Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Biogasoline

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Global Bioenergies delivering first renewable gasoline sample to Audi

May 18, 2015

Global Bioenergies and its partner Audi (earlier post) announced that the first batch of renewable gasoline using Global Bioenergies’ fermentative isobutene pathway has been produced. (Earlier post.) The batch will be presented to Audi by Global Bioenergies during a press conference to be held in Pomacle on 21 May.

The first isobutene batch produced from renewable resources (here: corn-derived glucose) at Global Bioenergies’ industrial pilot in Pomacle-Bazancourt, near Reims in France, had been delivered to the chemical company Arkema early May 2015. Subsequent isobutene batches have been converted into isooctane by the Fraunhofer Institute at the Leuna refinery near Leipzig where Global Bioenergies is now building its demo plant.

More... | Comments (2) | TrackBack (0)

Cooper Tire completes work on $1.5M DOE project to develop fuel efficient tires, exceeding targets

May 04, 2015

Cooper Tire & Rubber Company completed work under a $1.5-million government grant to develop advanced tire technology aimed at increasing vehicle fuel efficiency. The grant, awarded by the US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy, called for Cooper to develop technology for light vehicle tires that delivered a minimum 3% improvement in vehicle fuel efficiency while lowering average tire weight by at least 20%, all without sacrificing performance.

Cooper was successful in developing technologies that exceeded the project’s goals, delivering an average fuel efficiency improvement of 5.5% and weight reduction ranging from 23% to 37% in concept tires.

More... | Comments (3) | TrackBack (0)

First integrated assessment of quality and yield of hydrocarbon blendstocks via biomass fast pyrolysis and hydrotreating

April 27, 2015

Researchers from three US national labs—Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the National Renewable Energy Laboratory (NREL)—have performed the first, fully integrated assessment of the quality and yield of common feedstocks from the field to hydrocarbon blendstock production using the fast pyrolysis-hydrotreating pathway. A paper describing the results is published in the ACS journal Energy & Fuels.

Among their findings was that the compositional parameters of the biomass feedstock affects both the bio-oil generated by fast pyrolysis as well as the final quantity and quality of the upgraded fuel blendstock. While some feedstocks—such as tulip poplar—generate a high yield of bio-oil, the bio-oil does not necessarily exhibit a high yield in the hydrotreater. Thus, the product yields and qualities of both fast pyrolysis and hydrotreating must be considered in comparing the conversion performance of different biofuel feedstock materials.

More... | Comments (0) | TrackBack (0)

Researchers in China produce highest octane gasoline fuel reported from biomass

November 11, 2014

Researchers in China have generated gasoline fuel with a research octane number of 95.4 from biomass-derived γ-valerolactone (GVL)—the highest octane number reported for biomass-derived gasoline fuel—using an ionic liquid catalyst. A paper on their work is published in the RSC journal Green Chemistry.

In the study, they converted biomass-derived γ-valerolactone into gasoline by the decarboxylation of valerolactone to produce butenes and the subsequent alkylation of the produced butenes with butane using [CF3CH2OH2][CF3CH2OBF3] as an efficient catalyst. The obtained gasoline was rich in trimethylpentane (isooctane), with the RON of 95.4.

More... | Comments (1) | TrackBack (0)

JBEI researchers boost isopentenol output from E. coli; potential benefit for bio-gasoline

October 27, 2014

Researchers at the US Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have identified microbial genes that can improve both the tolerance and the production of isopentanol in engineered strains of Escherichia coli. Isopentenol is a five-carbon (C5) alcohol that is a highly promising candidate for biogasoline, but, like other short-chained alcohols, is toxic to E.coli at commercial levels of fuel production.

Aindrila Mukhopadhyay, a chemist who directs the host engineering program for JBEI’s Fuels Synthesis Division, led a study in which transcriptomic data and a synthetic metabolic pathway were used to identify several genes that not only improve tolerance but also production of isopentenol in E.coli. MetR, the methionine biosynthesis regulator, improved the titer for isopentenol production by 55%, while MdlB, the ABC transporter, facilitated a 12% improvement in isopentenol production.

More... | Comments (2) | TrackBack (0)

New one-pot catalytic process efficiently converts biomass to liquid alkanes under mild conditions

October 13, 2014

Debeeck1
Conversion of microcrystalline cellulose to liquid alkanes with the biphasic system in function of time and temperature. Yield insoluble products (%) = cellulose conversion (%) - total yield dissolved products (%). de Beeck et al. Click to enlarge.

A team from KU Leuven, Belgium, together with colleagues at the Leibniz Institute for Solid State and Materials Research in Germany, have designed a novel one-pot biphasic catalytic system that is able directly to transform cellulose into straight-chain alkanes (mainly n-hexane) with high yields.

The carbon-based yields are high (up to 82%) and the process completes in less than 6 hours at a comparatively mild 220 ˚C. The resulting bio-derived light naphtha fraction is a green feedstock suited for existing processes that produce aromatics, gasoline or olefins. With low-cost cellulosic residue and the absence of required pretreatment for this process, the researchers said, this approach seems highly promising en route to more sustainable chemicals and fuels. A paper on the work is published in the RSC journal Energy & Environmental Science.

More... | Comments (9) | TrackBack (0)

USDA provides $91M loan guarantee to Cool Planet for biogasoline blendstock plant; biomass pyrolysis and catalytic conversion

October 05, 2014

Cp2
Gas chromatography comparison of Conoco fuel and a Conoco-CoolPlanet blend. Cool Planet’s biogasoline blendstock is 100% compatible with pump gasoline. Source: Cool Planet. Click to enlarge.

USDA has reached an agreement with Silicon Valley Bank to provide a $91-million Biorefinery Assistance Program loan guarantee to Cool Planet to help the company finish construction on an advanced biofuel plant at the Port of Alexandria in Louisiana. (Earlier post.)

Cool Planet has devised a biomass-to-liquids thermochemical conversion process that simultaneously produces liquid fuels and sequesterable biochar useful as a soil amendment. The Cool Planet plant will produce approximately 8 million to 10 million gallons of high-octane, renewable gasoline blendstocks (reformate), as well the biochar, all made from sustainable wood residues.

More... | Comments (10) | TrackBack (0)

Virent receives EPA fuel registration for BioForm biogasoline blends up to 45%

August 13, 2014

Gasoline-Chart
Gas chromatographs (samples stacked for clarity) of Virent’s BioFormate biogasoline reformate vs. conventional petroleum reformate. Source: Virent. Click to enlarge.

Virent has received fuel registration from the US Environmental Protection Agency (EPA) for its BioForm drop-in biogasoline in blends of up to 45%. (Earlier post.) As a registered fuel, Virent’s biogasoline can now be used in on-highway motor vehicles.

Virent BioForm Gasoline blended with conventional gasoline underwent testing at Southwest Research Institute (SWRI) with the results demonstrating that the emissions from the blended fuel were well below the maximum permitted by current regulations. The fuel was manufactured by Virent at its demonstration plant in Madison, Wisconsin, which is capable of producing up to 10,000 gallons of biofuels and biochemicals per year. The EPA testing work was funded by Virent partner Royal Dutch Shell.

More... | Comments (2) | TrackBack (0)

New one-pot process for conversion of cellulose to n-hexane, a gasoline component

June 26, 2014

Master.img-000
One-pot process for conversion of cellulose to hexane, a gasoline component. Credit: ACS, Liu et al. Click to enlarge.

Researchers at Tohoku University in Japan have developed a one-pot process to convert cellulose to n-hexane in the presence of hydrogen gas. According to the US Environmental Protection Agency (EPA), unleaded gasoline contains about 11.6% n-hexane.

In a paper in the journal ACS Sustainable Chemistry & Engineering, the Tohuku team reports achieving a yield of n-hexane of 83% from ball-milled cellulose and 78% from microcrystalline cellulose. Even using a high weight ratio of cellulose to water (1:1), a 71% yield of n-hexane could be obtained from ball-milled cellulose.

More... | Comments (4) | TrackBack (0)

LowCVP reports indicate pathways for meeting renewable energy targets in transportation, decarbonizing fuel to 2030 and beyond

June 18, 2014

Lowcvp
Illustrative impact of the fuel roadmap. Source: LowCVP, Element Energy. Click to enlarge.

The UK’s LowCVP has published twin reports which set out how the UK could meet its 2020 targets defined in the EU’s Renewable Energy Directive, and proceed on a pathway to decarbonize road transport fuel in the period to 2030 and beyond.

The LowCVP—the stakeholder body which brings government, industry and other stakeholders together to focus on the challenges of decarbonizing road transport—commissioned energy consultancy Element Energy to analyze the UK’s options for meeting the Renewable Energy Directive’s (RED) 2020 transport target which states that at least 10% of the final energy consumption in transport must come from renewable sources. This and the parallel Fuels Roadmap report benefitted from wide industry consultation and explicitly set out to align with existing powertrain roadmaps (including those published by the Automotive Council and the LowCVP).

More... | Comments (0) | TrackBack (0)

GTI and Haldor Topsøe report successful operation of $35M pilot plant for converting woody biomass to gasoline; vehicle testing starting

May 30, 2014

Gti0
Pilot plant integrating Carbona gasification with TIGAS syngas-to-gasoline process. Click to enlarge.

In a recently completed project, Gas Technology Institute (GTI) worked with Haldor Topsøe, Inc. on an integrated biorefinery to make renewable “drop-in” gasoline. The use of renewable gasoline could reduce lifecycle greenhouse gas emissions by approximately 92% when compared to conventional gasoline.

The almost $35-million pilot-scale project, supported by the US Department of Energy (DOE) integrated biorefineries program ($25 million from DOE, $9,771,659 cost-share), converted woody biomass into bio-derived gasoline by fully integrating and optimizing biomass gasification and syngas cleanup steps with a unique process to turn syngas into gasoline. (Earlier post.)

More... | Comments (6) | TrackBack (0)

Green Car Congress © 2015 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group