect. The production of the systems remains the core expertise of Daimler’s other wholly owned subsidiary, Deutsche ACCUMOTIVE GmbH & Co. KG.

Daimler AG, with ACCUMOTIVE, began delivery of domestic storage solutions for the German market in April. Work also started on setting up the first large-scale industrial projects in the field of primary regulation energy. With the establishment of Mercedes-Benz Energy GmbH based in Kamenz/Saxony, the company is now taking another step toward expanding its stationary storage business. International expansion and collaboration with further partners are particularly high on the agenda, Daimler said.

More... | Comments (0)

Toshiba to start field testing medium-sized EV bus with wireless recharging, SCiB Li-ion battery

May 31, 2016

Toshiba Corporation has developed a fast, cable-free contactless charger for electric vehicles (EVs), and will field test it on a medium-sized EV bus designed to handle the power demands of regular high-speed journeys on expressways. Field tests will start from 1 June and continue until December.

The 45-seat bus is powered by a long-life, high-output 52.9 kWh SCiB (earlier post) pack, Toshiba’s advanced lithium-ion rechargeable battery, and will make regular trips between All Nippon Airways Co. Ltd. facilities in Tonomachi, Kawasaki and Haneda Airport in Tokyo. The 11-kilometer (6.8-mile) journey will test the bus and its performance under various traffic conditions, and will allow Toshiba to verify the convenience and practicality of contactless charging, along with its contribution to reducing CO2 emissions.

More... | Comments (7)

Berkeley Lab researchers shed light on how lithium-rich cathodes work, opening the door to higher capacity batteries

Researchers at the Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) report a major advance in understanding how oxygen oxidation creates extra capacity in lithium-rich cathodes, opening the door to batteries with far higher energy density.

The nature of the findings shows “a clear and exciting path forward” to create the next-generation cathode materials with substantially higher energy density then current cathode materials, the researchers wrote in a paper on their work published in the journal Nature Chemistry.

More... | Comments (3)

Johnson Controls funds two research projects with U Wisconsin to enhance fuel efficiency of start-stop vehicles and next-gen EVs

May 26, 2016

Johnson Controls will fund two multi-year research projects at the University of Wisconsin–Madison (UW–Madison) aimed at enhancing the fuel efficiency of start-stop and next-generation battery-electric vehicles. The projects will be funded by Johnson Controls, which includes a Fellows gift of $500,000. UW–Madison graduate students Jacob Dubie and Kevin Frankforter, the first recipients of Johnson Controls Distinguished Graduate Fellowships, will carry out the projects.

The first project will focus on identifying the aging mechanisms of absorbent glass mat (AGM) batteries and supporting systems in start-stop applications and vehicle optimization strategies.

More... | Comments (0)

PSA Group outlines electrification solutions for future hybrid and electric vehicles; 4 EVs, 7 PHEVs by 2021

May 25, 2016

At its Innovation Day event, PSA Group presented its new electrification strategy. PSA Group is consolidating the development of its models on two global modular platforms—CMP and EMP2—allowing it to offer a wide range of internal combustion, electric and plug-in hybrid gasoline models from 2019.

Both platforms are optimized and lighter (25kg for EMP2 and 40kg for CMP) than current platforms, and offer greater modularity in terms of length, width, height and wheel diameter. Both platforms will be compatible with the manufacturing resources put in place as part of the Plant of the Future program. (Earlier post.)

More... | Comments (2)

Researchers develop safe and durable high-temperature Li-S battery with conventional C-S electrode using MLD alucone coating

Researchers from University of Western Ontario, Lawrence Berkeley National Laboratory (LBNL), and Canadian Light Sources (CLS) have developed a safe and durable high-temperature Li-sulfur battery using universal conventional carbon–sulfur (C-S) electrodes with a molecular layer deposited (MLD) alucone (aluminum oxide polymeric film) coating.

The MLD alucone-coated C−S electrodes demonstrate stabilized ultralong cycle life at high temperature (55 ˚C) with a capacity of more than 570 mA h g−1 after 300 cycles. The utilization of MLD enables the usage of conventional C-S cathode materials with carbonate-based electrolytes—a facile and versatile approach that can be applied to a variety of C−S electrodes without redesigning the carbon host materials. A paper on their work is published in the ACS journal Nano Letters.

More... | Comments (2)

Amprius demonstrates new tool for roll-to-roll manufacturing of high-energy batteries with Si nanowire anodes

May 24, 2016

Amprius, a manufacturer of high-energy lithium-ion batteries using silicon nanowire anodes (earlier post), has demonstrated a novel tool for high-volume manufacturing. The new tool, a first-of-its-kind system for inline, continuous, and roll-to-roll production of three-dimensional silicon nanowire anodes, will enable Amprius to scale manufacturing and deliver lightweight and long-lasting batteries for unmanned vehicles, wearable technologies, and electric vehicles.

Amprius developed its new tool in partnership with Meyer Burger (Netherlands) B.V., a world leader in high-throughput deposition systems and processes. The tool uses a multi-step, Chemical Vapor Deposition (CVD) process to produce Amprius’ silicon nanowire anodes. Amprius will unveil its new manufacturing tool to a select group of industry partners on 29 June 2016, at a Meyer Burger facility in the Netherlands.

More... | Comments (5)

CCM: China Li-ion industry booming; domestic outputs triples in 2015 to 15.7 GWh

May 23, 2016

In China, the development of alternative energy vehicles and the Li-ion battery sector are booming with the support of promotional policies from the Chinese government, according to new report from CCM, a leading market intelligence provider for China’s agriculture, chemicals, food & ingredients and life science markets. In May 2016 alone, nearly RMB2.6 billion (US$400 million) flowed into the Li-ion battery market, with Tianqi Lithium, Ganfeng Lithium and GEM CO., Ltd. putting in the most capital.

Over the past five years, the growth of electrochemical energy storage market in China has outpaced that of the global market, with a CAGR (2010-2015) of 110%—six times as high as that of the global. Among it, the installed capacity of Li-ion battery captured 66% of the market share in the electrochemical energy storage market.

More... | Comments (1)

Prieto Battery receives investment from Stanley Ventures to pursue commercialization of 3D Li-ion battery

May 21, 2016

Prieto Battery, a company commercializing a 3D Lithium-ion battery technology (earlier post), announced a strategic investment from Stanley Ventures, the newly-formed venture arm of Stanley Black & Decker, a world-leading provider of tools and storage, commercial electronic security and engineered fastening systems.

Prieto Battery Inc. was founded in June 2009 to accelerate the shift of Prieto’s innovations from the research laboratory to the commercial marketplace. The company’s mission is to commercialize a patented 3D lithium-ion battery technology that delivers transformational performance at a competitive cost using non-toxic materials with the ability to customize shapes.

More... | Comments (11)

Hanyang/BMW team develops high-energy density Li-ion battery with carbon-nanotube-Si composite anode and NCM concentration gradient cathode

May 20, 2016

Researchers from Hanyang University in Korea and the BMW Group have developed a new fully operational, practical Li-ion rechargeable battery combining high energy density with excellent cycle life. A report on their work is published in the RSC journal Energy & Environmental Science.

A carbon nanotube (CNT)-Si composite anode with extremely stable long-term cycling provides a discharge capacity of 2364 mAh g-1 at a tap density of 1.1 g cm-3; a two-sloped full concentration gradient (TSFCG) Li[Ni0.85Co0.05Mn0.10]O2 cathode, with a Ni-enriched core and Mn-enriched layer, yields a discharge capacity of 221 mAh g-1. The full cell generates an energy density of 350 Wh kg-1 with excellent capacity retention for 500 cycles at 1 C rate—satisfying the energy density limit imposed by the drive range requirement for EVs.

More... | Comments (4)

Electrovaya introduces 1 kWh and 48V, 2.3 kWh battery modules

May 17, 2016

Electrovaya Inc. has introduced a 1kWh battery module (LITACORE1000) and an intelligent 48V, 2.3 kWh module (EV4823) as building blocks for Lithium-ion battery systems.

The LITACORE1000 is a 1 kWh module with integrated voltage and temperature sensors in an aluminum case with laser welded contacts; the module features the Litacell. The EV4823 is a 48V, 2.3 kWh module with an integrated intelligent battery management system (iBMSTM) complete with CANbus communications.

More... | Comments (1)

High-performance Li-S cathodes using 3D hierarchical porous nitrogen-doped aligned carbon nanotubes

May 16, 2016

Researchers from Hunan University and Changsha University in China have designed 3D hierarchical porous nitrogen-doped aligned carbon nanotubes (HPNACNTs) with well-directed 1D conductive electron paths as scaffold to load sulfur for use as a high-performance cathode in Li-S batteries. A paper on their work is published in the Journal of Power Sources.

The HPNACNTs have abundant micropores, mesopores and macropores with a relatively high specific surface area and a large total pore volume. The sulfur-HPNACNTs (with 68.8 wt% sulfur) composite exhibits a high initial discharge capacity of 1340 mAh g−1 at 0.1 C and retains as high as 979 mAh g−1 at 0.2 C after 200 cycles. It also shows high reversible capacity at high rates (817 mAh g−1 at 5 C).

More... | Comments (1)

Nissan team gains insight into atomic structure of SiO using new methodology; potential benefit for Li-ion battery capacity

May 13, 2016

Using a new methodology, researchers in Japan—including colleagues from Nissan subsidiary Nissan Arc Ltd., a materials analysis and research center—have developed a heterostructure model of the atomic structure of silicon monoxide (SiO). The heterostructure model well explains the distinctive structure and properties of the material, which could play an important role in boosting the capacity of Li-ion batteries. An open-access paper on the work is published in Nature Communications.

Silicon (Si) is capable of holding greater amounts of lithium compared with common carbon-based materials; as such, it is a target of great focus as an anode material for higher capacity Li-ion batteries. However, in crystalline form, Si possesses a structure that deteriorates during charging cycles, ultimately impacting performance. However, amorphous SiO is resistant to such deterioration.

More... | Comments (0)

Researchers develop nanoscale LTO anode with superior high temperature performance

May 10, 2016

A team led by researchers from the Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University has synthesized nanoscale porous lithium titanium oxide (LTO) material for Li-ion anodes that exhibit stable electrochemical performance at high temperature (50 °C) and high charge/discharge rates (5 C) without performing any post-surface treatments.

As reported in their paper in the journal ACS Applied Materials & Interfaces, the synthesis method uses water, with the final products exhibiting nanoscale and highly porous structures. In addition, the grain size of the LTO particles can be tuned and controlled by the calcination temperature.

More... | Comments (0)

Researchers visualize lithiation of magnetite electrode in real time; hunting for new Li-ion electrode materials

May 09, 2016

A team of scientists from the US Department of Energy’s (DOE) Brookhaven National Laboratory, the University of Pennsylvania, and the University of Maryland, College Park, has developed an electron microscopy technique to visualize—in real time and at high resolution—lithiation pathways in electrode materials.

The scientists used this advanced technique, described in an open-access paper in Nature Communications, to observe the discharge of a lithium-ion battery cell containing nanoparticles of magnetite—an inexpensive, nontoxic, high-conducting, high-energy-storage material. These discharge mechanisms were then correlated with the battery’s discharge rates. The team’s findings about how lithium migrates at the nanoscale could help improve the electrochemical performance of comparable electrode materials in lithium-ion batteries.

More... | Comments (0)

Total to acquire battery-maker Saft in US$1.1-billion deal

France-based energy major Total has filed a friendly tender offer on all of the issued and outstanding shares in the capital of advanced battery maker Saft with the French Financial Markets Authority (Autorité des Marchés Financiers, AMF).

The proposed offer will target all of Saft’s issued and outstanding shares at a price of €36.50 per share, ex-dividend of €0.85 per share, valuing Saft’s equity at €950 million (US$1.1 billion). The offer price represents a 38.3% premium above Saft’s closing share price of €26.40 on 6 May 2016; a premium of 41.9% above the volume weighted average share price over the past six months; and a premium of 24.2% above the volume weighted average share price over the past year.

More... | Comments (7)

Argonne: longer-range BEVs may be almost as powertrain energy dense as gasoline vehicles by 2045

An analysis by a team at Argonne National Laboratory (ANL) has found that by 2045, some configurations of battery electric vehicles (BEV) could become almost as energy dense as a conventional vehicle. The team presented their paper at the recent 2016 SAE World Congress.

Hydrocarbon fuels (either fossil- or bio-derived) have high energy densities that are at least 100 times greater than that of a present day lithium-ion battery. Despite projected improvements in battery technology, this form of energy storage is still expected to be significantly less energy dense than gasoline even by 2045. However, the Argonne team argues, the energy density of storage medium (fuel or battery) should not be used as the sole criterion to compare conventional vehicles and BEVs. Rather, powertrain-level energy and power density will be better criteria to compare the propulsion technology used for BEVs and conventional vehicles, they suggest.

More... | Comments (10)

ORNL-led team identifies feature enabling fast ion conduction in solid electrolytes; new strategy for design

May 06, 2016

A team led by the Department of Energy’s Oak Ridge National Laboratory (ORNL) has used state-of-the-art microscopy to identify a previously undetected feature, about 5 billionths of a meter (nanometers) wide, in a solid electrolyte. The work experimentally verifies the importance of that feature to fast ion transport, and corroborates the observations with theory. The new mechanism the researchers report in Advanced Energy Materials points to a new strategy for the design of highly conductive solid electrolytes.

Using a solid electrolyte in a rechargeable battery is one of the most important factors in enabling safe, high-power, high-energy batteries, said first author Cheng Ma of ORNL, who conducted most of the study’s experiments. However, solid electrolytes typically suffer from low ionic conductivity, limiting their applications, Ma added.

More... | Comments (2)

CMU study concludes lithium market fluctuations unlikely to impact Li-ion battery prices significantly

May 05, 2016

A new study by a team from Carnegie Mellon University’s College of Engineering has found that even large increases in lithium prices are unlikely to increase significantly the cost of batteries or battery packs for end users such as vehicle manufactures or consumers—although some manufacturers may see reduced profit margins. The study comes against the backdrop of a more than doubling of global lithium prices over the last 6 months.

The Carnegie Mellon University researchers, whose study was published in the Journal of Power Sources, analyzed multiple lithium-ion battery chemistries and cell formats to see whether extreme lithium price variations would have a substantial impact. They found that the use of more expensive lithium precursor materials results in less than 1% increases in the cost of lithium-ion cells considered. Similarly, larger fluctuations in the global lithium price (from $0 to $25/kg from a baseline of $7.50 per kg of Li2CO3) do not change the cost of lithium-ion cells by more than 10%.

More... | Comments (2)

BMW boosts battery capacity of MY2017 i3 to 33 kWh with higher energy density Li-ion cells; up to 114 miles combined cycle range

May 02, 2016

BMW will offer a new model range of its i3 compact electric car, and from the 2017 model year will be offering a new version with more than 50% increased battery capacity.

The 2017 BMW i3 (94 Ah) has a capacity of 33 kilowatt hours (kWh) due to the use of higher energy density lithium-ion cells; the dimensions of the pack remain unchanged while still offering a significant range increase. The new BMW i3, in varying weather conditions and with the air conditioning or heating turned on, has a range of up to 114 miles (183 km) combined (hwy/city) cycle, as shown by independent BMW testing; EPA figures are still pending. The EPA range rating for the MY 2016 i3 is 81 miles (130 km).

More... | Comments (6)

PARC, ORNL and Ford collaborate on high-energy, high-power battery production for EVs using CoEx printing

April 28, 2016

PARC, a Xerox company, is collaborating with Oak Ridge National Laboratory (ORNL) and Ford Motor Company in a DOE-funded project that will use PARC’s novel CoEx printing technology (earlier post) to fabricate thick, higher energy and higher power battery electrodes with the end goal of enabling longer range and low cost electric vehicles.

The goal of the project—“Co-Extrusion (CoEx) for Cost Reduction of Advanced High-Energy-and-Power Battery Electrode Manufacturing”—is to demonstrate pilot-scale, electric vehicle (EV) pouch cells with a 20% improvement in gravimetric energy density (Wh/kg), and a 30% reduction in $/kWh costs.

More... | Comments (4)

New silicon-sulfur battery built on 3D graphene shows excellent performance

Researchers at Beihang University in Beijing have developed a new Li-sulfur battery using honeycomb-like sulfur copolymer uniformly distributed onto 3D graphene (3D cpS-G) networks for a cathode material and a 3D lithiated Si-G network as anode.

In a paper published in the RSC journal Energy & Environmental Science, they reported that the full cell exhibits superior electrochemical performances in term of a high reversible capacity of 620 mAh g-1, ultrahigh energy density of 1147 Wh kg−1 (based on the total mass of cathode and anode), good high-rate capability and excellent cycle performance over 500 cycles (0.028% capacity loss per cycle).

More... | Comments (34)

Daimler starts deliveries of Mercedes-Benz Li-ion energy storage units for private homes

April 22, 2016

Daimler AG has commenced deliveries of Mercedes-Benz stationary energy storage units (earlier post) for use in private homes. The lithium-ion batteries are being manufactured by the Daimler subsidiary Deutsche ACCUMOTIVE and distributed through selected sales partners and partner companies.

At present, the company’s partners include the energy service provider Energie Baden-Württemberg (EnBW), the solar technology specialist SMA, as well as a number of wholesale traders. Their network of qualified specialist installers take care of providing the end customers with on-site advice, planning, compiling an individual quotation for all components and the actual installation.

More... | Comments (2)

New nanowire-based hybrid battery/capacitor shows extreme cycle stability

Researchers funded by Nanostructures for Electrical Energy Storage (NEES), a DOE Energy Frontier Research Center, have developed a nanowire-based hybrid battery/capacitor that can be recharged hundreds of thousands of times. The team, based at the University of California, Irvine, coated gold nanowire in a manganese dioxide shell and encased the assembly in an electrolyte made of a Plexiglas-like gel. The combination is reliable and resistant to failure.

In a paper published in the journal ACS Energy Letters, they reported reversible cycle stability for up to 200 ,000 cycles with 94–96% average Coulombic efficiency for symmetrical δ-MnO2 nanowire capacitors operating across a 1.2 V voltage window in a poly(methyl methacrylate) (PMMA) gel electrolyte.

More... | Comments (3)

Applications open for the fifth Volkswagen and BASF “Science Award Electrochemistry”; new special award for applied research

April 19, 2016

The BASF and Volkswagen international “Science Award Electrochemistry” is now in its fifth year (earlier post) and has opened the application period for this year’s award. Applications are due by 12 August 2016. Contributions submitted will be assessed by a jury comprising experts from BASF, Volkswagen and representatives from the scientific community. The award ceremony takes place in Berlin on 21 November 2016.

The international “Science Award Electrochemistry” supports excellent scientific and engineering achievements and intends to provide fresh impetus to the development of high-efficiency energy storage devices. The science award has been held every year since 2012 and is intended for scientists working in academic research all over the world. The prize money totals €100,000 and first place receives €50,000.

More... | Comments (0)

Optodot and LG Chem sign patent license agreement for boehmite ceramic-coated separators for Li-ion batteries

Optodot Corporation recently granted a license to LG Chem Ltd. under a patent portfolio controlled by Optodot covering batteries, cells, separators and electrolyte members comprising boehmite.

Boehmite—an aluminium oxide hydroxide (γ-AlO(OH)) mineral, and a component of the aluminium ore bauxite—is a key material used in ceramic coating layers. The patent portfolio includes 20 patents issued in the US, Japan, Korea, China, and Europe. The license permits LG Chem to utilize boehmite separator films for lithium-ion batteries.

More... | Comments (1)

Outokumpu and Fraunhofer Institute develop lightweight stainless steel battery pack for EVs; up to 20% weight reduction

Finland-based stainless steel expert Outokumpu is working on lightweight stainless steel solutions for electric vehicles in cooperation with Fraunhofer Institute for Laser Technology ILT, in Germany. Their latest innovation is a new battery pack that combines several lightweight engineering technologies as well as new types of cooling and structural strategies.

The Forta H1000 fully-austenitic, ultra-high-strength stainless steel (an advanced manganese-chromium alloy) from Outokumpu enables the implementation of structural lightweight engineering initiatives, while providing a high level of safety.

More... | Comments (0)

Adgero signs €3.5M deal with ultracap manufacturer Skeleton for road freight KERS

April 14, 2016

Adgero has signed a €3.5-million (US$4-million) distribution agreement to ensure modules from ultracapacitor manufacturer Skeleton Technologies, are part of its Kinetic Energy Recovery Systems (KERS) for road freight. (Earlier post.) Under the agreement, the French transport technology developer will now source SkelMod 160V modules exclusively for the Adgero hybrid system pioneered to increase efficiency for the truck transport industry.

The Adgero KERS unit consists of a bank of five high-power Skeleton Technologies SkelMod 50F 160V ultracapacitors, working alongside an electrically driven axle to capture energy loss and use this energy to re-power the vehicle.

More... | Comments (0)

Tesla And Other Tech Giants Scramble For Lithium As Prices Double

by James Stafford of

Demand for lithium—the hottest commodity on the planet and the only commodity to show positive price movement in 2015—is poised to continue on its upward trajectory, becoming the world’s new gasoline and earning the moniker of “White Petroleum”. And the battle for market share in and around this commodity has everyone from major tech players to trend-setting investor gurus vying for a foothold.

Driven by the rise of battery gigafactories and game-changing Powerwall and energy storage businesses, the world now finds itself at the beginning of a lithium super cycle that is all about securing new supply, much of which is poised to come from lithium superstar Argentina.

More... | Comments (11)

BASF licenses CAM-7 Li-ion cathode materials from CAMX Power LLC

April 12, 2016

BASF and CAMX Power LLC announced that BASF has been granted a license under the intellectual property of CAMX Power LLC (CAMX) relating to the CAMX suite of CAM-7 cathode materials for lithium-ion batteries. (Earlier post.) CAM-7 is a patented cathode material that harnesses the properties of high-nickel compounds to deliver high energy density with high-power capability.

The CAM-7 cathode material platform for advanced lithium-ion batteries, developed for over a decade by CAMX Power and now globally patent-protected, has been shown by key entities in the industry to be capable of extending the range of electric vehicles and the run time between charges in portable devices.

More... | Comments (1)

New silicon oxycarbide glass/graphene anode material; lightweight, high-capacity and long cycle life

April 11, 2016

Researchers at Kansas State University have developed a new high-performance Li-ion battery anode material combining silicon oxycarbide (SiOC) glass and graphene. The self-standing (i.e., no current collector or binder) anode material comprises molecular precursor-derived SiOC glass particles embedded in a chemically-modified reduced graphene oxide (rGO) matrix.

The porous reduced graphene oxide matrix serves as an effective electron conductor and current collector with a stable mechanical structure, and the amorphous silicon oxycarbide particles cycle lithium-ions with high Coulombic efficiency. The SiOC-rGO composite electrode delivers a charge capacity of ~588 mAh g−1electrode (~393 mAh cm−3electrode) at the 1,020th cycle and shows no evidence of mechanical failure.

More... | Comments (3)

PNNL study identifies one of the mechanisms behind Li-sulfur battery capacity fade; the importance of electrolyte anion selection

March 31, 2016

Researchers at Pacific Northwest National Laboratory (PNNL) investigating the stability of the anode/electrolyte interface in Li-Sulfur batteries have found that Li-S batteries using LiTFSI-based electrolytes are more stable than those using LiFSI-based electrolytes.

In their study, published in the journal Advanced Functional Materials, they determined that the decreased stability is because the N–S bond in the FSI anion is fairly weak; the scission of this bond leads to the formation of lithium sulfate (LiSOx) in the presence of polysulfide species. By contrast, in the LiTFSI-based electrolyte, the lithium metal anode tends to react with polysulfide to form lithium sulfide (LiSx), which is more reversible than LiSOx formed in the LiFSI-based electrolyte.

More... | Comments (0)

Saft to supply marine Li-ion battery system to Rolls Royce Marine for hybrid multi-application vessel

Saft won a major contract from Rolls Royce Marine to supply the specialized marine lithium-ion (Seanergy) battery system for an innovative hybrid multi-application vessel under construction in Denmark for Kystverket, the Norwegian Coastal Administration (NCA).

It is Saft’s second major contract signed since the end of last year in the marine segment. The high energy battery system onboard the OV Bøkfjord will help Kystverket meet its ambitious climate and environmental targets, reduce maintenance and deliver 25% fuel savings.

More... | Comments (0)

Ioxus introduces ultracap-based uSTART drop-in battery replacement for Class 3-6 trucks

March 28, 2016

Ioxus, Inc. is offering the ultracapacitor-based uSTART engine starting system for Class 3-6 trucks as a drop-in replacement product that needs no special wiring.

Ioxus says the product increases the vehicle bus voltage by greater than 10% during crank, reducing cranking time by more than 20%; reducing peak current to the starter by more than 15%; reducing the cycling seen by the battery by more than 40%; increases starter life by more than 30%; and provides a built-in jump start system that will allow users to charge the capacitor from adjacent “dead” batteries and eliminate stranded trucks.

More... | Comments (1)

Chinese researchers develop novel aluminum–graphite dual-ion battery

March 25, 2016

A team from the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences has developed a novel, environmentally friendly low-cost battery. The new aluminum-graphite dual-ion battery (AGDIB) offers significantly reduced weight, volume, and fabrication cost, as well as higher energy density, in comparison with conventional LIBs.

The battery shows a reversible capacity of ≈100 mAh g−1 and a capacity retention of 88% after 200 charge–discharge cycles. A packaged aluminum–graphite battery is estimated to deliver an energy density of ≈150 Wh kg−1 at a power density of ≈1200 W kg−1—≈50% higher than most commercial lithium-ion batteries. A paper on the work is published in the journal Advanced Energy Materials.

More... | Comments (12)

Stanford team develops new simple approach for viable Li-metal anodes for advanced batteries

Lithium-metal anodes are favored for use in next-generation rechargeable Li-air or Li-sulfur batteries due to a tenfold higher theoretical specific capacity than graphite (3,860 mAh/g vs. 372 mAh/g); light weight and lowest anode potential. However, safety issues resulting from dendrite formation and instability caused by volume expansion have hampered development and deployment of commercially viable solutions.

A team at Stanford led by Prof. Yi Cui has now introduced a simple approach to address both issues by effectively encapsulating lithium inside a porous host scaffold using a facile melt-infusion approach. Uniformly confined within the matrix, the lithium creates a material that can deliver a high capacity of around 2,000 mAh/g (gravimetric) or 1,900 mAh/cm3 (volumetric) as stable anodes for Li-metal batteries. A paper on their work is published in Proceedings of the National Academy of Sciences (PNAS).

More... | Comments (1)

Toyota GAZOO Racing introduces TS050 hybrid racer for 2016 WEC season; moves up to 8MJ class with Li-ion battery

March 24, 2016

Toyota GAZOO Racing revealed the all-new TS050 HYBRID LMP1 racer—Toyota’s third new car since joining WEC in 2012—for the 2016 World Endurance Championship (WEC) competition. Following an unsuccessful defense of its World Championship titles in 2015, Toyota set itself tough performance targets in order to compete once again at the front of the field, featuring fellow LMP1-Hybrid manufacturers Porsche and Audi.

The TS050 HYBRID features a significant change in powertrain concept. A 2.4-liter, twin-turbo, direct injection V6 gasoline engine is combined with an 8MJ hybrid system, both of which are developed by Motor Sport Unit Development Division at Higashi-Fuji Technical Center.

More... | Comments (0)

Hyundai unveils Ioniq HEV, PHEV and EV for US market at New York show

Hyundai Motor America introduced the Ioniq Hybrid, Plug-in Hybrid, and Electric models for the US market at the New York International Auto Show; the full line of three electrified variants made their global debut earlier this year at the Geneva show. (Earlier post). Ioniq is the first to offer three distinct electrified powertrains on a single, dedicated vehicle platform.

The Ioniq Hybrid and Ioniq Plug-in Hybrid both feature a new Kappa 1.6 direct-injected Atkinson-cycle four-cylinder engine with a thermal efficiency of 40%, delivering an estimated 104 horsepower (78 kW) and an estimated 109 lb-ft (148 N·m) of torque. This engine has been specifically tailored to the hybrid application and is combined with a smooth shifting six-speed double-clutch transmission—intended to differentiate Ioniq from its key competitors with a more dynamic and engaging driving experience.

More... | Comments (2)

Porsche presents new 919 Hybrid LMP1 racer; 800V battery technology

March 23, 2016

Two days before the official Prologue for the FIA World Endurance Championship (WEC) at Paul Ricard, France, Porsche presented its new 919 Hybrid LMP1 race car for the 2016 season.

This season, Porsche will fully exploit the WEC regulations by deploying three different aerodynamic packages to make the car best suited to the respective race tracks. (Three aerodynamic specifications are the maximum allowed.) The weight of the four-cylinder turbo engine, as well as its fuel consumption, was further reduced, while the efficiency of the two energy recovery systems of the hybrid drive have been improved. For 2016, the components of the electric drive have also become more powerful and efficient.

More... | Comments (1)

Toyota doubles the electric range in the new version of Prius PHEV with 8.8 kWh pack

Toyota unveiled the new Prius Prime plug-in hybrid (PHEV) at the 2016 New York International Auto Show. Toyota expects the Prius Prime’s manufacturer-estimated 120 or above MPGe (miles per gallon equivalent) to be the highest MPGe rating of any current plug-in hybrid. It also represents a substantial 26-percent enhancement over its predecessor, the Prius PHV, a result of greater battery capacity and an improved hybrid system. In hybrid mode, the Prius Prime is targeting a hybrid MPG equal to or better than the Prius liftback.

Toyota also expects the Prius Prime, equipped with an 8.8 kWh battery pack, to offer an estimated 22 miles (35.4 km) of all-electric range—twice the electric range of the previous model with its 4.4 kWh pack—and to drive at speeds up to 84 mph (135 km/h).

More... | Comments (11)

Sadoway and MIT team demonstrate calcium-metal-based liquid metal battery

MIT professor Donald Sadoway and his team have demonstrated a long-cycle-life calcium-metal-based liquid-metal rechargeable battery for grid-scale energy storage, overcoming the problems that have precluded the use of the element: its high melting temperature, high reactivity and unfavorably high solubility in molten salts.

Their work, reported in an open-access paper in the journal Nature Communications, could make liquid metal battery technology even more practical and affordable, and open up a whole family of potential variations that could make use of local resources.

More... | Comments (0)

Audi unveils redesigned R18 diesel hybrid Le Mans racer for 2016 season

March 22, 2016

Audi unveiled its redesigned R18 diesel hybrid Le Mans racer for the 2016 World Endurance Championship (WEC) season. Among the new features in the R18 are a more radical aerodynamics concept, including a new safety cell; a Li-ion battery replacing the flywheel energy storage system; and a revised V6 TDI diesel engine. As a result, Audi’s LMP1 sports car is more powerful and more efficient than its predecessor; the new R18 consumes less fuel than any of the generations before it.

The new hybrid TDI powertrain delivers power output of more than 1,000 hp (746 kW), along with 10% less consumption that its immediate predecessor. The current V6 TDI consumes 32.4% less fuel than the first generation did in 2011.

More... | Comments (1)

LLNL team finds certain graphene metal oxide nanocomposites increase Li-ion capacity and cycling performance

Material scientists at Lawrence Livermore National Laboratory have found that certain graphene metal oxide (GMO) nanocomposites increase capacity and improve cycling performance in lithium-ion batteries.

The team synthesized and compared the electrochemical performance of three representative graphene metal oxide nanocomposites—Fe2O3/graphene, SnO2/graphene, and TiO2/graphene—and found that two of them greatly improved reversible lithium storage capacity. The research appears on the cover of the 21 March edition of the Journal of Materials Chemistry A.

More... | Comments (0)

Japan researchers develop two new lithium superionic conductors for high-performance solid-state batteries

Researchers at the Tokyo Institute of Technology, in collaboration with colleagues from Toyota Motor Corporation, Tokyo Institute of Technology and High Energy Accelerator Research Organization Japan (KEK), have successfully designed and tested novel, high-power all-solid-state batteries with promising results.

The scientists synthesized two crystal materials that show great promise as lithium superionic conductors for use as solid electrolytes for Li-ion batteries. The materials, reported in a paper in the journal Nature Energy, feature an exceptionally high conductivity (25 mS cm−1 for Li9.54Si1.74P1.44S11.7Cl0.3), as well as high stability ( ∼0 V versus Li metal for Li9.6P3S12).

More... | Comments (1)

A123 Systems opening new manufacturing facility in Czech Republic; support for increasing volume of 12V and 48V Li-ion systems

March 21, 2016

Li-ion battery manufacturer A123 Systems is expanding its operations in Europe by opening a new manufacturing facility in the Czech Republic city of Ostrava. The opening of the new facility is the result of a substantial surge in European market demand for low-voltage automotive products, a strategic focus of A123.

This European location will establish regional assembly of A123’s advanced 12V Lithium-ion starter battery and next-generation 48V battery and cost effectively support the growing market demand.

More... | Comments (0)

CCM: slowdown in China Li-ion unit output growth signals shift in market structure toward new energy vehicle applications

In 2015, China’s total output of Li-ion batteries increased by 3.13% year-on-year (YoY)—a significant slowdown in the output growth rate from the prior 5 years, according to the National Bureau of Statistics of the People’s Republic of China.

CCM, a leading market intelligence provider for China’s agriculture, chemicals, food & ingredients and life science markets, suggests that the reduction in growth rate is a signal that the market structure of Li-ion batteries in China is changing, with Li-ion batteries for alternative energy vehicles moving to dominate China’s Li-ion battery market instead of consumer Li-ion batteries.

More... | Comments (2)

Japan team demonstrates pure hydride-ion conduction; potential for next-generation batteries

March 18, 2016

Scientists at Tokyo Institute of Technology, in collaboration with colleagues in Japan, have demonstrated the first electrochemical reaction based on hydride ions in an oxide-based solid-state cell for potential next-generation batteries. A paper on their work is published in the journal Science.

Ionic transport has been studied extensively over the years for energy devices such as fuel cells and batteries using Li+, H+, Ag+, Cu+, F, and O2– as ionic charge carriers. The conduction of hydride ions, H, is also attractive, the team notes in their paper.

More... | Comments (1)

ORNL team gains insight into elastic properties of next-gen energy storage material MXene; understanding how ions flow

March 16, 2016

Researchers at Oak Ridge National Laboratory, with a colleague from Drexel University, have combined advanced in-situ microscopy and theoretical calculations to uncover important clues to the elastic properties of an MXene material—a promising next-generation energy storage material for supercapacitors and batteries—(earlier post), specifically a 2D titanium carbide (Ti3C2Tx).

MXene material—which acts as a two-dimensional electrode that could be fabricated with the flexibility of a sheet of paper—is based on MAX-phase ceramics (ternary carbides), discovered two decades ago by Michel Barsoum, PhD, Distinguished professor in Drexel’s Department of Materials Science & Engineering. Chemical removal of the “A” layer leaves two-dimensional flakes composed of transition metal layers—the “M”—sandwiching carbon or nitrogen layers (the “X”) in the resulting MXene, which physically resembles graphite.

More... | Comments (3)

DOE selects 33 clean energy businesses for nearly $6.7M in support under Small Business Vouchers pilot

March 11, 2016

The US Department of Energy (DOE) selected 33 small businesses to work directly with DOE national labs to accelerate the commercialization of new clean energy technologies.

The department’s Office of Energy Efficiency and Renewable Energy is investing nearly $6.7 million under Round 1 of the new Small Business Vouchers (SBV) pilot. For Round 1, the small businesses and laboratories will collaborate on advancing a number of clean energy technologies, including water, wind, bioenergy, solar, buildings, vehicles, fuel cells, geothermal technologies, and advanced manufacturing. The selected small businesses will work with scientists at nine department laboratories: Oak Ridge National Laboratory (ORNL); National Renewable Energy Laboratory (NREL); Lawrence Berkeley National Laboratory (LBNL); Sandia National Laboratories (SNL); Pacific Northwest National Laboratory (PNNL); Idaho National Laboratory (INL); Los Alamos National Laboratory (LANL); Argonne National Laboratory (ANL); and Lawrence Livermore National Laboratory (LLNL).

More... | Comments (0)

Researchers convert atmospheric CO2 to carbon nanofibers and nanotubes for use as anodes in Li-ion and Na-ion batteries

March 03, 2016

Researchers from George Washington University and Vanderbilt University have demonstrated the conversion of atmospheric CO2 into carbon nanofibers (CNFs) and carbon nanotubes (CNTs) for use as high-performance anodes in both lithium-ion and sodium-ion batteries. As described in an open-access paper in the journal ACS Central Science, optimized storage capacities were more than 370 mAh g-1 (lithium) and 130 mAh g-1 (sodium) with no capacity fade under durability tests up to 200 and 600 cycles, respectively.

The conversion process builds upon the solar thermal electro-chemical process (STEP) introduced by GWU Professor Stuart Licht and his colleagues in 2009. (Earlier post.) STEP is an efficient solar chemical process, based on a synergy of solar thermal and endothermic electrolyses, designed to convert greenhouse gas carbon dioxide into a useful carbon commodity. In short, STEP uses solar thermal energy to increase the system temperature to decrease electrolysis potentials.

More... | Comments (2)

Daimler invests €500M in new Li-ion battery factory in Germany

March 01, 2016

Daimler is investing €500 million (US$544 million) to build a second battery factory in Germany to produce lithium-ion batteries for Mercedes-Benz and smart hybrid and electric vehicles.

This will triple the production space of Daimler subsidiary Deutsche ACCUMOTIVE, located in Kamenz. As a first step, the full Daimler subsidiary has purchased about 20 hectares of land adjacent to the existing battery factory.

More... | Comments (5)

ARPA-E to award $30M to increase performance of solid ion conductors for batteries, fuel cells

February 27, 2016

The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) will award up to $30 million in funding for a new program focused on creating innovative components for the next generation of batteries, fuel cells, and other electrochemical devices.

ARPA-E’s Integration and Optimization of Novel Ion Conducting Solids (IONICS) program (DE-FOA-0001478) seeks to create transformational electrochemical cells by creating components built with solid ion conductors that have a wide range of desirable properties including low ionic area-specific resistance (ASR); high chemical and electrochemical stability; high selectivity; good mechanical properties; etc. through innovative approaches to overcome tradeoffs among coupled properties.

More... | Comments (3)

DOE launches Energy Materials Network with $40M for first year

February 25, 2016

The US Department of Energy launched the Energy Materials Network (EMN), a new National Laboratory-led initiative. Leveraging $40 million in federal funding in its first year, EMN will focus on tackling one of the major barriers to widespread commercialization of clean energy technologies: the design, testing, and production of advanced materials. By strengthening and facilitating industry access to the unique scientific and technical advanced materials innovation resources available at DOE’s National Labs, the network will help bring these materials to market more quickly.

DOE’s Office of Energy Efficiency and Renewable Energy is providing the funding to establish EMN’s four initial National Laboratory-led consortia and solicit proposals for collaborative R&D projects with industry and academia. Each EMN consortium will bring together National Labs, industry, and academia to focus on specific classes of materials aligned with industry’s most pressing challenges related to materials for clean energy technologies.

More... | Comments (1)

GM’s new RWD PHEV system for Cadillac CT6 designed for fun-to-drive high performance as well as efficiency; Volt on steroids

February 19, 2016

In a preview of three detailed papers to be presented at the SAE World Congress in April, Tim Grewe, GM’s General Director of electrification, and Pete Savagian, GM General Director of electric drives and systems engineering, provided a technical overview of the new rear-wheel drive PHEV propulsion system for the Cadillac CT6 (earlier post) at the recent SAE 2016 Hybrid and Electric Vehicle Technologies Symposium in Anaheim.

The efficient and very fun-to-drive system, with 335 kW (449 hp) combined system power, propels the CT6 from 0-100 km in 5.6 seconds; delivers an all-electric range of more than 60 km (37 miles) and an all-electric top speed of 125 km/h (78 mph); and features combined fuel consumption of less than 2.0 L/100 km (117.7 mpg US).

More... | Comments (2)

AIST researchers synthesize new class of high-voltage, high-capacity cathode materials for Li-ion batteries

Researchers at Japan’s National Institute of Advanced Industrial Science and Technology (AIST) have developed a new class of contenders for high-voltage and high-capacity Li-ion cathode materials with the composition NaxLi0.7-xNi1-yMnyO2 (0.03 < x 0.25, 0.5 y 0.8).

One of the compositions—Na0.093Li0.57Ni0.33Mn0.67O2—exhibited a maximum discharge capacity of 261 mAh g-1 at an average voltage of 3.36 V at 25 ˚C (between 2.0 and 4.8 V), which translates to an energy density of 943 Wh kg-1. A paper on their work is published in the Journal of Power Sources.

More... | Comments (0)

DOE requesting information on critical energy materials, including fuel cell platinum group metal catalysts

February 18, 2016

The US Department of Energy (DOE) has released a Request for Information (RFI) on critical materials in the energy sector, including fuel cell platinum group metal catalysts. The RFI is soliciting feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to the demand, supply, opportunities for developing substitutes, and potential for using materials more efficiently in the energy sector. The information received from the RFI will be used to update the analyses in DOE’s Critical Material Strategy Reports that were released in 2010 and 2011.

Building on the work of the 2010 and 2011 Critical Materials Strategy reports, the RFI seeks information on materials used in a variety of energy technologies, from generation to end use, and their manufacturing processes. Topics of interest include material intensity; market projections; technology transitions; primary production; supply chains; and recycling.

More... | Comments (0)

Maxwell Technologies introduces 3V, 3,000-farad ultracapacitor; 31% higher power than 2.7V cell

February 17, 2016

Maxwell Technologies, Inc. has introduced the newest addition to its K2 family—a 3-volt (3V), 3,000-farad ultracapacitor cell, now available in sample quantities. With 31% higher power than Maxwell’s leading 2.7-volt, 3,000-farad cell in the industry-standard 60 mm cylindrical form factor, customers now have the flexibility to either increase available power and energy in the same volume or significantly cost-optimize their system designs with fewer cells or modules while maintaining the same power and energy.

The new 3V cell design also incorporates Maxwell’s proprietary DuraBlue Advanced Shock and Vibration Technology (earlier post) to provide three times the vibrational resistance and four times the shock immunity of previous ultracapacitor-based competitive offerings, which will maximize life in demanding transportation environments such as onboard rail, hybrid bus and other applications.

More... | Comments (4)

Beijing, Argonne researchers develop new solid-state Li-ion battery; glassy nanocomposite electrolyte with ILs

February 11, 2016

Researchers from the Beijing Institute of Technology and Argonne National Laboratory have developed a new solid-state Li-ion battery technology, consisting of a solid nanocomposite electrolyte using porous silica matrices with in situ immobilizing Li+-conducting ionic liquids; mesocarbon microbeads (MCMB) as anode material, and LiCoO2 (LCO), LiNiCoMnO2 (NCM), or LiFePO4 (LFP) as cathode material.

Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. A paper on the work is published in the ACS journal Nano Letters.

More... | Comments (3)

Researchers synthesize new Li-S cathode based on “carbon compartments”

February 10, 2016

Researchers from Texas A&M and Purdue have developed a new cathode material for Li-S batteries based on what they call carbon compartments (CCs)—conductive 3D carbon mesostructures that possess macro- and meso-pores that allow for high loading of sulfur nanoparticles and enhanced electrolyte-sulfur contact.

Fabricated using a scalable, single-step, and inexpensive solid-state synthesis, the 3D carbon architectures provide a conductive backbone for non-conducting sulfur particles and also effectively accommodate volume expansion during Li2S formation. Described in an open-access paper in the Journal of the Electrochemical Society, the CCs demonstrate around 700 mAh g−1 (at 47%-wt S) reversible capacity with high coulombic efficiency due to their unique structures.

More... | Comments (4)

Researchers 3D-print graphene composite aerogel microlattices for supercapacitors

Scientists at Lawrence Livermore National Laboratory and UC Santa Cruz have successfully 3D-printed periodic graphene composite aerogel microlattices for supercapacitor applications, using a technique known as direct-ink writing. The key factor in developing these novel aerogels is creating an extrudable graphene oxide-based composite ink and modifying the 3D printing method to accommodate aerogel processing.

The 3D-printed graphene composite aerogel (3D-GCA) electrodes are lightweight, highly conductive, and exhibit excellent electrochemical properties. Supercapacitors using these 3D-GCA electrodes with thicknesses on the order of millimeters display exceptional capacitive retention (ca. 90% from 0.5 to 10 A·g−1) and power densities (>4 kW·kg−1) that equal or exceed those of reported devices made with electrodes 10−100 times thinner. A paper on their work is published in the ACS journal Nano Letters.

More... | Comments (3)

Purdue team uses pollen grains as basis for carbon architectures for Li-ion anodes

February 08, 2016

A team at Purdue University has used pollens as the basis for carbon architectures for anodes in energy storage devices. As reported in an open-access paper in Nature’s Scientific Reports, Jialiang Tang and Vilas Pol converted bee pollen and cattail pollen grains into carbon microstructures through a facile, one-step, solid-state pyrolysis process in an inert atmosphere.

They air-activated the as-prepared carbonaceous particles at 300 °C, forming pores in the carbon structures to increase their energy-storage capacity, and then evaluated them as lithium-ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. Findings showed the cattail pollens performed better than bee pollen. At a C/10 rate, the ACP (activated cattail pollen) electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities.

More... | Comments (0)

Study finds nanoparticle NMC material used in Li-ion batteries harms key soil bacterium

February 04, 2016

Nanoparticle nickel manganese cobalt oxide (NMC), an emerging material that is being rapidly incorporated into lithium-ion battery cathodes, has been shown to impair Shewanella oneidensis, a key soil bacterium, according to new research published in the ACS journal Chemistry of Materials.

The study by researchers at the University of Wisconsin—Madison and the University of Minnesota is an early signal that the growing use of the new nanoscale materials used in the rechargeable batteries that power portable electronics and electric and hybrid vehicles may have unforeseen environmental consequences.

More... | Comments (14)

Connected Energy and Renault to collaborate on energy storage and EV charging technology; second-life batteries in E-STOR

Renault and distributed energy storage company Connected Energy are partnering to develop sustainable and efficient ways of using electric vehicle batteries at the end of their useable in-vehicle life in order to supply innovative and more affordable vehicle charging solutions.

At the end of their useful in-vehicle life, Renault EV batteries still have considerable remaining capacity, enabling them to server in other applications before recycling. With increasing EV sales—97,687 EVs were sold in Europe in 2015, up 48% on 2014—so is the requirement in energy to charge them. Connected Energy is addressing both issues through use of second-life EV batteries in its E-STOR technology.

More... | Comments (1)

Green Car Congress © 2016 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group