Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Batteries

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Saft America receives $6.13M USABC award for lithium-ion 12V stop-start battery technology development

August 31, 2015

Saft America Inc. has received a competitively bid, $6.13-million award from the United States Advanced Battery Consortium LLC (USABC) in collaboration with the US Department of Energy (DOE) for 12-volt stop-start battery technology development. The contract includes a 50% cost-share by Saft.

The 30-month contract will focus on the development and delivery of lithium-ion 12-volt modules for vehicle stop-start battery applications consistent with USABC goals based on Saft’s advanced lithium-ion battery technologies along with battery management electronics.

More... | Comments (2)

Lionano in license agreement with Cornell for development and production of new hollow structured metal oxide anode material for LIBs

Lionano Inc. announced an agreement with Cornell University’s Center for Technology Licensing (CTL) for the development and production of an innovative drop-in anode material for use in lithium-ion batteries.

The drop-in consists of a hollow structured metal oxide material that can substantially reduce the volumetric expansion of a conventional anode, according to the company. This material can exhibit a capacity of 900 mAh/g at 0.2C with more than 90% active material content. Lionano tested the material in a scaled-up batch of more than 50 kg of material, and found that it demonstrates superior stability over 2,000 cycles. The hollow structure, with nano- and microscale properties, facilitates electron transfer and enhances structural robustness.

More... | Comments (1)

Lux: Bosch’s acquisition of Seeo risky but worthwhile; likely start of a spree of buying advanced battery developers

August 28, 2015

Commenting on Bosch’s newly revealed acquisition of Seeo, the Berkeley Lab spin-out developing solid-state Li-ion batteries (earlier post), Lux Research noted that the acquisition marks the first instance of a major automotive player outright acquiring a next-generation battery developer (although some OEMs, e.g., GM and Volkswagen Group, have already invested in advanced battery companies).

The Bosch-Seeo link up highlights the strategic importance of advanced energy storage for the automotive value chain. However, noted Lux Research Senior Analyst, Cosmin Laslau, the acquisition “has some wrinkles that make it a risky bet for Bosch.” Among the observations:

More... | Comments (3)

Report: Bosch buying solid-state Li-ion battery company Seeo

August 27, 2015

Quartz today reported that Bosch has agreed to acquire Berkeley Lab solid-state Li-ion battery spinoff Seeo. Seeo’s cell design couples a solid lithium metal anode with a conventional porous lithium iron phosphate cathode and Seeo’s nanostructured solid polymer electrolyte (“DryLite”). The electrolyte is entirely solid-state with no flammable or volatile components.

In January 2015, Seeo was awarded a contract for technology assessment from the United States Advanced Battery Consortium LLC (USABC), a collaborative organization of FCA US LLC, Ford Motor Company and General Motors. Under the contract, Seeo will deliver its DryLyte battery modules to USABC for testing under a 9-month assessment program. These modules are based on Seeo’s current cell technology, which provides an energy density of 220 Wh/kg. (Earlier post.)

More... | Comments (9)

Very high-performance silicon anodes with engineered graphene assemblies

Researchers in China have developed a self-supporting high-performance silicon anode for Li-ion batteries (LIBs) consisting of silicon-nanoparticle-impregnated assemblies of templated carbon-bridged oriented graphene.

The binder-free anodes demonstrate exceptional lithium storage performances, simultaneously attaining high gravimetric capacity (1390 mAh g–1 at 2 A g–1 with respect to the total electrode weight); high volumetric capacity (1807 mAh cm–3—more than three times that of graphite anodes); remarkable rate capability (900 mAh g–1 at 8 A g–1); excellent cyclic stability (0.025% decay per cycle over 200 cycles); and competing areal capacity (as high as 4 and 6 mAh cm–2 at 15 and 3 mA cm–2, respectively) that approaches the level of commercial lithium-ion batteries. A paper on their work is published in the ACS journal Nano Letters.

More... | Comments (1)

DOE awarding $10M to 8 transportation technology incubator projects; single-fuel RCCI with reformer

August 26, 2015

The US Department of Energy (DOE) will award $10 million to eight incubator projects to develop innovative solutions for efficient and environmentally-friendly vehicle technologies that will help reduce petroleum use in the United States. Among the projects is a novel implementation of RCCI—Reactivity Controlled Compression Ignition, usually investigated with two fuels (earlier post)—using a single fuel with onboard fuel reformation.

Through the incubator activity, the Energy Department supports innovative technologies and solutions that have the potential to help meet program goals but are not substantially represented in its current research portfolio. These projects bring a more diverse group of stakeholders and participants to address technical challenges in the vehicle research priorities. Eventually, successfully demonstrated technologies or approaches from the incubator activity may impact existing long-term technology plans and roadmaps. Awardees include:

More... | Comments (1)

Skeleton Technologies and Adgero introduce ultracap-based KERS system for truck trailers

UK-based ultracapacitor company Skeleton Technologies and France-based Adgero SARL are introducing an ultracapacitor-based Kinetic Energy Recovery System (KERS) for truck trailers. The hybrid system is designed to reduce fuel consumption and associated emissions by up to 25%, and is optimized for intermodal road transport solutions.

The Adgero Hybrid System consists of a bank of Skeleton high-power ultracapacitors working alongside an electrically-driven axle, which is mounted under the trailer. The technology is controlled by an intelligent management system that tracks driver input in order to automatically control the regenerative braking and acceleration boost.

More... | Comments (0)

ETH Zurich team develops new low-temp synthesis route for high-conductivity garnet structures for solid-state Li-ion batteries

August 20, 2015

Ga-doped Li7La3Zr2O12 (Ga-LLZO) garnet structures are promising electrolytes for all-solid state Li-ion-batteries. LLZO not only has a high ionic conductivity of 10-4 S cm-1, which greatly surpasses that of all the other garnets, it also has excellent stability even in molten Li. Unlike many other solid electrolytes, LLZO does not suffer from conductivity degradation upon exposure to humid atmospheres. (Earlier post.)

However, the synthesis of garnet-type fast Li-ion conductors depends upon conventional sol–gel and solid state syntheses and sintering that are usually done at temperatures above 1050 ˚C. This process results in micron-sized particles and potential Li-loss, which are unfavorable for further processing and electrode–electrolyte assembly. Now, a team at ETH Zurich has developed a novel low-temperature synthesis-processing route to stabilize the cubic phase of LLZO, while keeping the nanocrystallites at ~200–300 nm. Their paper is published in the RSC journal Journal of Materials Chemistry A.

More... | Comments (1)

EU launches $7.6M ALISE to develop Li-sulfur batteries for plug-ins; targeting stable 500 Wh/kg cell by 2019

August 19, 2015

Under the European Union’s Horizon 2020 research and innovation program, the EU has launched ALISE (Advanced Lithium Sulfur battery for xEV), a pan-European collaboration focused on the development and commercial scale-up of new materials and on the understanding of the electrochemical processes involved in lithium-sulfur technology. The €6,899,233 (US$7.6 million) project is focused on achieving a stable 500 Wh/kg Li-S cell by 2019.

ALISE includes the development of the key components of the cell—anode, cathode and electrolyte—and will culminate in an ultra-lightweight 17 kWh battery for a SEAT (a member of the Volkswagen Group) vehicle for testing on-track and public roads. LEITAT is the lead organization involved and will co-ordinate and manage the entire project, which also incorporates dedicated durability, testing and lifecycle analysis (LCA) activities to deliver safety, adequate cyclability and competitive cost.

More... | Comments (8)

Lux suggests how LG Chem might overtake EV battery leader Panasonic

August 18, 2015

Panasonic is currently the runaway leader in the nascent battery market for electric vehicles, but LG Chem has the potential to overtake it in what will be a $30 billion market in 2020, according to a new report—“Watch the Throne: How LG Chem and Others Can Take Panasonic’s EV Battery Crown by 2020”—by Lux Research.

Panasonic’s 39% share of the battery market for plug-in vehicles makes it the leading supplier, but its reliance on a single deal with EV leader Tesla leaves it vulnerable, according to the consultancy. Panasonic lead rival LG Chem has already signed up large automakers including General Motors, Volkswagen, Daimler, and Ford. In the event of a surge in sales of plug-in hybrids (PHEVs) by the German manufacturers, LG Chem would only need to win over Japan’s Nissan to topple Panasonic.

More... | Comments (5)

Atomic Layer Deposition process for highly conductive LiPON for solid-state batteries

August 17, 2015

Researchers at the University of Maryland have demonstrated the first reported atomic layer deposition (ALD) process for the solid lithium electrolyte lithium phosphorous oxynitride (LiPON). An open access paper on their work is published in the ACS journal Chemical Materials.

The ALD process features a combination of highly tunable thickness during growth; tunable N content; and the ability to conformally deposit LiPON on high-aspect-ratio nanostructures. The result, the authors suggested in their paper, is a desirable and very attractive combination for incorporating solid electrolyte layers onto challenging electrode geometries in both 3D solid state micro-/nanobatteries and as protection layers in metal anode-based beyond Li batteries.

More... | Comments (0)

University of Washington team develops new robust approach to solving battery models

August 15, 2015

A team at the University of Washington (Seattle) led by Dr. Venkat Subramanian has developed an approach that helps solve battery models without knowing the exact initial conditions and without having to use a Newton Raphson iteration (a method for finding successively better approximations of a real-valued function) or a nonlinear solver. Source code and details are available at the Modeling, Analysis and Process-control Laboratory for Electrochemical Systems (MAPLE) Lab at the university. A paper on the approach is newly published in the journal Computers & Chemical Engineering.

The approach enables solving lithium-ion and other battery/electrochemical storage models accurately in a robust manner in a cheap microcontroller with minimum memory requirements. A disclosure has been filed with the University of Washington to apply for a provisional patent for battery models and Battery Management System for transportation, storage and other applications. In particular, use of this single step avoids initialization issues/(no need to initialize separately) for parameter estimation, state estimation or optimal control of battery models.

More... | Comments (1)

NSF funds new center for advanced 2-D coatings; energy conversion and storage

August 13, 2015

A new NSF-funded Industry/University Collaborative Research Center (I/UCRC) at Penn State and Rice University will study the design and development of advanced coatings based on two-dimensional (2D) layered materials to solve fundamental scientific and technological challenges that include: corrosion, oxidation and abrasion, friction and wear, energy storage and harvesting, and the large-scale synthesis and deposition of novel multifunctional coatings.

The Center for Atomically Thin Multifunctional Coatings, (ATOMIC), is one of more than 80 Industry/University Cooperative Research Program centers established by the National Science Foundation (NSF) to encourage scientific collaboration between academia and industry. It is the only NSF center dedicated to the development of advanced 2-D coatings.

More... | Comments (0)

Audi: upcoming battery-electric SUV to use LG Chem and Samsung SDI cell modules; 311-mile range

Audi announced that it will develop the battery for a purely electrically powered sport utility vehicle on the basis of battery cell modules from the South Korean suppliers LG Chem and Samsung SDI. The two Audi partners plan to invest in the cell technology in Europe and will supply the Ingolstadt-based car producer from their European plants.

The new technology will give drivers of the Audi sport utility vehicle a range of more than 500 kilometers (311 miles). At Audi’s Annual General Meeting in May, the company announced it was developing a sporty SUV with electric drive, which is to be launched in 2018. (Earlier post.)

More... | Comments (22)

Nankai University team in pursuit of a Li-CO2 battery

August 12, 2015

Researchers at Nankai University in China report their latest advance in developing a rechargeable Li-CO2 battery with the use of carbon nanotubes (CNTs) with high electrical conductivity and porous three-dimensional networks as air cathodes for the rechargeable metal-CO2 batteries. A paper on the work is published in the RSC journal Chemical Communications. (Zhang Zhang et al. 2015).

The team had earlier reported on the introduction of graphene as a cathode material which significantly improved the performance of Li–CO2 batteries, which displayed a superior discharge capacity and enhanced cycle stability. (Xin Zhang et al. 2015) The use of CNTs in the latest study, while extending cycle stability, reduced capacity.

More... | Comments (0)

Separator coated with boron-nitride nanosheets improves stability of Li metal anodes

August 11, 2015

Researchers at the University of Maryland have developed a thermally conductive separator coated with boron-nitride (BN) nanosheets to improve the stability of Li metal anodes for us in high energy density Li-ion batteries. Hexagonal boron nitride (“white graphene”) is a 2D material that offers chemical stability, electrical insulation, and very high thermal conductivity (e.g., earlier post).

In a paper in the ACS journal Nano Letters, the researchers report that using the BN-coated separator in a conventional organic carbonate-based electrolyte results in the Coulombic efficiency stabilizing at 92% over 100 cycles at a current rate of 0.5 mA/cm2 and 88% at 1.0 mA/cm2. They suggested that the improved Coulombic efficiency and reliability of the Li metal anodes is due to the more homogeneous thermal distribution resulting from the thermally conductive BN coating and to the smaller surface area of initial Li deposition.

More... | Comments (0)

ILL team uses neutron scattering to elucidate structure and dynamics of superionic conductor Li4C60; potential for batteries and fuel cells

August 05, 2015

Researchers at the Institut Laue Langevin (ILL), a leading international research center for neutron science and technology, and their colleagues have elucidated the structure and dynamics of the solid superionic conductor Li4C60 using neutron scattering. Their paper is published in the journal Physical Review B.

When atoms of alkali-metals such as lithium (Li) are added to cage-like Buckminsterfullerene molecules (C60 buckyballs), the buckyballs undergo polymerization, forming long chains that create a material with a range of new properties. Despite being a solid, Li4C60 displays an ionic conductivity comparable to that of liquid electrolytes, even at room temperature. This has led to suggestions that this material could find use in future fuel-cells or batteries.

More... | Comments (0)

MIT/Tsinghua high-rate aluminum yolk-shell nanoparticle anode for Li-ion battery with long cycle life and high capacity

A team of researchers at MIT and Tsinghua University has developed a high-rate, high-capacity and long-lived anode for Li-ion batteries comprising a yolk-shell nanocomposite of aluminum core (30 nm in diameter) and TiO2 shell (~3 nm in thickness), with a tunable interspace (Al@TiO2, or ATO).

In an open access paper in the journal Nature Communications, they reported that the Al yolk-shell anode achieved a 10 C charge/discharge rate with reversible capacity exceeding 650 mAh g−1 after 500 cycles, with a 3 mg cm−2 loading. At 1 C, the capacity is approximately 1,200 mAh g−1 after 500 cycles. The one-pot synthesis route is simple and industrially scalable, and the result may “reverse the lagging status of aluminum among high-theoretical-capacity anodes,” they noted.

More... | Comments (4)

3M and LG Chem enter into NMC patent license agreements; cathode materials for Li-ion batteries

August 04, 2015

3M and LG Chem have entered into a patent license agreement to further expand the use of nickel manganese cobalt oxide (NMC) cathode materials in lithium-ion batteries. Under the agreement, 3M grants LG Chem a license to US Patents 6,660,432 (Paulsen et al.); 6,964,828 (Lu and Dahn); 7,078,128 (Lu and Dahn); 8,685,565 (Lu and Dahn); and 8,241,791 (Lu and Dahn) and all global equivalents including in Korea, Taiwan, Japan, China and Europe.

3M’s battery laboratory collaborated with Professor Jeff Dahn and students at Dalhousie University on the NMC technology. 3M developed a number of compositions of the NMC material, including NMC 111 (for energy and power); NMC 442 (for energy and power); and an optimized high-power NMC 111 composition with high porosity. (Earlier post.) LG Chem had earlier licensed the NMC technology developed at Argonne National Laboratory (Thackeray) (licensed to BASF as a supplier).

More... | Comments (1)

OSU team develops new aqueous lithium-iodine solar flow battery; 20% energy savings over Li-I batteries

August 02, 2015

After debuting the first solar air battery—a photo-assisted charging Li-O2 battery—last fall (earlier post), researchers at The Ohio State University led by Professor Yiying Wu have now developed a new system combining a solar cell and a battery into a single device.

The new aqueous lithium−iodine (Li−I) solar flow battery (SFB) incorporates a built-in dye-sensitized TiO2 photoelectrode in a Li−I redox flow battery via linkage of an I3/I based catholyte for the simultaneous conversion and storage of solar energy. During the photo-assisted charging process, I ions are photo-electrochemically oxidized to I3, harvesting solar energy and storing it as chemical energy.

More... | Comments (0)

Volkswagen Group selects LG as FAST partner for high-voltage batteries

August 01, 2015

The Volkswagen Group nominated the first 44 suppliers who will be collaborating with the Group on a new common strategic level under the joint FAST initiative. Among the 44 is LG Electronics for the supply of high-voltage batteries. (Earlier post.)

Volkswagen Group Procurement is responding to the challenges currently facing the automotive industry by working together with its suppliers under the “Future Automotive Supply Tracks” initiative (or FAST for short) and will implement technical innovations even faster. Volkswagen AG said it chose the first tranche of suppliers for “their outstanding performance in their respective field of competence based on a systematic selection process.

More... | Comments (2)

NSF to award $13M for fundamental engineering research on production of electricity and fuels

July 27, 2015

The US National Science Foundation (NSF) Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) has issued a funding opportunity announcement (PD 15-7644) for the award of an estimated $13,093,000 to support fundamental engineering research that will enable innovative processes for the sustainable production (and storage) of electricity and fuels.

Processes for sustainable energy production must be environmentally benign, reduce greenhouse gas production, and utilize renewable resources. Current topics of interest include:

More... | Comments (0)

DLR and Wuppertal publish comprehensive global analysis of e-mobility technologies, outlook and lifecycle assessments

July 23, 2015

The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) and the Wuppertal Institute for Climate, Environment and Energy (Wuppertal Institut für Klima, Umwelt, Energie GmbH; WI) have published results of their STROMbegleitung (electricity evaluation) comprehensive study to analyze technologies; market outlook; policy support; infrastructure; and life-cycle assessments for electrically-powered transport.

The study, which ran from October 2011 – September 2014, comprehensively charts current progress in technology; identifies trends; analyzes lifecycle assessments for a variety of vehicle concepts; and assess material intensities. At the same time, it places German activities in the field of electromobility within an international context. The research program received a €1.7 million euro grant from the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung; BMBF) as part of the STROM support program (key technologies for electromobility).

More... | Comments (0)

Researchers fabricate high-performance 3D silicon anodes for Li-ion batteries from reed leaves

Nanoporous silicon is considered an attractive next-generation anode material in lithium-ion batteries due to its much higher theoretical capacity and lower operating voltage than the commonly used graphitic carbon materials. However, one challenge ia finding a suitable low-cost strategy to employ an appropriate nano-structured silicon material that would compensate for the large volume expansion upon lithium insertion.

Researchers at Max Planck Institute for Solid State Research, the University of Science and Technology of China, and the South China University of Technology have taken a novel approach—one quite distinct from elaborate physical or chemical treatments of expensive silicon precursors. The team led by Prof. Yan Yu fabricated 3D porous silicon-based anode materials from natural reed leaves using calcination and magnesiothermic reduction.

More... | Comments (1)

MTU Friedrichshafen forms partnership with AKASOL for battery systems for hybrid and e-drive propulsion systems

July 22, 2015

MTU Friedrichshafen GmbH, one of the world’s leading manufacturers of large diesel engines and complete propulsion systems, has formed a close development partnership with AKASOL GmbH, a Darmstadt-based subsidiary of Schulz Group (Tettnang) and a leading manufacturer of Li-ion battery systems for high performance applications. The partnership aims to develop and to deliver battery systems for MTU’s hybrid and e-drive propulsion systems.

With the help of AKASOL battery systems, MTU aims to extend its current product range with hybrid propulsion systems for mobile applications in the marine, heavy duty ground vehicles and rail sector. In the near future, AKASOL systems will be used in stationary industrial drives as well.

More... | Comments (0)

New approach to self-extinguishing Li-ion batteries: temperature-responsive fire-extinguishing microcapsules

July 21, 2015

Researchers at the Advanced Batteries Research Center of the Korea Electronics Technology Institute have developed lithium-ion batteries with a self-extinguishing capability for improved safety by integrating temperature-responsive microcapsules containing a fire-extinguishing agent in the cell.

The microcapsules release the extinguisher agent upon increased internal temperature of a battery cell, resulting in rapid heat absorption through an in situ endothermic reaction and suppression of further temperature rise and undesirable thermal runaway. In a standard nail penetration test, the temperature rise was reduced by 74% without compromising electrochemical performances. Based on the results, the team suggested in a paper in the ACS journal Nano Letters that this scalable, simple and cost-effective strategy could be extensively applied to various high energy-density devices to ensure human safety.

More... | Comments (0)

Electrochemical Society and Toyota announce fellowship winners for projects in green energy technology

July 15, 2015

The ECS Toyota Young Investigator Fellowship Selection Committee has selected three recipients who will receive $50,000 each for the inaugural fellowships for projects in green energy technology. The winners are Professor Patrick Cappillino, University of Massachusetts Dartmouth; Professor Yogesh (Yogi) Surendranath, Massachusetts Institute of Technology; and Professor David Go, University of Notre Dame.

The Electrochemical Society (ECS), in partnership with the Toyota Research Institute of North America (TRINA), a division of Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA), launched the inaugural ECS Toyota Young Investigator Fellowship about six months ago. More than 100 young professors and scholars pursuing innovative electrochemical research in green energy technology responded to ECS’s request for proposals.

More... | Comments (1)

ELIX Wireless introduces MDC-based 10kW wireless charging solution

ELIX Wireless introduced the E10K Wireless Charging System, a wireless charging solution that delivers a full 10kW of wireless power transfer. The E10K Wireless Charging System is based on ELIX Wireless’ patented Magneto-Dynamic Coupling (MDC) technology. MDC, developed at the University of British Columbia, is based on two rotating permanent magnets in transmitter and receiver, rather than resonant inductive technology. (Earlier post.) ELIX Wireless rolled out its initial product offering, the E1K Wireless Charging System, to customers in early 2015. The E10K Wireless Charging System is now commercially available to customers and partners.

Typical wireless charging solutions available in the market today are based on inductive technologies and deliver up to 7.7kW. To meet the demand for a faster, higher power wireless charging solution that can operate under extreme environmental conditions, ELIX Wireless developed the E10K Wireless Charging System. E10K “building blocks” can be combined together to create even higher power systems.

More... | Comments (1)

Arkema and Hydro-Québec set up a joint laboratory for lithium-ion batteries

July 10, 2015

Arkema, a €7.5-billion (sales) global chemical company and France’s leading chemicals producer, and Hydro-Québec, through its new subsidiary SCE France, are partnering to create a joint laboratory for research and development in the energy storage sector. (Earlier post.)

The laboratory will focus its work on the development of a new generation of materials for the manufacture of lithium-ion batteries, in particular new electrolytes (solvents, lithium salts, etc.) and conduction agents (carbon nanotubes, conductive polymers, etc.).

More... | Comments (0)

New rationally designed high-performance Li-S cathode; rate performance, capacity and long life

Researchers in China report the development of a rationally designed Li−S cathode consisting of a freestanding composite thin film assembled from sulfur nanoparticles, reduced graphene oxide (rGO), and a multifunctional additive poly(anthraquinonyl sulfide) (PAQS): nano-S:rGO:PAQS.

The resulting cathode exhibits an initial specific capacity of 1255 mAh g−1 with a decay rate as low as 0.046% per cycles over 1,200 cycles. Importantly, the nano-S:rGO:PAQS batteries exhibit significant rate performances. They maintain a reversible capacity of ∼615 mAh g−1 at a rate of 13.744 A g−1 (=8 C) after more than 60 cycles at various rates and can still have a reversible capacity of ∼1000 mAh g−1 when further cycled at 0.25 C. A paper explaining their work appears in the ACS journal Nano Letters.

More... | Comments (5)

Saft Li-ion battery system to power ExoMars Rover; >€1M contract

July 09, 2015

ExoMars_rover _Copyright ESA_CP
ExoMars Rover. Click to enlarge.

Saft has signed a contract worth more than €1 million (US$1.1 million) from Airbus Defence and Space Ltd (UK) to develop, to qualify and to test a specific lithium-ion (Li-ion) battery system to power the ExoMars Rover vehicle. The Rover is the key component of the ExoMars Programme, run jointly by the European Space Agency (ESA) and Roscosmos, the Russian Federal Space Agency. Thales Alenia Space Italia SpA is the ExoMars prime contractor.

The objective of the ExoMars Programme is to search for evidence of current or extinct life on the red planet as part of a branch of science called exobiology. The 300 kg (661 lbs) Rover will land on the surface of Mars before moving between a number of sites and drilling into the surface to capture samples for analysis by its onboard scientific instruments.

More... | Comments (0)

BioSolar extends agreement with UCSB for further development of novel polymer cathode; projecting up to 459 Wh/kg and $54/kWh for Li-ion cells

July 07, 2015

Startup BioSolar, Inc. has signed an agreement to extend the funding of a sponsored research program at the University of California, Santa Barbara (UCSB), to further develop its “super battery” technology—a novel polymer cathode that leverages fast redox-reaction properties rather than conventional lithium-ion intercalation chemistry to enable rapid charge and discharge.

The lead inventors of the technology are UCSB professor Dr. Alan Heeger, the recipient of a Nobel Prize in 2000 for the discovery and development of conductive polymers, and Dr. David Vonlanthen, a project scientist and expert in energy storage at UCSB. Both are scientific advisors to BioSolar.

More... | Comments (14)

New safety test environment for high-speed flywheels for energy storage systems; new high-speed imaging techniques

The Ricardo-led FlySafe research collaboration—involving a range of leading industrial and academic partners including the University of Brighton’s Centre for Automotive Engineering—has delivered an innovative flywheel safety test environment to enable the development of next-generation flywheel energy storage systems.

The FlySafe project is investigating the potential failure mechanisms and behaviors of high-speed flywheel systems. Operating at extremely high rotational speeds, these systems offer a practical and potentially cost-effective mechanical means of saving fuel and reducing carbon emissions through the mechanical storage and reuse of energy in applications such as regenerative braking. The FlySafe research aims to provide best-practice design guidelines for the safety containment systems of high speed flywheels, appropriate for commercial mass market deployment of these systems. A key output of the project in this respect will be a proposed BSI flywheel safety standard.

More... | Comments (3)

Skeleton Technologies launches new range of high-performance ultracapacitors; up to 111 kW/kg and 9.6 Wh/kg; hybrid truck application coming

June 30, 2015

Skeleton Technologies (earlier post) has launched a new range of cylindrical ultracapacitors that offers specific power performance of up to 111 kW/kg (SC450, 450F) and specific energy up to 9.6 Wh/kg (SC4500, 4500F) with ESR as low as 0.075 mΩ (SC3000, 3000F)—the highest performance cylindrical cell ultracapacitors in the market.

Through the use of its patented graphene material, the new series features a capacitance of up to 4500 farads (the SC4500 cell). By contrast, the closest competitor product has a capacitance of 3400 farads. Skeleton claims this is the single biggest increase in energy density for ultracapacitors in the past 15 years.

More... | Comments (5)

New operando technique shows atomic-scale changes during catalytic reactions in real-time; applications for batteries and fuel cells

A new technique developed by a team of researchers led by Eric Stach at Brookhaven National Laboratory and Anatoly Frenkel at Yeshiva University reveals atomic-scale changes during catalytic reactions in real time and under real operating conditions. An open access paper on the work is published in the journal Nature Communications.

The team used a new microfabricated catalytic reactor to combine synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy for an unprecedented portrait of a common chemical reaction. The results demonstrate a powerful operando—i.e., in a working state—technique that is generalizable to quantitative operando studies of complex systems using a wide variety of X-ray and electron-based experimental probes. This may have a tremendous impact on research on catalysts, batteries, fuel cells, and other major energy technologies.

More... | Comments (0)

New Samsung silicon anode with graphene boosts volumetric capacity of LiCoO2 Li-ion cell 1.5x after 200 cycles; gravimetric capacity the same

June 27, 2015

A team at Samsung Advanced Institue of Technology (SAIT, Samsung’s global R&D hub) reports in an open access paper published in the journal Nature Communications on a new approach to advance high-capacity silicon (Si) anodes for Li-ion batteries (LIBs) to commercial viability, with a particular focus on improving the volumetric capacity of LIBs.

The SAIT team fabricated the anode material by growing graphene directly on a silicon surfaces while avoiding Si carbide (SiC) formation by developing a chemical vapor deposition (CVD) process that includes CO2 as a mild oxidant. The graphene-coated silicon nanoparticles (Gr-Si NPs) reach a volumetric capacity of 2,500 mAh cm−3 (versus 550 mAh cm−3 of commercial graphite), the highest volumetric value among those reported to date for any LIB anodes while exhibiting excellent cycling and rate performance.

More... | Comments (2)

NREL: battery second use offsets EV expense, improves grid stability; recommendations

June 24, 2015

103888_b2u-lifecycle_lrg
PEV battery life cycle with second use. Source: NREL. Click to enlarge.

Researchers at the US Department of Energy (DOE) National Renewable Energy Laboratory (NREL) are identifying battery second use (B2U) strategies capable of offsetting vehicle expenses while improving utility grid stability.

Second-use options for automotive “end-of-life” Li-ion battery packs support a broad spectrum of sustainable energy strategies, as they increase the potential for widespread PEV adoption by eliminating end-of-life automotive service costs, in addition to helping utilities support peak electricity demands while building a cleaner, more flexible electricity grid. NREL research confirms that after being used to power a car, a Li-ion battery retains approximately 70% of its initial capacity—making its reuse a valuable energy storage option for electric utilities, before battery materials are recycled.

More... | Comments (5)

DOE CEMAC report examines US opportunities in automotive Li-ion batteries

June 23, 2015

With increasing demand for electric and hybrid electric vehicles and with lithium-ion battery (LIB) producers locating in close proximity to automotive manufacturers, the United States has an opportunity in automotive LIBs under certain conditions, according to a new report released by the US Department of Energy’s (DOE) Clean Energy Manufacturing Analysis Center (CEMAC). The current $9-billion global automotive LIB market is expected to reach $14.3 billion by 2020.

As part of its analysis, CEMAC developed a detailed bottom-up cost modeling of regional cell production scenarios based upon total costs that a manufacturer incurs in the high-volume production of LIB cells. Costs captured in the model include all capital, fixed, and variable costs in each country scenario explored. CEMAC then determined a minimum sustainable price (MSP) by analyzing capital expense, COGS, operating expenses, taxes, free cash flows, and required rates of return.

More... | Comments (0)

24M emerges from stealth mode with new semi-solid Li-ion cell; <$100/kWh by 2020

June 22, 2015

Stealth-mode battery start-up 24M has introduced its new semi-solid lithium-ion cell. Co-founded by MIT’s Dr. Yet-Ming Chiang, 24M’s Chief Scientist, the company is leveraging existing, preferred energy storage chemistry but using a new cell design with semi-solid (a mixture of solid and liquid phases) thick electrodes and manufacturing innovations to deliver what it says will be up to a 50% reduction in current Li-ion costs. (Dr. Chiang was also a co-founder of A123 Systems; 24M originated as an A123 spinout. Earlier post.)

Together, our inventions achieve what lithium-ion has yet to do—meet the ultra-low cost targets of the grid and transportation industries. By 2020 our battery costs will be less than $100 a kilowatt-hour (kWh). We’re emerging at the right time with the right technology,” said Throop Wilder, 24M CEO.

More... | Comments (24)

Saft to provide 800 kWh Li-ion system for hybrid ferry

Saft has won a contract to supply Li-ion battery systems to Imtech Marine, a leading maritime technology supplier. Two Saft Seanergy systems will be at the heart of the diesel-electric hybrid propulsion system and energy management system for “Hybrid III”, a Roll On Roll Off (RORO) passenger and vehicle ferry designed for use on Scotland’s short sea crossing routes around the Clyde and Hebrides.

The new vessel, currently under construction by Ferguson Marine Engineering Ltd for CMAL (Caledonian Maritime Assets Ltd), will be Scotland’s third hybrid ferry when it enters service in autumn 2016, carrying up to 150 passengers and 23 cars or two HGVs (Heavy Goods Vehicles) with a service speed of 9 knots. (CMAL is currently holding a naming competition for the ferry.)

More... | Comments (0)

Toho Tenax’s prepreg helps to cut 1.1MW Tajima Rimac electric racer’s weight

Teijin Limited announced that carbon fiber sheet pre-impregnated with matrix resin, or prepreg, made by Toho Tenax Co., Ltd., the core company of the Teijin Group’s carbon fibers and composites business, is used in the lightweight body of a new 1.1 MW electric racecar operated by Team APEV with Monster Sport. The Tajima Rimac E-Runner Concept_One—driven by Tajima CEO Nobuhiro “Monster” Tajima—will race in the Electric Modified Division in the Pikes Peak International Hill Climb from June 22 to 28.

The racer, developed by Rimac Automobili in collaboration with Monster Sport and Team APEV, is based on an aluminum space frame covered with the carbon fiber composite body panels. A 57 kWh Rimac battery pack powers four Rimac permanent magnet synchronous motors, delivering combined maximum output of 1,100 kW (1,475 hp) and 1,500 N·m (1,106 lb-ft) of torque.

More... | Comments (2)

Dahn Lab at Dalhousie signs exclusive 5-year research partnership with Tesla, beginning in 2016

June 18, 2015

Tesla Motor’s Co-founder and Chief Technology Officer JB Straubel signed a 5-year research agreement with Dalhousie University’s Jeff Dahn, Li-ion battery researcher with the Faculty of Science, and his group of students, postdoctoral researchers and technical staff. The work will begin in June of 2016 when the support from 3M and Engineering Research Council of Canada (NSERC) ends. (3M and NSERC have funded Dahn’s Industrial Research Chair in Materials for Advanced Batteries since 1996.)

The new collaboration, a first between the leading American electric vehicle company and a Canadian university, will bring together the teams of Dahn and Tesla’s Director of Battery Technology, Kurt Kelty.

More... | Comments (1)

Researchers find synergy between lithium polysulfide and lithium nitrate as electrolyte additives prevent dendrite growth on Li metal anodes

June 17, 2015

Researchers from SLAC and Stanford led by Prof. Yi Cui, with Prof. Yet-Min Chiang (a co-founder of A123 Systems) at MIT, have discovered that a synergetic effect resulting from the addition of both lithium polysulfide and lithium nitrate to ether-based electrolyte prevents dendrite growth on Li-metal anodes and minimizes electrolyte decomposition.

The findings of their study, reported in Nature Communications, allow for re-evaluation of the reactions regarding lithium polysulfide, lithium nitrate and lithium metal, and provide insights into solving the problems associated with lithium metal anodes. The result could greatly improve the safety of next-generation, high energy density batteries.

More... | Comments (2)

Nissan and 4R Energy partner with Green Charge Networks for commercial energy storage featuring second-life EV batteries

June 15, 2015

Nissan Motor Company and Green Charge Networks, a provider of commercial energy storage, are partnering to deploy second-life Li-ion vehicle batteries for stationary commercial energy storage in the US and international markets. General availability is targeted for Q4 2015.

With more than 178,000 sales since its launch in late 2010, Nissan LEAF is the world’s top-selling electric vehicle. As part of the company’s commitment to sustainability and reducing greenhouse gas emissions, Nissan has conducted multiple research projects in Japan, the US and Europe to use the 24 kWh LEAF battery packs outside the vehicle through 4R Energy, a joint-venture with Sumitomo Corp. formed in 2010. (Earlier post.)

More... | Comments (2)

Tsinghua team develops high-efficiency and high-stability Li metal anodes for Li-sulfur batteries

June 14, 2015

Researchers from Tsinghua University have developed what they call a “promising strategy” to tackle the intrinsic problems of lithium metal anodes for Lithium sulfur batteries—dendritic and mossy metal depositing on the anode during repeated cycles leading to serious safety concerns and low Coulombic efficiency.

As described in a paper published in the journal ACS Nano, the researchers devised a nanostructured graphene framework coated by an in situ formed solid electrolyte interphase (SEI) with Li depositing in the pores (SEI-coated graphene, SCG). The graphene-based metal anode demonstrated superior dendrite-inhibition behavior in 70 hours of lithiation, while a control cell with a copper foil-based metal anode short-circuited after only 4 hours of lithiation at 0.5 mA cm–2.

More... | Comments (3)

A closer look at Audi’s new R8 e-tron EV and battery

June 12, 2015

The model line-up of the second generation of Audi’s high-performance R8 sports car, unveiled at the Geneva Motor Show earlier this year, includes the new R8 e-tron battery-electric vehicle. (Earlier post.) The new R8 e-tron delivers 340 kW (456 hp) of power; acceleration from 0 to 100 km/h (62.1 mph) in 3.9 seconds; and a driving range of up to 450 km (279.6 mi). Range for the first generation R8 e-tron was was 215 km (133.6 mi).

Available for order this year upon customer request, the new R8 e-tron uses a newly developed high energy density Li-ion technology optimized for a purely electric vehicle drive. Li-ion cell energy density was increased from 84 to 152 Wh/kg; in comparison to the first technology platform, the battery capacity has grown from 48.6 kWh to 90.2 kWh—without changing the package.

More... | Comments (11)

Lux: China’s advanced energy storage market to quadruple to $8.7B in 2025; 85% share by transport

June 11, 2015

Driven by environmental problems, a growing auto industry, and a big policy push, China’s advanced energy storage market will be worth $8.7 billion in 2025, more than quadrupling from the current $1.7 billion, according to a new report from Lux Research called “Clearing the Haze: Demystifying Energy Storage Opportunities in China”.

Transport applications will dominate with $7.4 billion, or 85% share of the revenues. Stationary applications will earn $1.3 billion. Overall, revenues will grow slower than volumes on account of continually falling battery and systems prices.

More... | Comments (2)

Sumitomo Chemical to more than double PERVIO Li-ion separator production capacity; supplier to Panasonic, Tesla

Sumitomo Chemical will more than double its production capacity for lithium-ion secondary battery separators, marketed under the PERVIO brand name. The production at its Ohe Works in Niihama, Japan will be raised to approximately 1.3 times the current capacity by next spring. In April 2014, Sumitomo began expanding Ohe Works’ capacity for Previo by approximately 1.7 times in the spring of 2014, approximately 1.9 times in the fall of 2014, and approximately 2.3 times by the spring of 2015.

In addition, Sumitomo will build a new plant for PERVIO at its subsidiary in South Korea, scheduled to start commercial-scale production in 2017.

More... | Comments (2)

Leclanché to provide 4.2 MWh Li-ion battery pack to Green Ferry Project electric ferryboat

Swiss battery manufacturer Leclanché has been selected as the Li-ion battery system supplier for a battery-electric ferryboat to be built by Danish shipbuilder Søby Shipyard Ltd. The ferry will be placed in service in June 2017 to transport vehicles and passengers between island Ærø and the mainland in Denmark.

Leclanché is a joint partner in the Green Ferry Project and will deliver a full-electric drive train to the ferry with its partner Visedo. The ferry will be equipped with a 4.2 MWh battery system from Leclanché, making the boat the world’s largest ferry in terms of battery capacity. As one of the Top 5 projects in the EU Horizon 2020 initiative, a program with a total budget of €21 million (US$24 million), this initiative is part of the Danish Natura project.

More... | Comments (4)

Infineon heading up 3 major related EU electromobility research projects; ~$75M in total funding

June 10, 2015

The European Commission is launching three new related research projects aimed at making electromobility cheaper, more efficient and more reliable in order to facilitate more electric vehicles on Europe’s roads. Europe will be the site for the continued development and production of electric vehicles under these projects, which will run until 2018 and are headed by Infineon Technologies AG. Total funding for the three research initiatives is about €67 million (US$75 million).

As a result of the three research projects 3Ccar, OSEM-EV and SilverStream, electrical systems used in electric vehicles will benefit from being approximately one-fifth more compact and lighter; their range improved; and their cost lowered by about 25%. The three projects will collaborate to research and develop environmentally-friendly, safe and robust electric vehicles. The entire automotive value chain is contributing to this effort, from chip producers to car manufacturers.

More... | Comments (0)

UT Austin team achieves best reported full-cell hybrid Li-air battery cycling with new ordered catalyst

June 05, 2015

Master.img-003
Cycling performance of the hybrid Li− air batteries with (top) ordered Pd3Fe/C air electrode and (bottom) conventional Pt/C air electrode. Credit: ACS, Cui et al. Click to enlarge.

A team from the University of Texas at Austin led by Professor John Goodenough has achieved significantly enhanced activity and durability for the oxygen reduction reaction under alkaline conditions in a hybrid Li-Air battery using a new ordered Pd3Fe/C catalyst. The new catalyst exhibits much higher activity and durability than disordered Pd3Fe/C, Pd/C, and Pt/C.

As reported in a paper in the Journal of the American Chemical Society, the new ordered Pd3Fe/C catalyst enables long-term cycling performance of hybrid Li−air batteries over 880 hours (220 cycles) with only a 0.08 V increase in round-trip overpotential. The extraordinarily high performance of ordered Pd3Fe/C catalyst provides a very promising alternative to the conventional Pt/C catalyst for an air cathode in alkaline electrolyte, they concluded.

More... | Comments (8)

A123 Systems to invest additional $200+ M to double Li-ion manufacturing capacity; current facilities running at full utilization

June 02, 2015

A123 Systems LLC, a developer and manufacturer of advanced lithium-ion batteries and systems, plans to double global manufacturing capacity to 1.5 GWh within the next 3 years. The company operates manufacturing hubs in the state of Michigan; Hangzhou, China; and Changzhou, China. All three are now operating at capacity due to considerable growth in demand.

While the company is currently in the midst of a $100-million capital expansion across its manufacturing network, A123 has recognized that the existing investment plan must be substantially expanded to satisfy much stronger market demand for its products. The company currently forecasts growth of more than 50% this year. The new investment program of an additional $200+ Million will be installed in phases over the next three years, with additional investments anticipated as target markets further develop.

More... | Comments (9)

Overhead fast charging system for electric buses from Fraunhofer and partners

June 01, 2015

Researchers from the Fraunhofer Institute for Transportation and Infrastructure Systems IVI and its several partners in the EDDA Bus project, have developed a pantograph fast-charging solution for electric buses that supports route-based opportunity charging. Operational system testing of a converted bus and its charging station began in Dresden in November last year.

The solution is based on four core technologies: the Dresden-based company M&P GmbH designed a charging station with very high charging capacities; HOPPECKE Advanced Battery Technology GmbH supplied special batteries designed for such high power capacities; Vossloh Kiepe GmbH was responsible for adapting the power electronics; and the contact system located on the roof of the bus was realized by Fraunhofer IVI together with Schunk Bahn- und Industrietechnik GmbH.

More... | Comments (1)

Toyota Research team reports significant advance in electrolytes for high-energy Mg batteries

A team at Toyota Research Institute of North America (TRINA) reports a critical advance in the the development of electrolytes for magnesium (Mg) batteries in the journal Angewandte Chemie. The researchers, led by Dr. Rana Mohtadi, Principal Scientist at TRINA, developed an electrolyte based on a simple-type magnesium monocarborane salt (MMC) that is compatible with Mg metal (> 99 % coulombic efficiency); possesses high anodic stability (3.8 V vs. Mg); and is non-corrosive. By contrast, state-of-the-art Mg electrolyte systems are complex, halogen-based, and corrosive.

The properties of the new electrolyte, coupled with its “inert and benign character”, make MMC-based electrolytes well-suited for future Mg batteries, the scientists said. The development of this non-corrosive electrolyte enabled the first demonstration of a high voltage coin cell battery, previously prohibited using all known systems. “This achievement is a turning point in the research and development of Mg electrolytes that has deep implications on realizing practical rechargeable Mg batteries,” the scientists wrote.

More... | Comments (13)

Stanford team develops new ultrahigh surface area 3D porous graphitic carbon material for improved energy storage

Stanford University scientists have created a new ultrahigh surface area three-dimensional porous graphitic carbon material that significantly boosts the performance of energy-storage technologies. Their results are presented in an open access paper published in the journal ACS Central Science.

The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The design results in a class of hierarchically porous graphitic (HPG) carbons at temperature as low as 800 °C with record-high surface area (4,073 m2 g–1); large pore volume (2.26 cm–3), and hierarchical pore architecture. The maximum surface area achieved with conventional activated carbon is about 3,000 m2 g–1

More... | Comments (2)

University of Maryland team creates solid-state Li-ion battery out of one material

May 29, 2015

Terps
UMD Engineers made a battery of all one material simply by sprinkling carbon (red) into each side of a new material (blue) that forms the electrolyte and both electrodes at the ends of the battery. Credit: Maryland NanoCenter Click to enlarge.

Engineers at the University of Maryland have created a solid-state Li-ion battery that is made entirely out of one material. Chunsheng Wang, a professor in the University of Maryland’s Department of Chemical and Biomolecular Engineering, and his team have made a single material that incorporates the properties of both electrodes (cathode and anode) and electrolyte.

The new material consists of a mix of sulfur, germanium, phosphorus and lithium (Li10GeP2S12). This compound is used as the ion-moving electrolyte. At each end, the scientists added carbon to form electrodes that push the ions back and forth through the electrolyte as the battery charges and discharges. The Li–S and Ge–S components in Li10GeP2S12 act as the active centers for its cathode and anode performance, respectively.

More... | Comments (6)

Daimler enters stationary energy storage market with ACCUmotive battery systems; 500 kWh unit already on line for grid stabilization

Daimler is entering the commercial and residential stationary energy storage system (ESS) market with its wholly-owned subsidiary Deutsche ACCUmotive. The announcement comes four weeks after Tesla Motors announced its own entry into the ESS market with the home PowerWall Li-ion battery system (earlier post), although Daimler has been considering the move for several years.

Daimler’s first industrial-scale lithium-ion unit is already on the grid and is being operated by the partner companies The Mobility House AG and GETEC Energie AG. The 96-module ESS currently has a total capacity of more than 500 kWh; it will be increased step-by-step to 3000 kWh by the partners in the coming weeks. Daimler AG is planning to collaborate with EnBW AG for distribution to customers in Germany. Daimler is also aiming to enter into cooperation with other sales and distribution partners both in Germany and at international level.

More... | Comments (12)

DOE announces $26.6M SBIR/STTR FY15 Phase 1 Release 2 awards; fuel cells, batteries, power electronics and efficient combustion engines

May 28, 2015

The US Department of Energy (DOE) has selected 162 projects to receive about $26.6 million in the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 Awards. (Earlier post.) Of these, 16 are vehicle-related, encompassing projects developing batteries, power electronics and improved combustion engine technology including on-board reformers, and two are specifically hydrogen fuel cell-related.

Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) are Federal programs in which agencies with large research and development (R&D) budgets set aside a small fraction of their funding for competitions among small businesses only. Small businesses that win awards in these programs keep the rights to any technology developed and are encouraged to commercialize the technology. While the original charter of the program focused on technological innovation, the current programs have evolved to have a greater focus on commercialization.

More... | Comments (0) | TrackBack (0)

U Waterloo team identifies key reaction in sodium-air batteries; implications for improving Li-air

Chemists at the University of Waterloo have identified the key reaction that takes place in sodium-air batteries. The researchers from the Waterloo Institute for Nanotechnology, led by Professor Linda Nazar who holds the Canada Research Chair in Solid State Energy Materials, have described a key mediation pathway that explains why sodium-oxygen batteries are more energy efficient when compared with their lithium-oxygen counterparts.

Understanding how sodium-oxygen batteries work has implications for developing the more powerful lithium-oxygen battery, which has been proposed by some as the “holy grail” of electrochemical energy storage.

More... | Comments (1) | TrackBack (0)

New promising solid-state electrolyte for rechargeable Li-metal batteries

May 22, 2015

Ja-2014-08723m_0004
The new solid-state electrolyte shows electrochemical stability up to 10 V vs Li/Li+. Credit: ACS, Rangasamy et al. Click to enlarge.

A team led by researchers from Oak Ridge National Laboratory (ORNL) has developed a promising solid-state electrolyte for use in advanced rechargeable batteries with Li-metal anodes: a Li7P2S8I phase that exhibits the characteristics of a solid solution between Li3PS4 and LiI with fast ion conduction and electrochemical stability up to 10 V vs Li/Li+. A paper describing the work is published in the Journal of the American Chemical Society.

The material has room-temperature ionic conductivity of up to 6.3 × 10−4 S cm−1—400% higher than that of β-Li3PS4 and more than 3 orders of magnitude higher than that of LiI. It also is very compatible with a Li metal anode; the presence of I enhances the stability of the electrolyte with metallic Li anode while demonstrating low charge-transfer resistance.

More... | Comments (10) | TrackBack (0)

AllCell and LG develop high-performance Li-ion battery for material handling market

May 21, 2015

AllCell Technologies, LLC, a Chicago-based Lithium-ion battery pack manufacturer for smart-grid, autonomous and light electric vehicle applications, and LG Chem Ltd. have developed a high performance long lasting Li-ion battery for material handling applications. The battery is built with LG’s cylindrical 18650-format Li-ion batteries and AllCell’s proprietary passive thermal management technology with phase change composite (PCC) (earlier post).

The battery is designed as a drop-in replacement for lead-acid batteries with fast charge/discharge capabilities, 4-5 times longer life, robust fuel gage, hot environment resilience, and no standard maintenance requirements.

More... | Comments (0) | TrackBack (0)

Hitachi Automotive Systems supplying 5 kW/kg high power density prismatic Li-ion cells for MY 2016 Malibu Hybrid

May 20, 2015

Hitachi Automotive Systems, Ltd. will supply 5,000 W/kg high power density prismatic lithium-ion battery cells for the new MY 2016 Chevrolet Malibu Hybrid (earlier post). Featuring a new full-hybrid powertrain which leverages technology from the Chevrolet Volt, the 2016 Malibu Hybrid will offer an estimated combined fuel economy rating exceeding 45 mpg (5.22 l/100 km).

The Hitachi Li-ion cells employ heat resistant separators to ensure the ionic conductivity between the electrodes, achieving not only a high output power density of 5,000W/kg, but also a high level of safety. In addition to this, the battery’s ability to maintain its high output power density in GM evaluations, even under extremely low temperatures such as the -30 ˚C cold region test, led to its adoption.

More... | Comments (16) | TrackBack (0)

Saft introduces Li-ion drop-in replacement for lead-acid batteries in military vehicles: XCELION 6T

_DSC7493vignette
Saft Xcelion 6T. Click to enlarge.

Saft has introduced its Xcelion 6T battery for powering military vehicles. The Xcelion 6T is a lithium-ion (Li-ion) drop-in replacement for lead-acid batteries that provides equivalent power of two lead-acid batteries at a quarter of the weight and half the volume. (Earlier post.)

The launch signals the conclusion of a two-year industrialization program, in which Saft successfully reduced the cost of the Xcelion 6T to increase its commercialization and create a versatile off-the-shelf product.

More... | Comments (3) | TrackBack (0)

Lux Research: Li-ion battery costs to drop to as low as $172/kWh by 2025; big boost for EVs in mid- to late 2020s

May 19, 2015

The electric vehicle opportunity is set to expand, as leading battery developers such as Panasonic drive down prices of Li-ion battery packs by 35% to $172/kWh in 2025, according to a new report, “Crossing the Line: Li-ion Battery Cost Reduction and Its Effect on Vehicles and Stationary Storage,” by Lux Research. However, only the best-in-class players will achieve that cost threshold, while others lag at $229/kWh.

The estimate is based on a new bottom-up cost model built by Lux Research in an industry known for being highly secretive about its costs. The model accounts for differences in battery chemistry, form factor, production scale, location and other nuances.

More... | Comments (20) | TrackBack (0)

Faradion demonstrates proof-of-concept sodium-ion electric bike

May 15, 2015

911bd297d767d636_800x800ar
E-bike powered by Faradion prototype Na-ion battery pack. For the proof-of-concept, the cells were manufactured to be larger than necessary to avoid unnecessary costs and lengthy manufacturing processes at this early stage. Click to enlarge.

British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Oxford University was also a partner. Although lithium-ion batteries are currently the predominant battery technology in electric and hybrid vehicles, as well as other energy storage applications, sodium-ion could offer significant cost, safety and sustainability benefits.

Sodium-ion intercalation batteries—i.e., batteries using the same process of ion insertion and removal as in Li-ion batteries—have been discussed in the literature for some time. (e.g., Earlier post.) Using sodium instead of lithium in a battery is attractive because it could potentially be much less expensive (~30% less) and safer, and it would be more environmentally benign. However, developing efficient Na+ intercalation compounds is a challenge because sodium ions are much larger than lithium ions—about 70% larger in radius. Thus, insertion/deinsertion of sodium ions in a host material is much more difficult than that of lithium ions.

More... | Comments (4) | TrackBack (0)

Volkswagen Group to offer more than 20 electric vehicle models in China “in near future”

May 05, 2015

The Volkswagen Group plans to offer more than 20 electric vehicle models—from small cars to large sedans and SUVs, plug-in hybrids and battery-electric vehicles—to Chinese customers “in the near future,” according to Prof. Dr. Jochem Heizmann, Member of the Group Board of Management with responsibility for China, in a special essay published in the Environment section of the company’s newly released sustainability report.

The Chinese government has set guidelines to reduce CO2 emissions in China to a fleet fuel consumption of 5 l/100 km (47 mpg US) as measured on the New European Driving Cycle (NEDC) by 2020. The expected fleet average this year is 6.9 l/100 km (34 mpg US). Thus, the government is requiring an overall reduction of about 28%, or 6.2% per year, between 2015 and 2020. Meeting this target will be even more challenging than meeting the 95 g/km target for 2020 set by the European Union, writes Dr. Heizmann, explaining:

More... | Comments (5) | TrackBack (0)

New bendable and thin sulfide solid electrolyte films enable higher performance solid-state Li-ion batteries

May 02, 2015

Master.img-004
Schematic diagram of new cell. Credit: ACS, Nam et al. Click to enlarge.

Researchers in South Korea have developed free-standing and stackable all-solid-state lithium batteries (ASLBs) with high energy density and high rate capabilities. A paper on their work is published in the ACS journal Nano Letters.

To make the batteries, the team developed bendable and thin sulfide solid electrolyte (SE) films reinforced with a mechanically compliant poly(paraphenylene terephthalamide) non-woven (PPTA NW) scaffold. With thin (∼70 μm) NW-reinforced SE film, the new solid state batteries show up to a 3-fold increase of the cell-energy-density to 44 Wh kgcell−1), compared to that of a conventional all-solid-state cell without the NW scaffold.

More... | Comments (4) | TrackBack (0)

UC Berkeley/Berkeley Lab teams develops high-rate, long-life Li-S battery with Li2S-graphene cathode

May 01, 2015

Master.img-001
Li2S/GO@C Nanosphere. Credit: ACS, Hwa et al. Click to enlarge.

Researchers with appointments at both UC Berkeley and Lawrence Berkeley National Laboratory have developed a high-rate and long-life Li-sulfur battery cell. The cathode material is a core–shell nanostructure comprising Li2S nanospheres with an embedded graphene oxide (GO) sheet as a core material and a conformal carbon layer as a shell.

The Li2S/GO@C cathode exhibits a high initial discharge capacity of 650 mA·h g–1 of Li2S (corresponding to the 942 mA·h g–1 of S) and very low capacity decay rate of only 0.046% per cycle with a high Coulombic efficiency of up to 99.7% for 1500 cycles when cycled at the 2 C discharge rate. A paper on their work is published in the ACS journal Nano Letters.

More... | Comments (20) | TrackBack (0)

Tesla launches line of Li-ion stationary storage systems for homes and businesses: POWERWALL and POWERPACK

Powerwall-battery-group@2x
Multiple POWERWALL units may be combined. Click to enlarge.

As widely expected, Tesla CEO Elon Musk unveiled the company’s new product line: scalable stationary battery systems for homes, businesses and beyond. Available for immediate order on the Tesla Web site (teslaenergy.com or teslamotors.com/powerwall) is the modular wall-mounted POWERWALL system, which is targeted at homes and perhaps some small commercial applications, Musk said. Delivery is projected for sometime later this summer (3-4 months from now.)

The sleek, sculpture-like Li-ion packs come in 7 kWh ($3,000) and 10 kWh ($3,500) configurations. Both are guaranteed for 10 years (with an optional 10-year extension), and can be combined to up to 9 units—i.e., up to 90 kWh of storage. The packs contain all the integrated safety systems, the liquid thermal control and the DC/DC converter, and work with solar systems straight out of the box, Musk said.

More... | Comments (62) | TrackBack (0)

HRL Labs video demonstrates principle of thermal battery based on advanced metal hydrides for EV heating and cooling

April 30, 2015

In 2011, the Advanced Research Projects Agency - Energy (ARPA-E) awarded $2.7 million to a team comprising researchers from the University of Utah, HRL Laboratories and GM Global R&D for a project to develop a new generation of high-density thermal battery based on advanced metal hydrides. (Earlier post.) The goal of the project, part of ARPA-E’s HEATS (High Energy Advanced Thermal Storage) portfolio, was to develop a compact thermal battery for climate control in electric vehicles. Such a thermal battery would provide heating and cooling without draining the electric battery, in effect, extending the driving range of EVs per electric charge.

As described in a paper in press in the Journal of Alloys and Compounds, the developed system uses a pair of thermodynamically matched metal hydrides as energy storage media: (1) catalyzed MgH2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV0.62Mn1.5 alloy as the matching low temperature hydride. HRL has now released a video demonstrating the principle behind the work on thermal battery technology.

More... | Comments (0) | TrackBack (0)

Li-ion maker Electrovaya acquires Evonik Litarion and licenses SEPARION IP

Canada-based Li-ion developer and manufacturer Electrovaya Inc. has completed the acquisition of Evonik Litarion GmbH and the licensing of the ceramic composite separator SEPARION intellectual property from Evonik. The transaction includes an advanced and automated production plant for lithium-ion electrodes and ceramic composite separators, with a rated capacity of 0.5 Gigawatt hours (GWh) of electrodes and 10 million m2 of ceramic separators along with all associated intellectual property.

This transformational acquisition brings Electrovaya best-in-class manufacturing, experienced management and a strong technical team, with the manufacturing capacity to enable Electrovaya to bid on larger energy storage system opportunities worldwide.

More... | Comments (1) | TrackBack (0)

PATHION develops new LiRAP-based solid-state electrolytes for Li-sulfur and sodium-ion batteries

April 28, 2015

At the Spring 2015 Materials Research Conference in San Francisco earlier this month, PATHION presented two new derivative superionic solid-state electrolytes built upon LiRAP (Lithium-Rich Anti-Perovskite). PATHION has an exclusive worldwide license for LiRAP from Los Alamos National Laboratories. Supported by an ARPA-E grant, LiRAP has proven to be a safe alternative compared to the liquid electrolytes used in most of today’s lithium ion batteries.

Solid-state electrolytes, unlike liquid-state, have extremely low expansion, no out-gassing, and the elimination of dendrite growth between anode and cathode, although sometimes at the expense of performance. The LiRAP solid electrolytes conduct Li+ ions well at high voltage and high current, providing much enhanced energy density and power capacity as well as safety. PATHION is working on a derivative for Li-sulfur batteries as well as a derivative that could be applied in a sodium-ion battery.

More... | Comments (3) | TrackBack (0)

LG Chem and Eguana partner on Li-ion residential energy storage system for North America

April 23, 2015

Eguana Technologies, a supplier of power control and conversion solutions for distributed energy storage systems and Li-ion manufacturer LG Chem have combined their technologies under a multi-year agreement to deliver a certified, fully integrated energy storage system (ESS) Eguana calls “AC Battery”. The modular system is targeted as a residential product, but also has the potential to be aggregated for small commercial and industrial (C&I) end-users.

Basic product capacity is 6.4 kWh. Eguana designed the package around LG Chem’s battery modules and supplies its Bi-Direx inverter and controls subassembly. The low voltage design enables high-capacity batteries to operate in lower power ratings needed for decentralized systems (i.e. residential rooftop solar). Eguana has also worked with Germany-based Sonnenbatterie on a similar ESS solution.

More... | Comments (1) | TrackBack (0)

NRC report recommends ways to overcome barriers hindering purchases of PEVs; vehicle cost, battery tech and consumer knowledge among others

April 22, 2015

Vehicle cost, current battery technology, and inadequate consumer knowledge are some of the barriers preventing widespread adoption of plug-in electric vehicles, according to a new congressionally mandated report from the National Research Council. Developing less expensive, better performing batteries is essential to reducing overall vehicle cost, and a market strategy is needed to create awareness and overcome customer uncertainty, the report finds. The report recommends a range of incentives that the federal government can offer to address these and other barriers.

The premise of the report—“Overcoming Barriers to Deployment of Plug-in Electric Vehicles”—is that there is a benefit to the United States if a higher fraction of vehicle miles traveled is fueled by electricity rather than by petroleum due to the resulting reduction in dependence on petroleum and reduction in emissions of greenhouse gases and criteria pollutants. The task of the committee of experts and stakeholders writing the report was (1) to identify market barriers slowing the purchase of PEVs and hindering the deployment of supporting infrastructure in the United States and (2) to recommend ways to mitigate those barriers.

More... | Comments (6) | TrackBack (0)

Maxwell Technologies introduces 24V ultracap-based Engine Start Modules for off-road and industrial equipment

Maxwell Technologies, Inc. is introducing two 24-volt versions of its ultracapacitor-based Engine Start Module (ESM). (Earlier post.) The new higher voltage ESM is suited for improving equipment uptime and power reliability in buses and industrial vehicles such as cranes, backhoes, bulldozers, graders, pavers, off-road trucks, portable compressors and others with diesel engines. The 24-volt ESM enables vehicles to start and operate reliably in the face of cold weather and infrequent starting.

There are two models of the 24-volt ESM: the ULTRA 31/900/24V for starting diesel engines up to 12.5 liters, and the ULTRA 31/1100/24V for engines up to 15.0 liters. Both are packaged in BCI Group 31 form factor.

More... | Comments (2) | TrackBack (0)

Systematic review of EV battery pack costs suggests economies of scale may push cost toward US$200/kWh without further cell chemistry improvements

April 20, 2015

Industry-wide cost estimates for battery packs for electric vehicles have declined by approximately 14% annually between 2007 and 2014, from above US$1,000 per kWh to around US$410/kWh, according to a systematic review of more than 80 different estimates by a team from the Stockholm Environment Institute. Further, they reported in their paper published in Nature Climate Change, the cost of battery packs used by market-leading BEV manufacturers are even lower at US$300/kWh, and has declined by 8% annually.

The results further suggest that it is possible that economies of scale will continue to push cost towards US$200/kWh in the near future even without further cell chemistry improvements. Their study, said Björn Nykvist and Måns Nilsson, has significant implications for the assumptions used when modeling future energy and transport systems and permits an optimistic outlook for BEVs contributing to low-carbon transport.

More... | Comments (3) | TrackBack (0)

New Li-S battery shows cycle performance comparable to that of Li-ion batteries along with more than double the energy density

April 13, 2015

A team of researchers in South Korea and Italy has demonstrated a highly reliable lithium–sulfur battery showing cycle performance comparable to that of commercially available lithium-ion batteries while offering more than double the energy density. The team, led by a group from Hanyang University, used a highly reversible dual-type sulfur cathode (solid sulfur electrode and polysulfide catholyte) and a lithiated Si/SiOx nanosphere anode.

In a paper in the ACS journal Nano Letters , they reported that the lithium–sulfur cell showed superior battery performance in terms of high specific capacity, excellent charge–discharge efficiency, and remarkable cycle life, delivering a specific capacity of ∼750 mAh g–1 over 500 cycles (85% of the initial capacity). These promising behaviors may arise from a synergistic effect of the enhanced electrochemical performance of the newly designed anode and the optimized layout of the cathode, they suggested.

More... | Comments (9) | TrackBack (0)

MIT and Moscow State University collaborating on advanced batteries, metal-air batteries and reversible fuel/electrolysis cells

April 12, 2015

Researchers at the Skoltech Center for Electrochemical Energy Storage (CEES), a partnership between the MIT Materials Processing Center and Lomonosov Moscow State University, are focusing on the development of higher capacity batteries. CEES is a Center for Research, Education and Innovation (CREI) under the umbrella of the Skolkovo Institute of Science and Technology (Skoltech).

CEES has three main research thrusts: the development of advanced lithium-ion and multivalent ion batteries; the development of rechargeable metal-air batteries; and Development of reversible low and elevated temperature fuel cells

More... | Comments (0) | TrackBack (0)

Vertically aligned sulfur-graphene nanowall cathodes for Li-sulfur batteries deliver high capacity and rate performance

April 11, 2015

A team at Beihang University in China has synthesized cathode materials for Li-sulfur batteries consisting of vertically aligned sulfur–graphene (S-G) nanowalls on electrically conductive substrates. In each individual S-G nanowall, the sulfur nanoparticles are homogeneously anchored between graphene layers; ordered graphene arrays arrange perpendicularly to the substrates, enabling fast diffusion of both lithium ions and electrons.

As reported in their paper in the ACS journal Nano Letters, the cathodes achieve a high reversible capacity of 1261 mAh g–1 in the first cycle and more than 1210 mAh g–1 after 120 cycles with excellent cyclability and high-rate performance (more than 400 mAh g–1 at 8C, 13.36 A g–1). This is the best demonstrated rate performance for sulfur–graphene cathodes to date, according to the team.

More... | Comments (4) | TrackBack (0)

A123 Systems introduces Gen3 Li-ion 12V starter battery; 25% greater cold-cranking power (voltage corrected)

April 07, 2015

Gen3 SB A123 web
12V Li-Start battery. Click to enlarge.

Li-ion battery developer and manufacturer A123 Systems has introduced the third generation of its 12 Volt Starter Battery in its Li-Start product line.

Every component of this third-generation battery system has been optimized for low voltage automotive applications. Together these advances, known as A123’s new UltraPhosphate technology, have achieved more than 25% greater cold cranking power and result in a product that significantly outperforms the best lead-acid batteries in industry standard cranking tests. The Gen 3 battery is also smaller than its predecessors.

More... | Comments (8) | TrackBack (0)

ORNL VIBE open-architecture framework for improved EV battery design

April 06, 2015

Vision
VIBE provides an open architecture framework for pre-experimental design simulation as part of the CAEBAT program. Click to enlarge.

As part of the US Department of Energy’s (DOE) CAEBAT (Computer Aided Engineering for Batteries) activities (earlier post), scientists at Oak Ridge National Laboratory (ORNL) have developed a flexible, robust, and computationally scalable open-architecture framework that integrates multi-physics and multi-scale battery models.

The Virtual Integrated Battery Environment (VIBE) allows researchers to test lithium-ion batteries under different simulated scenarios before the batteries are built and used in electric vehicles. The physics phenomena of interest include charge and thermal transport; electrochemical reactions; and mechanical stresses. They operate and interact across the porous 3D structure of the electrodes (cathodes and anodes); the solid or liquid electrolyte system; and the other battery components. VIBE was developed by researchers in ORNL’s Computational Engineering & Energy Sciences group, led by Dr. John Turner.

More... | Comments (0) | TrackBack (0)

Berkeley Lab/UC Berkeley study shows EV batteries meet daily travel needs of 85%+ of US drivers even after 20% energy capacity fade; calls for new EOL criteria

March 31, 2015

A new study by researchers from Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley shows quantitatively that EV batteries can continue to meet daily travel needs of drivers well beyond the 80% floor for remaining energy storage capacity that is commonly assumed. An open access paper on their work, which applied detailed physics-based models of EVs with data on how drivers use their cars, is published in the Journal of Power Sources.

The study also sheds light on a number of other factors concerning battery use and energy and power fade, including that even EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected trips with long distances; that enabling charging in more locations, even if only with 120 V wall outlets, prolongs the useful life of EV batteries; and that EVs meet performance requirements even down to 30% remaining power capacity.

More... | Comments (31) | TrackBack (0)

LG Chem to supply EV batteries to Daimler for new smart EV

March 30, 2015

Daimler AG has selected LG Chem as the supplier of lithium-ion batteries for the smart EV that will be newly launched in 2016. Under the contract, LG Chem will provide battery cells to smart EV; Daimler will assemble the cells into the vehicle packs.

By signing a supply contract with Daimler, LG Chem has become the world’s biggest automotive battery supplier, having at least 13 global automakers among the top 20 global brands. In addition to Daimler, top automakers Volkswagen, Ford, Hyundai, Renault, Audi, Chevrolet, Kia, and GM use LG Chem batteries for EV applications.

More... | Comments (4) | TrackBack (0)

Dalhousie team reports ternary blends of electrolyte additives greatly enhance performance of NMC Li-ion cells

Batteries for electrified vehicles require much longer calendar and cycle lifetimes, as well as improved high temperature tolerance, than their portable consumer electronics counterparts. Electrolyte additives can be used to extend cell lifetime by suppressing parasitic reactions between charged electrodes and electrolyte by modifying the solid electrolyte interphase (SEI) at the negative electrode or the passivation layer formed on the positive electrode.

Researchers at Dalhousie University (Canada) led by Dr. Jeff Dahn now report that Li[Ni1/3Mn1/3Co1/3]O2 (NMC111)/graphite and Li[Ni0.42Mn0.42Co0.16]O2 (NMC442)/graphite pouch cells demonstrate greatly enhanced performance when ternary blends of electrolyte additives are added to the cells. Their work is published in a paper in an open access article in the Journal of the Electrochemical Society.

More... | Comments (1) | TrackBack (0)

BNL team develops very high capacity ternary metal fluoride cathode material for Li-ion batteries

March 28, 2015

Copper-iron-hr
The team achieved three-times-higher storage capacity through the reversible redox reactions of copper and iron—breaking and reforming copper-fluorine and iron-fluorine bonds while absorbing and releasing lithium. Source: BNL. Click to enlarge.

A team led by researchers at Brookhaven National Laboratory (BNL) has found that adding copper atoms to iron fluoride—a member of the class of materials called transition metal fluorides that are potential extremely high-capacity cathodes for future Li-ion batteries—produces a group of new fluoride materials that can reversibly store three times as many Li ions as conventional cathode materials. Measurements also indicate that these new materials could yield a cathode that is extremely energy-efficient. Their research is described in an open access paper in the journal Nature Communications.

The capacity of mainstream conventional cathodes (e.g., LiCoO2 or LiFePO4) is low (140–170 mAh g−1) and currently limits the energy density of most commercial cells, the researchers note. Although a number of alternative anodes (such as ​silicon and tin) show capacities well above 500 mAh g−1, few cathodes have been identified that can the high capacity. However, transition metal fluorides, which contain the element fluorine plus one or more of the transition metals, such as iron and copper, have much higher ion-storage capacities than traditional cathodes.

More... | Comments (3) | TrackBack (0)

XALT Energy in major multi-year contract to supply LTO batteries to HK Group for electric buses in China

March 25, 2015

XALT Energy (originally founded in 2009 as Dow-Kokam, LLC), a leading developer and manufacturer of lithium-ion batteries, signed a global exclusive agreement with Hybrid Kinetic Group (HK Group) of China for the supply of its Lithium Titanate (LTO) batteries from its manufacturing facilities in Midland, Michigan for all-electric buses in China.

Production is expected to begin during the third quarter of 2015. The multi-year contract, valued at more than $1.0 billion, will create 300 new high-tech and manufacturing jobs in Midland this year. Hiring is underway with 80 positions expected to be filled in April.

More... | Comments (1) | TrackBack (0)

Report: VW Group to decide how to proceed with Quantumscape solid state energy storage by July

March 24, 2015

Bloomberg reports that the Volkswagen Group will decide by July how to proceed with solid state energy storage technology under development by Quantumscape (earlier post), citing Prof. Dr. Martin Winterkorn, Chairman of the Board of Management, who spoke outside a press conference in Stuttgart.

According to the report, Winterkorn said that the technology’s potential to boost the range of battery-powered vehicles is compelling and tests are progressing. “Progress has been made,” he said. Quantumscape several days ago posted 11 job openings, seeking a manager or director of battery manufacturing operations; a process engineering manager to lead a team in the development of a new energy storage technology from initial process concept through demonstration of stable production; and R&D technicians, battery engineers and scientists.

More... | Comments (9) | TrackBack (0)

Purdue researchers convert packing peanuts into anode materials for Li-ion batteries; outperforming graphite

March 23, 2015

Purdue researchers have developed a process to manufacture carbon-nanoparticle and microsheet anodes for Li-ion batteries from polystyrene and starch-based packing peanuts, respectively. The work, performed by postdoc Vinodkumar Etacheri, Professor Vilas Pol and undergraduate chemical engineering student Chulgi Nathan Hong, is being presented at the 249th American Chemical Society National Meeting & Exposition in Denver.

Packing-peanut-derived carbon anodes have demonstrated a maximum specific capacity of 420 mAh/g (milliamp hours per gram), which is higher than the theoretical capacity of graphite (372 mAh/g).

More... | Comments (3) | TrackBack (0)

Stanford team enhances ionic conductivity of solid electrolyte by 3 orders of magnitude; potential for high-energy Li-ion batteries

March 20, 2015

Stanford researchers led by Professor Yi Cui have used ceramic nanowire fillers to enhance the ionic conductivity of polymer-based solid electrolyte by three orders of magnitude. The ceramic-nanowire filled composite polymer electrolyte also shows an enlarged electrochemical stability window.

Solid-state electrolytes could provide substantial improvements to safety and electrochemical stability in next-generation high-energy Li-ion batteries when compared with conventional liquid electrolytes. However, the low mobility of lithium ions in solid electrolytes has limited their practical application. The Stanford researchers suggest that their discovery, described in the ACS journal Nano Letters, paves the way for the design of solid ion electrolytes with superior performance.

More... | Comments (4) | TrackBack (0)

Researchers synthesize new 2D carbon-sulfur MAX-phase-derived material for Li-S battery electrode

March 18, 2015

Drexel researchers, along with colleagues at Aix-Marseille University in France, have synthesized two-dimensional carbon/sulfur (C/S) nanolaminate materials. Covalent bonding between C and S is observed in the nanolaminates, which along with and an extremely uniform distribution of sulfur between the atomically thin carbon layers make them promising electrode materials for Li-S batteries. A paper on their work is published in the journal Angewandte Chemie International Edition.

The international research collaboration led by Drexel’s Dr. Yury Gogotsi produced the nanolaminate by extracting the titanium from a three-dimensional material called a Ti2SC MAX phase. (Earlier post.) The resulting products are composed of multi-layers of C/S flakes, with predominantly amorphous and some graphene-like structures. The paper was selected as a VIP article and will be featured on the journal cover.

More... | Comments (0) | TrackBack (0)

Optimized storage principle and new material increase lithium storage density in cathode material

March 16, 2015

Aenm201401814-gra-0001-m
A new intercalation compound Li2VO2F with disordered rock-salt structure enables up to ≈1.8 Li+ storage (420 mAh g−1) at ≈2.5 V with a lattice volume change of only ≈3%. A high capacity of 300 mAh g−1 at 1C rate is observed. Chen et al. Click to enlarge.

An interdisciplinary team of researchers of Karlsruhe Institute of Technology (KIT) and KIT-founded Helmholtz Institute Ulm (HIU) has developed a new Li-ion cathode material based on a new storage principle, resulting in increased energy storage density.

The new material, presented in a paper in the journal Advanced Energy Materials, allows for the reversible storage of 1.8 Li+ per formula unit. With a material of the composition Li2VO2F, storage capacities of up to 420 mAh/g were measured at a mean voltage of 2.5 V. As a result of the comparably high density of the material, a storage capacity of up to 4600 Wh/L relative to the active material was obtained.

More... | Comments (2) | TrackBack (0)

PANI-coated sulfur-carbon nanotube composite shows long cycle life for high-capacity Li-S batteries

March 14, 2015

Researchers from Hanyang University in Korea and the University of Maryland have developed a sulfur-carbon nanotube (S/SWNT) composite coated with polyaniline (PANI) polymer as polysulfide block to achieve high sulfur utilization, high Coulombic efficiency, and long cycle life in Li-Sulfur batteries.

As described in a open access paper published in the journal Science Reports, the PANI coated S/SWNT composite showed a superior specific capacity of 1,011 mAh/g over 100 cycles and a good rate retention, demonstrating the synergic contribution of porous carbon and conducting polymer protection to address the challenges facing the sulfur cathode in such systems.

More... | Comments (0) | TrackBack (0)

Ultrahigh-capacity anodes derived from natural silk for Li-ion batteries; other energy storage applications

March 13, 2015

Researchers at the Beijing Institute of Technology have found a way to process biomass-derived natural silk to create carbon-based nanosheets that could potentially be used in Li-ion batteries and other energy storage devices. A paper on their work is published in the journal ACS Nano.

They prepared hierarchical porous nitrogen-doped carbon (HPNC) nanosheets (NS) via simultaneous activation and graphitization of the silk. The HPNC-NS show favorable features for electrochemical energy storage such as high specific surface area (SBET: 2494 m2/g); high volume of hierarchical pores (2.28 cm3/g), nanosheet structures; rich N-doping (4.7%), and defects. The team reported a reversible lithium storage capacity of 1865 mAh/g—the highest for N-doped carbon anode materials to the best of the researchers’ knowledge. Used as a supercapacitor electrode in ionic liquid electrolytes, the HPNC-NS exhibit a capacitance of 242 F/g and energy density of 102 Wh/kg (48 Wh/L), with high cycling life stability (9% loss after 10,000 cycles).

More... | Comments (1) | TrackBack (0)

XG Sciences silicon graphene anode material shows stability over 400 cycles with 600 mAh/gram

March 10, 2015

XG Sciences (XGS), a leading provider of graphene nanoplatelets, has demonstrated full battery cell cycle stability through more than 400 charge/discharge cycles with a charge storage capacity of 600 mAh/gram over a broad voltage window in its next generation silicon graphene (earlier post) (XG SiG) anode materials for lithium-ion batteries.

We believe our latest material is the first commercially viable silicon and graphene based anode formulation to achieve this all important performance threshold. With charge storage capacity of up to 4 times today’s typical anodes, first cycle efficiency of 85-90%, low swelling and life that is more than double our previous generation, we believe this material will open many new markets for our customers with an affordable and safe anode formulation,” said Dr. Philip Rose, XGS CEO.

More... | Comments (4) | TrackBack (0)

ORNL microscopy directly images lithium dendrite formation in batteries; new technique for studying electrochemical processes

March 06, 2015

Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. A paper describing their study, which probed the mechanisms of solid electrolyte interphase (SEI) formation and dendrite growth in a standard organic battery electrolyte (LiPF6 in EC:DMC), is published in the ACS journal Nano Letters.

They combined quantitative electrochemical measurement and STEM (scanning transmission electron microscopy), or in situ ec-S/TEM, to estimate the density of the evolving SEI and to identify Li-containing phases formed in the liquid cell. They reported that the SEI is approximately twice as dense as the electrolyte as determined from imaging and electron scattering theory. They also observed site-specific locations where Li nucleates and grows on the surface and edge of the glassy carbon electrode. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety.

More... | Comments (0) | TrackBack (0)

LLNL-led team gains insight into electronic structure changes in supercapacitor electrodes; research could lead to more efficient electrical energy storage

March 05, 2015

Lawrence Livermore National Laboratory (LLNL) researchers and their colleagues from Lawrence Berkeley Laboratory and the Nanosystem Research Institute in Japan have identified electrical charge-induced changes in the structure and bonding of graphitic carbon electrodes that may one day affect the way energy is stored. The research could lead to an improvement in the capacity and efficiency of electrical energy storage systems, such as batteries and supercapacitors, needed to meet the burgeoning demands of consumer, industrial and green technologies.

The LLNL-led team developed a new X-ray adsorption spectroscopy capability that is tightly coupled with a modeling effort to provide key information about how the structure and bonding of graphitic carbon supercapacitor electrodes are affected by polarization of the electrode – electrolyte interfaces during charging. A paper describing their work is published in the journal Advanced Materials.

More... | Comments (2) | TrackBack (0)

Silica-coated sulfur nanoparticles with mildly reduced graphene oxide as Li-S battery cathode

March 04, 2015

One of the main obstacles to the commercialization of high-energy density lithium-sulfur batteries is the tendency for lithium polysulfides—the lithium and sulfur reaction products—to dissolve in the battery’s electrolyte and travel to the opposite electrode permanently. This causes the battery’s capacity to decrease over its lifetime.

To prevent this polysulfide shuttle, researchers in the Bourns College of Engineering at the University of California, Riverside have fabricated SiO2-coated sulfur particles (SCSPs) for cathode material. With the addition of mildly reduced graphene oxide (mrGO) to the material, SCSPs maintain more than 700 mAh g−1 after the 50th cycle. A paper on their work is published in the RSC journal Nanoscale.

More... | Comments (0) | TrackBack (0)

Lux Research: the $40,000, 200-mile-range EV is the biggest coming growth opportunity for energy storage in transportation

March 02, 2015

Analysis by Lux Research suggests that the market space represented by the emerging lower-cost, 200-mile-range EV will be the biggest coming growth opportunity in electric storage for transportation. By 2020, this new EV battleground should account for $5 billion or more in Li-ion battery sales, because it combines larger packs (around 50 kWh) with more sales (hundreds of thousands of vehicles).

According to Lux Research’s Automotive Battery Tracker, in 2014 EVs used $2.1-billion worth of energy storage. While selling in similar volumes, plug-in hybrids (PHEVs) used three times less batteries: about $0.7 billion worth. Despite selling about 1.5 million units in 2014, an order of magnitude more than the 140,000 EVs that consumers bought in 2014, HEVs also used just $0.7-billion worth of energy storage in 2014.

More... | Comments (1) | TrackBack (0)

Audi to offer new R8 e-tron EV on request; almost 2x pack capacity, 280-mile range with new Li-ion technology (update 1)

February 26, 2015

Audi is presenting the second generation of its high-performance R8 sports car at the upcoming Geneva show, featuring new V10 engines, newly developed quattro drive, and a new multimaterial Audi Space Frame (ASF) combining aluminum and carbon fiber reinforced plastics (CFRP). The top of the range version delivers 449 kW (610 hp), achieving 0 to 100 km/h (62.1 mph) in 3.2 seconds, with a top speed of 330 km/h (205.1 mph).

The second generation of the Audi R8 also forms the basis for two more models, including a high-performance battery-electric version, the R8 e-tron 2.0. This latest evolution of the vehicle takes up the multimaterial Audi Space Frame from the new series-production model. The new R8 e-tron, which will be available for order in 2015 upon customer request, uses a newly developed high energy density lithium-ion technology which was specially conceived for a purely electric vehicle drive. In comparison to the first technology platform (earlier post), the battery capacity has grown from 49 kWh to approximately 92 kWh—without changing the package.

More... | Comments (8) | TrackBack (0)

New PNNL zinc-polyiodide redox flow battery offers 2x energy density of next-best system; potential for mobile applications

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a new zinc-polyiodide redox flow battery offering more than two times the energy density of the next-best flow battery used to store renewable energy and support the power grid.

Lab tests revealed the demonstration battery discharged 167 Wh l-1 of electrolyte. In comparison, zinc-bromide flow batteries generate about 70 Wh l-1, vanadium flow batteries can create between 15 and 25 Wh l-1, and standard lithium iron phosphate batteries could put out about 233 Wh l-1. The team calculated that their new battery theoretically could discharge even more—up to 322 Wh l-1—if more chemicals were dissolved in the electrolyte. An open access paper on the work appears in Nature Communications.

More... | Comments (2) | TrackBack (0)

Green Car Congress © 2015 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group