Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Bio-hydrocarbons

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

WSU Tri-Cities researchers receive $50K NSF grant to test market potential for lignin pathway for biojet

December 03, 2016

Researchers at Washington State University Tri-Cities have been awarded a $50,000 National Science Foundation I-Corps grant to explore the commercialization potential of their new pathway for biojet from biomass waste. The WSU process, described in a 2015 paper in the RSC journal Green Chemistry, uses hydrodeoxygenation (HDO) of dilute alkali extracted corn stover lignin catalyzed by a noble metal catalyst (Ru/Al2O3) and acidic zeolite (H+-Y) to produce lignin-substructure-based hydrocarbons (C7-C18), primarily C12-C18 cyclic structure hydrocarbons in the jet fuel range. (Earlier post.)

Current biorefineries undervalue lignin’s potential, largely because selective conversion of lignin has proven to be challenging. Processes that have been successful at breaking the lignin bonds have typically resulted in shorter chain monomers as opposed to the longer chain hydrocarbons needed for fuel. In contrast, the output of the WSU processis a mix of hydrocarbons that are long-chain and can be made into nearly the right mix for jet fuel.

More... | Comments (1)

GAO study concludes Renewable Fuel Standard will miss advanced biofuel program targets; EPA generally concurs

November 29, 2016

A new study from the US Government Accountability Office (GAO) concludes that the Renewable Fuel Standard program will miss its advanced biofuel targets due to the the high costs of creating advanced biofuel; the relatively low price of fossil fuel; the timing and cost to bring new tech to commercial-scale production; regulatory uncertainty; and other issues as challenges to increased production.

GAO was asked by Congress to review issues related to advanced biofuels R&D. The report describes (1) how the federal government has supported advanced biofuels R&D in recent years and where its efforts have been targeted; and (2) expert views on the extent to which advanced biofuels are technologically understood and the factors that will affect the speed and volume of production. GAO interviewed DOD, DOE, EPA, NSF, and USDA officials and worked with the National Academy of Sciences to convene a meeting of experts from industry, academia, and research organizations. EPA generally agreed with the conclusions of the report, the GAO said.

More... | Comments (3)

EPA finalizes increase in renewable fuel volumes for 2017; 6% total increase to 19.28B gallons

November 23, 2016

The US Environmental Protection Agency (EPA) finalized increases in renewable fuel volume requirements across all categories of biofuels under the Renewable Fuel Standard (RFS) program. In a required annual rulemaking, the action finalizes the volume requirements and associated percentage standards for cellulosic biofuel, advanced biofuel, and total renewable fuel for 2017, and for biomass-based diesel for 2018.

The final volumes represent continued growth over historic levels. The final standards meet or exceed the volume targets specified by Congress for total renewable fuel, biomass-based diesel, and advanced biofuel. Total renewable fuel volumes grow 6% (1.2 billion gallons) from 2016 to 2017 to 19.28 billion gallons.

More... | Comments (3)

Argonne LCA finds renewable diesel from algae fractionation has 63-68% lower GHG than petroleum diesel

October 22, 2016

A new analysis from Argonne National Laboratory, funded by the US Department of Energy’s Bioenergy Technologies Office (BETO), shows the potential of an algae fractionation process to produce renewable diesel fuel with 63%–68% lower greenhouse gas (GHG) emissions than conventional diesel. The study is published in the journal Algal Research.

In some algal biofuel production methods, lipids are extracted from algae and converted to renewable diesel, while the non-lipid components of the algae are converted to biogas. The biogas is used for renewable heat and electricity to power the conversion process of the lipids to renewable diesel.

More... | Comments (0)

New three-step process for conversion of vegetable oils into cycloparaffinic and aromatic biofuels in jet fuel range

October 17, 2016

A team from the University of Science & Technology of China in Hefei has developed a three-step process for the conversion of vegetable oils (triglycerides) into cycloparaffinic and aromatic biofuels in jet fuel range.

This process cracks vegetable oils into light aromatics over the zeolite catalyst (HZSM-5(80)), followed by the aromatic alkylation of the resulting light aromatics using the ionic liquid [bmim]Cl-2AlCl3, followed by the hydrogenation of the aromatics over a Pd/AC catalyst. As reported in a paper in the journal Fuel, the process produced 86.2 wt% of C8–C15 aromatics after alkylation, yielding 84.3 wt% monocyclic cycloparaffins after hydrogenation.

More... | Comments (0)

NREL and partners build pilot plant to co-process biomass streams with petroleum

October 14, 2016

The National Renewable Energy Laboratory (NREL), together with leading petroleum refining technologies supplier W.R. Grace, and leading pilot plant designer Zeton Inc., built a unique pilot-scale facility that can produce biomass-derived fuel intermediates with existing petroleum refinery infrastructure. This pilot plant, constructed in part with funding from the Bioenergy Technologies Office, combines biomass pyrolysis together with fluid catalytic cracking—one of the most important conversion processes used in petroleum refineries—to demonstrate the potential to co-process biomass-derived streams with petroleum, at an industrially-relevant pilot scale.

There are 110 domestic fluid catalytic cracking units currently operating in the United States. Using them to co-produce biofuel could enable production of more than 8 billion gallons of bio-derived fuels, without construction of separate biorefineries. This would significantly contribute to the Renewable Fuel Standard mandate set by the Energy Independence and Security Act of 2007 to produce 21 billion gallons of advanced renewable transportation fuels by 2022.

More... | Comments (0)

Gevo produces first cellulosic renewable jet fuel specified for use on commercial airline flights

October 12, 2016

Gevo, Inc. has completed production of the world’s first cellulosic renewable jet fuel that is specified for commercial flights. Gevo successfully adapted its patented technologies to convert cellulosic sugars derived from wood waste into renewable isobutanol, which was then further converted into Gevo’s Alcohol-to-Jet fuel (ATJ) fuel. (Earlier post.)

This ATJ meets the ASTM D7566 specification allowing it to be used for commercial flights. The revisions to the ASTM D7566 specification, which occurred earlier this year, includes ATJ derived from renewable isobutanol, regardless of the carbohydrate feedstock (i.e. cellulosics, corn, sugar cane, molasses, etc.). (Earlier post.)

More... | Comments (1)

China researchers devise process to convert biomass to gasoline via one-step DME synthesis: DTG

October 10, 2016

Researchers from the Qingdao Institute of Bioenergy and Bioprocess Technology have proposed a new process for the conversion of biomass to gasoline via a one-step DME synthesis (DTG: Dimethyl ether to gasoline). In a paper in the journal Fuel, they report a per-pass conversion of CO and the production capacity of gasoline of up to 45% and 4.4 kg/h, respectively.

Their homemade catalysts exhibited favorable activity, selectivity and stability during all the operations. The gasoline obtained from the pilot plant had a high octane number (RON>93). Although further studies are needed on mass and energy balances to ensure the most economical and optimal heat integration strategy, the practical experience of this work is sufficiently promising to merit further investigations, the team suggested.

More... | Comments (1)

NREL lowers biofuel costs through catalyst regeneration and vapor-phase upgrading; R-Cubed

October 06, 2016

This past June, researchers at the National Renewable Energy Laboratory (NREL), in partnership with Particulate Solids Research, Inc. and Springs Fabrication, installed a recirculating regenerating riser reactor (R-Cubed) in the pilot-scale Thermochemical Process Development Unit (TCPDU). Funded by the DOE Bioenergy Technologies Office (BETO), this unique unit represents the next generation of thermochemical biomass conversion technology and adds additional capabilities to NREL’s state-of-the-art Thermochemical Users Facility.

The R-Cubed system will now allow for catalytic upgrading of biomass pyrolysis vapors—a process that can significantly improve the efficiency and reduce the costs associated with upgrading bio-oil to a finished fuel product—at an industrially-relevant pilot scale.

More... | Comments (0)

EPA proposing updates to Renewable Fuel Standard

October 05, 2016

EPA is proposing updates to the Renewable Fuels Standard (RFS) regulations and related fuels regulations to better align the standards with the current state of the renewable fuels market and to promote the use of ethanol and non-ethanol biofuels.

Several of the proposed changes to the Renewable Fuel Standard program would align regulations with recent developments in the marketplace resulting in increased production of cellulosic, advanced and other biofuels, EPA said.

More... | Comments (1)

Global Bioenergies joins Preem, Sekab and forestry in bio-isooctane project in Sweden

September 28, 2016

In April this year, Preem, Sekab and Sveaskog entered into a collaboration to develop a gasoline fuel based entirely on forest resources with support from the Swedish Energy Agency. The consortium has now selected the bio-isobutene process developed by the French industrial biotech Global Bioenergies for the conversion of wood-derived sugars into a high-performance gasoline.

The consortium will study various plant scenarios t convert forestry products and residues profitably into bio-isooctane, a 100-octane rating, high-performance bio-based gasoline derived from bio-isobutene. The value chain will rely on Sveaskog’s forestry activities, Sekab’s CelluAPP biomass to sugar conversion process, Global Bioenergies wood-sugars to isobutene process and Preem’s gasoline production processes, blending and retailing activities.

More... | Comments (2)

Cummins Euro 6 engines compatibile with HVO renewable diesel & other paraffinic fuels; fuels at “point of commercial maturity”

September 22, 2016

Cummins Inc. announced Euro 6 (VI) engine compatibility for use with Hydrotreated Vegetable Oil (HVO) renewable diesel and other EN 15940 paraffinic fuels, representing a significant step forward to reduce the carbon footprint of Cummins-powered bus, truck and coach fleets operating in Europe.

Compared with conventional fossil-based diesel, HVO offers the potential to reduce greenhouse gas (GHG) emissions by 40 to 90 percent over the total life cycle of the fuel, dependent on the level of sustainable feedstock used in the production process.

More... | Comments (1)

Navy tests 100-percent CHCJ advanced biofuel in EA-18G

September 20, 2016

The US Navy has completed flight testing of a 100% advanced biofuel in the EA-18G “Green Growler” at Naval Air Station Patuxent River, Maryland. The US Navy is a leader in incorporating alternative fuel into operational supplies, in order to increase mission capability and flexibility.

The catalytic hydrothermal conversion-to-jet (CHCJ) process 100% alternative fuel performed as expected during a ground test 30 August at NAWCAD’s Aircraft Test and Evaluation Facility (ATEF), followed by the first test flight 1 September, said Rick Kamin, energy and fuels lead for Naval Air Systems Command (NAVAIR). Kamin also leads the alternative fuel test and qualification program for the Navy.

More... | Comments (0)

JetBlue enters 10-year renewable HEFA SPK jet fuel purchase agreement with SG Preston; 33M gallons of 30% blend per year

September 19, 2016

JetBlue announced a ten-year renewable jet fuel purchase agreement with SG Preston, a bioenergy company. The airline will purchase renewable jet fuel made from rapidly renewable, bio-based feedstocks that do not compete with food production. This marks one of the largest renewable jet fuel purchase agreements yet, and the largest, long-term, binding commitment by any airline globally for HEFA (hydro-processed esters and fatty acids) SPK (synthetic paraffinic kerosene) -based renewable jet fuel.

To launch the strategic relationship with SG Preston, JetBlue plans to purchase more than 33 million gallons of blended jet fuel per year for at least 10 years. The fuel will consist of 30% renewable jet fuel blended with 70% traditional Jet-A fuel.

More... | Comments (3)

Strategic consortium to commercialize Virent’s BioForming Technology for low carbon fuels and bio-paraxylene

September 15, 2016

Renewable fuels and chemicals company Virent has established a strategic consortium with Tesoro, Toray, Johnson Matthey and The Coca-Cola Company focused on completing the development and scale up of Virent’s BioForming technology to produce low carbon bio-based fuels and bio-paraxylene (a key raw material for the production of 100% bio-polyester).

The consortium members will work together to finalize technical developments and commercial arrangements, with the objective of delivering a commercial facility to produce cost effective, bio-based fuels and bio-paraxylene. Earlier this month, Virent and petroleum refiner and marketer Tesoro reached an agreement for Tesoro to become Virent’s new strategic owner. (Earlier post.)

More... | Comments (0)

LanzaTech produces 1,500 gallons of alcohol-to-jet fuel from waste gases for Virgin Atlantic

September 14, 2016

In a milestone for the low-carbon fuel project, LanzaTech has produced 1,500 gallons of jet fuel from waste industrial gases from steel mills via a fermentation process for Virgin Atlantic. Virgin Atlantic and LanzaTech have been working together on the project since 2011. HSBC joined the partnership in 2014.

The “Lanzanol” was produced in China at the RSB (Roundtable of Sustainable Biomaterials) certified Shougang demonstration facility. The innovative alcohol-to-jet (ATJ) process was developed in collaboration with Pacific Northwest National Lab (PNNL) with support from the US Department of Energy (DOE) and with the help of funding from HSBC.

More... | Comments (0)

Tesoro to acquire renewable fuels company Virent

September 07, 2016

Renewable fuels and chemicals company Virent and petroleum refiner and marketer Tesoro have reached an agreement for Tesoro to become Virent’s new strategic owner. The acquisition will support the scale-up and commercialization of Virent’s BioForming technology for the production of low carbon bio-based fuels and chemicals. (Earlier post.)

The companies initiated a strategic relationship in January 2016 (earlier post), and have worked together to establish a forward plan to scale-up the technology and reduce deployment risks to meet the increasing demands for high quality, renewable fuels and chemicals.

More... | Comments (0)

Researchers generate methane from CO2 in one light-driven step using engineered bacteria

August 25, 2016

Using an engineered strain of the phototropic bacterium Rhodopseudomonas palustris as a biocatalyst, a team from the University of Washington, Utah State University and Virginia Polytechnic Institute and State University have reduced carbon dioxide to methane in one enzymatic step.

The work demonstrates the feasibility of using microbes to generate hydrocarbons (i.e., CH4 in this case) from CO2 in one enzymatic step using light energy. A paper on their work is published in Proceedings of the National Academy of Sciences (PNAS).

More... | Comments (0)

China team develops pathway for producing renewable aviation-range hydrocarbons and aromatics from oleic acid without added H2

Researchers from Zhejiang University; SINOPEC’s Fushun Research Institute of Petroleum and Petrochemicals; Nanjing Tech University; and Xinjiang Technical Institute of Physics and Chemistry have developed an “atom-economic” approach to produce renewable drop-in aviation-range hydrocarbons and aromatics from oleic acid (C18H34O2, a fatty acid that occurs naturally in various animal and vegetable fats and oils) without an added hydrogen donor. A paper on their work is published in the ACS journal Energy & Fuels.

The conversion of oleic acid in the process was 100%, and the yield of heptadecane (C17H36, the main product) can reach 71% after 80 min at 350 °C. The process also produced an aromatics yield of 19%; aromatics are a critical component of aviation fuels due to their ability to maintain the swelling of fuel system elastomers. The results, said the researchers, indicate that their process is a complicated reaction system including in situ hydrogen transfer, aromatization, decarboxylation, and cracking.

More... | Comments (0)

PNNL-Lanzatech team hits milestone on waste-gas-to-ethanol-to-jet project

August 23, 2016

With funding from Bioenergy Technologies Office (BETO), Pacific Northwest National Laboratory (PNNL) has been working with industry-partner LanzaTech to convert alcohols derived from captured carbon monoxide, a byproduct in the production of steel, into synthetic paraffinic kerosene, a non-fossil-based jet fuel. The technology not only provides a viable source of sustainable jet fuel but also reduces the amount of greenhouse gasses emitted into the atmosphere.

The team recently reached a significant milestone on the project, producing over five gallons of synthetic paraffinic kerosene in a lab environment. Five gallons is the quantity needed for “fit-for-purpose” testing.

More... | Comments (0)

Study shows renewable diesel from crude tall oil is a high quality drop-in fuel for off-road engines

August 20, 2016

A team from the University of Vaasa (Finland) and UPM-Kymmene Corporation has examined how the blends of fossil and renewable diesel produced from crude tall oil (CTO) affect the performance and exhaust emissions of the modern common-rail off-road diesel engine.

The study, published in the journal Fuel, used four different fuel blends of low-sulfur fossil diesel fuel oil and CTO renewable fuel, UPM BioVerno (HB): HB10, HB20, HB50, and HB100. UPM BioVerno renewable diesel is produced from wood-based tall oil. (Earlier post.)

More... | Comments (1)

China researchers develop new pathway for jet-range bio-cycloalkanes from acetone and hydrogen

August 12, 2016

Researchers from the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, have developed a new route for the synthesis of jet-fuel range C10 and C12 cycloalkanes using diacetone alcohol (the self-aldol condensation product of acetone under mild conditions)—which can be derived from lignocellulosic biomass—and hydrogen. A paper on their work is published in the RSC journal Green Chemistry.

The branched cycloalkanes are synthesized with high carbon yield (~76%), have high density (0.83 g mL-1) and a low freezing point (216.5 K). As a potential application, they can be used as additives to conventional bio-jet fuel comprising C8-C16 chain alkanes.

More... | Comments (0)

US Navy completes sea trial with ARA’s 100% drop-in renewable diesel fuel

August 09, 2016

A Navy ship has, for the first time, operated on a 100% drop-in renewable diesel fuel. Naval Surface Warfare Center, Port Hueneme Division’s (NSWC PHD) Self Defense Test Ship (SDTS) completed final-phase testing of a 100% drop-in renewable diesel fuel as part of the Navy’s MILSPEC qualification program. ReadiDiesel was developed by Applied Research Associates (ARA) and Chevron Lummus Global, as a drop-in replacement for petroleum F-76 marine diesel. ReadiDiesel is a 100% renewable biofuel. (Earlier post.)

The SDTS took on approximately 18,000 gallons of ReadiDiesel in San Diego, California. The objective of this particular test was twofold: first, to demonstrate that ReadiDiesel is a drop-in replacement for petroleum-sourced F-76 marine diesel, meaning that it requires no blending with petroleum-derived fuels, equipment modifications or operational modifications by the crew; and second, to ensure that this renewable fuel performs equally to, or better than, existing petroleum-derived fuels.

More... | Comments (1)

DOE awarding up to $11.3M to 3 projects under MEGA-BIO for biomass-to-hydrocarbon fuels, products

August 03, 2016

The US Department of Energy (DOE) will award up to $11.3 million to three projects under MEGA-BIO: Bioproducts to Enable Biofuels (earlier post) that support the development of biomass-to-hydrocarbon biofuels conversion pathways that can produce variable amounts of fuels and/or products based on external factors, such as market demand.

Producing high-value bioproducts alongside cost-competitive biofuels has the potential to support a positive return on investment for a biorefinery. This funding is intended to develop new strategies for biorefineries to diversify revenue streams, including chemicals and products manufacturing, resulting in long-term economic benefits to the United States. Projects selected for funding are:

More... | Comments (0)

US releases Federal alternative jet fuels R&D strategy

July 29, 2016

The Obama Administration has released the Federal Alternative Jet Fuels Research and Development (R&D) Strategy (FAJFS), which maps out a unified federal plan to advance R&D as well as science and technology solutions to support deployment of alternative jet fuels (AJFs) in both civil and military aviation.

The strategy provides a prioritized list of R&D goals and objectives addressing specific scientific, technical, analytical, and logistics challenges that hinder the development, production, and wide-scale economic deployment of AJFs. In releasing the FAJFS, the federal government hopes to accelerate the development of the AJF industry by minimizing technical uncertainty to encourage further private sector interest, facilitate the development and approval of new AJF pathways, and reduce the cost of AJF production in the United States.

More... | Comments (0)

American Refining Group taking 1/3 stake in Amyris/Cosan Novvi JV; accelerating commercialization of renewable base oil and lubricants

July 19, 2016

American Refining Group (ARG) is taking a 33.3% stake in Novvi LLC, a joint venture of Amyris and Brazil-based Cosan S.A. formed in 2011 to produce renewable base oils and lubricants from Amyris’ Biofene—Amyris’s brand of a renewable, long-chain, branched hydrocarbon molecule called farnesene (trans-ß-farnesene). (Earlier post.) Both Amyris and Cosan will continue to hold share ownership stakes in Novvi, together with ARG.

Biofene is the basis for a wide range of products varying from specialty products such as cosmetics, perfumes, detergents and industrial lubricants, to transportation fuels such as diesel and jet fuel.

More... | Comments (0)

Lux: biojet fuel to account for 56% of targeted 2050 CO2 emissions reductions in aviation

Biojet fuels will be key to achieving the aviation industry’s pledge to cut CO2 emissions to 0.2 billion tons (GT) in 2050—half the 2005 figure—as opposed to the staggering 2.1 GT projected by current growth rates, according to a new report from Lux Research, “Biojet Fuel Technology Roadmap.”

Lux forecasts that biojet fuel innovations, led globally by Honeywell UOP and Boeing, will account for 56% of the targeted CO2 emissions reductions, while a third of the requisite cuts will come from new aircraft technology, and optimization of operations and infrastructure.

More... | Comments (1)

Los Alamos team develops robust route to convert starch and sugar to C10 and C11 hydrocarbons; “potato-to-pump”

July 18, 2016

Researchers at Los Alamos National Laboratory have developed a route to convert oligosaccharides, such as starch, cellulose, and hemicelluloses to C10 and C11 hydrocarbons by using depolymerization followed by chain extension.

In a paper published in the journal ChemSusChem, they report on the robustness of the approach by performing a simple starch extraction from a Russet potato and subjecting it to their process. (They noted that the use of the potato was simply illustrative, and that the use of food crops for fuel production should be avoided.)

More... | Comments (7)

Boeing, South African Airways and Mango celebrate Africa’s 1st commercial flights with sustainable aviation biofuel from tobacco

July 15, 2016

Boeing, South African Airways (SAA) and low-cost carrier Mango celebrated Africa’s first passenger flights with sustainable aviation biofuel. The flights coincided with Boeing’s 100th anniversary and centennial celebrations worldwide.

The SAA and Mango flights carried 300 passengers from Johannesburg to Cape Town on Boeing 737-800s using a blend of 30% aviation biofuel produced from Sunchem’s nicotine-free tobacco plant Solaris, refined by AltAir Fuels and supplied by SkyNRG. (Earlier post.)

More... | Comments (0)

Global Bioenergies, IBN-One and Lantmännen Aspen partner on renewable isooctane for specialty fuel applications

July 11, 2016

Global Bioenergies, IBN-One and Lantmännen Aspen, world market leader in alkylate gasoline for two- and four-stroke small engines, have entered into a partnership on renewable isooctane (earlier post) for specialty fuel applications.

Aspen is part of the Swedish Lantmännen group, an agricultural cooperative and Northern Europe’s leader in agriculture, machinery, bioenergy and food products with annual revenues of €3.4 billion (US$3.8 billion). In particular, Lantmännen Aspen’s commercial activities include specialty fuels for usage in two- and four-stroke small engines—e.g. chainsaws and lawn mowers—where the operator, machine and environment benefit from a cleaner fuel quality regarding harmful substances compared to regular gasoline.

More... | Comments (0)

Scripps research ship fueled by 100% NEXBTL renewable diesel for 1 year; emissions analysis

June 14, 2016

In 2014, Scripps Institution of Oceanography received a grant from the US Department of Transportation to test the use of biofuel on the research vessel Robert Gordon Sproul for more than a year. Spearheaded by Scripps Associate Director Bruce Appelgate and co-led by Scripps atmospheric scientist Lynn Russell, the biofuel project investigated the viability of using hydrotreated renewable diesel fuel (HRD) on a long-term basis.

The Scripps researchers originally wanted to test renewable biodiesel produced from algae, but no manufacturers made algal biodiesel in the volume needed. Appelgate was able to take advantage of a newly-established reliable supply chain for another type of biodiesel, a hydrogenation-derived renewable diesel (HDRD) —purchased from Neste Oil Corporation: NEXBTL Renewable Diesel.

More... | Comments (0)

New catalyst system for converting castor-oil-derived ricinoleic acid methyl ester into jet fuel; up to 90% carbon selectivity

June 13, 2016

Researchers at Beijing University of Chemical Technology have developed a catalytic process for the selective conversion of ricinoleic acid methyl ester—derived from castor oil—into jet fuel. A paper on their work is published in the RSC journal Green Chemistry.

A common challenge in bio-jet fuel production is the high cost due to the feedstock and processing technology. Although hydro-processing of lipid and fatty acid is well-known, the yield of jet fuel from typical lipid based oil with mainly C18 fatty acid is quite low (about 35–40%). The major reason for the low overall yield is the necessity of a hydrocracking step for converting the C18 or C16 alkane into jet fuel range paraffin (C9–C15), the researchers explained. A key improving lipid-to-jet production technology is thus to avoid the un-selective cracking.

More... | Comments (0)

New 3-step process for conversion of kraft lignin from black liquor into green diesel

June 01, 2016

Researchers in Sweden and Spain have devised a three-step process for the conversion of precipitated kraft lignin from black liquor into green diesel. Their paper appears in the journal ChemSusChem.

The kraft process converts wood into wood pulp for paper production. The process produces a toxic byproduct referred to as black liquor—a primarily liquid mixture of pulping residues (such as lignin and hemicellulose) and inorganic chemicals from the Kraft process (sodium hydroxide and sodium sulfide, for example). For every ton of pulp produced, the kraft pulping process produces about 10 tons of weak black liquor or about 1.5 tons of black liquor dry solids.

More... | Comments (0)

Clariant to scale-up catalysts for Gevo’s Ethanol-to-Olefins (ETO) technology; renewable diesel and hydrogen

May 19, 2016

Gevo, Inc. has entered into an agreement with Clariant Corp., one of the world’s leading specialty chemical companies, to develop catalysts to enable Gevo’s Ethanol-to-Olefins (ETO) technology.

Gevo’s ETO technology, which uses ethanol as a feedstock, produces tailored mixes of propylene, isobutylene and hydrogen, which are valuable as standalone molecules, or as feedstocks to produce other products such as diesel fuel and commodity plastics, that would be drop-in replacements for their fossil-based equivalents. ETO is a chemical process, not a biological process as is Gevo’s conversion of biomass to isobutanol.

More... | Comments (0)

China team directly synthesizes gasoline- and diesel-range alkanes from acetone from biomass

May 17, 2016

Researchers in China have directly synthesized gasoline- and diesel-range C6-C15 branched alkanes in high carbon yield (~80%) via the self-condensation of acetone and the subsequent hydrodeoxygenation over a dual-bed catalyst system. A paper on their work appears in the RSC journal Green Chemistry.

Acetone is a by-product in the production of bio-butanol via the acetone-butanol-ethanol (ABE) fermentation of lignocellulose. In a typical ABE fermentation, butanol, acetone and ethanol are produced at a weight ratio of 6:3:1.4 Acetone can also be produced by ketonization of acetic acid—a low-cost lignocellulosic platform compound which is obtained as a by-product in furfural production or from the fermentation of lignocellulose.

More... | Comments (5)

DOE awards up to $10M to 6 projects for non-food biomass and algal biofuels and biochemicals

May 16, 2016

The US Department of Energy is awarding up to $10 million in funding for six projects that will support the Bioenergy Technologies Office’s (BETO) work to develop renewable and cost-competitive biofuels and biochemicals from non-food biomass feedstocks by reducing the technical risk associated with potentially breakthrough approaches and technologies for investors.

The projects selected include the following:

More... | Comments (0)

DOE to award up to $90M for integrated biorefinery projects

May 07, 2016

The US Department of Energy (DOE) will award up to $90 million in project funding focused on designing, constructing and operating integrated biorefinery facilities. (DE-FOA-0001232)

“Project Development for Pilot and Demonstration Scale Manufacturing of Biofuels, Bioproducts, and Biopower” is a funding opportunity that will support efforts to improve and demonstrate processes that break down complex biomass feedstocks and convert them to gasoline, diesel and jet fuel, as well as plastics and chemicals.

More... | Comments (0)

U Mich study explores performance of renewable diesel, FT diesel and ULSD in PCCI combustion

May 03, 2016

A team at the University of Michigan has investigated the performance of three different fuels—ultralow sulfur diesel (ULSD), diesel fuel produced via a low temperature Fischer–Tropsch process (LTFT), and a renewable diesel (RD), which is a hydrotreated camelina oil under partially premixed compression ignition (PCCI) combustion. Their paper is published in the ACS journal Energy & Fuels.

Partially premixed compression ignition (PCCI) combustion is an advanced, low-temperature combustion mode that creates a partially premixed charge inside the cylinder before ignition occurs. PCCI prolongs the time period for mixing of the fuel–air mixture by separating the end of injection and start of combustion. As a result, NOx and particulate matter (PM) emissions can be reduced simultaneously relative to those of conventional diesel combustion.

More... | Comments (2)

Roland Berger study outlines integrated vehicle and fuels roadmap for further abating transport GHG emissions 2030+ at lowest societal cost

April 30, 2016

A new study by consultancy Roland Berger defines an integrated roadmap for European road transport decarbonization to 2030 and beyond; the current regulatory framework for vehicle emissions, carbon intensity of fuels and use of renewable fuels covers only up to 2020/2021.

The study was commissioned by a coalition of fuel suppliers and automotive companies with a view to identifying a roadmap to 2030+ to identify GHG abatement options at the lowest cost to society. The coalition comprises BMW, Daimler, Honda, NEOT/St1, Neste, OMV, Shell, Toyota and Volkswagen. Among the key findings of the study were:

More... | Comments (35)

New $30M ARPA-E program to produce renewable liquid fuels from renewable energy, air and water

April 26, 2016

The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) announced up to $30 million in funding for a new program for technologies that use renewable energy to convert air and water into cost-competitive liquid fuels. (DE-FOA-0001562)

ARPA-E’s Renewable Energy to Fuels through Utilization of Energy-dense Liquids (REFUEL) program seeks to develop technologies that use renewable energy to convert air and water into Carbon Neutral Liquid Fuels (CNLF). The program is focused in two areas: (1) the synthesis of CNLFs using intermittent renewable energy sources and water and air (N2 and CO2) as the only chemical input streams; and (2) the conversion of CNLFs delivered to the end point to another form of energy (e.g. hydrogen or electricity).

More... | Comments (2)

DOE to issue funding opportunity to develop plans for drop-in bio-hydrocarbon biorefinery

April 16, 2016

The US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) intends (DE-FOA-0001581) to issue, on behalf of the Bioenergy Technologies Office, a Funding Opportunity Announcement (DE-FOA-0001232) entitled “Project Definition for Pilot and Demonstration Scale Manufacturing of Biofuels, Bioproducts, and Biopower (PD2B3)”. The FOA will be issued on or about 2 May.

This FOA supports technology development plans for the manufacture of drop-in hydrocarbon biofuels, bioproducts, or biopower in a pilot- or demonstration-scale integrated biorefinery. Plans for facilities that use cellulosic biomass, algal biomass, or biosolids feedstocks will be considered under this funding opportunity.

More... | Comments (1)

JBEI team engineers E. coli for one-pot production of bio-jet fuel precursor from ionic-liquid-pretreated biomass

April 13, 2016

A team led by researchers at the DOE’s Joint BioEnergy Institute (JBEI) in Emeryville, CA, has engineered E. coli bacteria for the one-pot production of the monoterpene bio-jet fuel precursor D-limonene from ionic-liquid-pretreated cellulose and switchgrass. A paper on their work is published in the RSC journal Green Chemistry.

The ionic liquid 1-ethyl-3-methylimidazolium acetate is highly effective in deconstructing lignocellulose, but leaves behind residual reagents that are toxic to standard saccharification enzymes and the microbial production host. The JBEI researchers discovered a strain of E. coli that is tolerant to that ionic liquid due to a specific mutation. They engineered this strain to express a D-limonene production pathway.

More... | Comments (0)

Texas A&M-led team identifies synthetic hydrocarbon pathway in green alga B. braunii

April 07, 2016

The green microalga Botryococcus braunii is considered a promising biofuel feedstock producer due to its prodigious accumulation of hydrocarbon oils that can be converted into fuels. Now, a team led by researchers from Texas A&M AgriLife Research has identified the first committed step in the biosynthesis of hydrocarbon oil in B. braunii and has described a new enzyme which carries out this reaction.

The study, published as an open-access paper in the current issue of the journal Nature Communications, could enable scientists to use the enzyme in a plant to make large amounts of fuel-grade oil, according to Dr. Tim Devarenne, AgriLife Research biochemist in College Station and lead scientist on the team.

More... | Comments (1)

New energy-efficient process for direct conversion of biomass without pretreatment to liquid hydrocarbon fuels

April 01, 2016

A team from The University of Manchester and East China University has developed a process for the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane.

The superior performance of the catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. An open-access paper on their work is published in the journal Nature Communications.

More... | Comments (0)

New renewable hydrocarbon fuel pathway uses platform molecule acetoin produced by biomass fermentation

March 30, 2016

Researchers at Nanjing Tech University in China have developed a new pathway for the production of liquid hydrocarbon fuels from lignocellulose. The new Nanjing Tech process uses acetoin—a novel C4 platform molecule derived from new ABE (acetoin–butanol–ethanol)-type fermentation via metabolic engineering—as a bio-based building block for the production of the liquid hydrocarbon fuels.

In a paper published in the RSC journal Green Chemistry, the Nanjing Tech team reported producing a series of diesel or jet fuel range C9–C14 straight, branched, or cyclic alkanes in excellent yields by means of C–C coupling followed by hydrodeoxygenation reactions.

More... | Comments (1)

ASTM ballot greenlights approval of ATJ-SPK biojet from alcohol; Gevo 1st commercial test flight with Alaska Airlines

March 29, 2016

Renewable isobutanol company Gevo announced that the ASTM International Committee D02 on Petroleum Products, Liquid Fuels, and Lubricants and Subcommittee D02.J on Aviation Fuel passed a concurrent ballot this week approving the revision of ASTM D7566 (Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons) to include alcohol-to-jet synthetic paraffinic kerosene (ATJ-SPK) (the “D02.J Ballot”). (Earlier post.)

This approval prepares the way for the use of Gevo ATJ—as well as ATJ-SPK fuels produced by other manufacturers—in commercial operations. As previously announced, Alaska Airlines is now poised to fly the first commercial test flight using Gevo’s renewable ATJ-SPJ fuel. (Earlier post.) Gevo is preparing the shipment of ATJ to Alaska Airlines for this first flight. Alaska Airlines will work with the Federal Aviation Administration to schedule the flight using Gevo’s ATJ.

More... | Comments (0)

NREL updates Survey of Advanced Biofuel Producers in the United States

March 17, 2016

The National Renewable Energy Laboratory (NREL) updated its annual survey of US non-starch ethanol and renewable hydrocarbon biofuels producers. The 2015 Survey of Non-Starch Ethanol and Renewable Hydrocarbon Biofuels Producers provides an inventory of the domestic advanced biofuels production industry as of the end of calendar year 2015, documenting important changes (e.g., biorefinery development, production capacity, feedstock use, and technology pathways) that have occurred since the publication of the original 2013 survey.

During 2015, NREL surveyed 114 companies that were reported to be pursuing commercial-scale biofuel production capacity. Companies were classified as either non-starch (cellulosic or algae-derived) ethanol producers or renewable hydrocarbon producers. The questionnaire included topics such as facility stage of development, facility scale, feedstock, and biofuel products. The NREL team supplemented missing survey data elements (when possible) with publicly available data obtained directly from company websites, press releases, and public filings.

More... | Comments (0)

United Airlines begins commercial-scale use of renewable jet fuel; 15M gallons over 3-year period

March 12, 2016

United Airlines has become the first US airline to begin use of commercial-scale volumes of sustainable aviation biofuel for regularly scheduled flights, beginning with the departure of United Flight 708 from Los Angeles International Airport (LAX). The launch marks a milestone in the commercial aviation industry by moving beyond demonstration flights and test programs to the use of advanced biofuels for United’s ongoing revenue operations.

United has agreed to purchase up to 15 million gallons of sustainable biofuel from AltAir Paramount over a three-year period. The biofuel will be mixed with traditional jet fuel at a 30/70 blend ratio: 30% biofuel, 70% traditional fuel. The airline has begun using the biofuel in its daily operations at LAX, storing and delivering it in the same way as traditional fuel.

More... | Comments (0)

Government of Alberta awarding $10M to SBI Bioenergy for production of drop-in hydrocarbon fuels; funds from carbon levy

March 10, 2016

Using revenue from the price Alberta’s large emitters pay for releasing greenhouse gases, the Climate Change and Emissions Management Corporation (CCEMC) has earmarked a $10-million contribution for Alberta-based SBI BioEnergy to support a $20-million facility for the demonstration-scale production of drop-in, renewable diesel, jet and gasoline fuels from plant oils and waste fats.

With this investment, SBI will be able to produce 10 million liters (2.6 million gallons US) of renewable diesel fuel annually. This support works in concert with Alberta’s Renewable Fuels Standard which requires commercial fuel producers to blend renewable products into their fuels. SBI’s facility strengthens Alberta’s expanding industrial bio-product sector and gives Alberta farmers a new market for off-grade canola.

More... | Comments (3)

New highly selective catalytic process for conversion of vegetable oils to diesel-range alkanes under mild conditions

March 08, 2016

A team led by researchers from the University of Oxford has developed a simple but highly selective catalytic process for the direct hydrodeoxygenation of vegetable oils (triglycerides) into diesel-range alkanes under mild conditions over a Pd/NbOPO4 catalyst. As reported in their paper in the RSC journal Chemical Communications The mass yields of diesel-range alkanes from palm oil and soybean oil can approach to quantitative values.

A number of approaches are being developed and commercialized to convert vegetable oils into diesel fuels. The current primary commercial pathway is the production of first-generation biodiesel—the transesterification of triglycerides with methanol to form fatty acid methyl ester (FAME), with glycerol as the by-product.

More... | Comments (6)

New route to renewable diesel and jet from biomass-derived platform compounds

February 29, 2016

Researchers in China have developed a new route to the production of renewable diesel and jet fuel-range branched alkanes by combining the hydroxyalkylation/alkylation (HAA) of 2-methylfuran (MF)—a biomass-derived platform compound—with angelica lactone—another biomass-derived compound—and subsequent hydrodeoxygenation.

Under solvent-free conditions, the researchers obtained 81.3% yield of HAA products; after the HDO of the hydrogenated HAA products over 5 wt% Pd/C catalyst, they achieved 81.0% carbon yield of diesel or jet fuel-range alkanes. Compared to a 2-MF–levulinic acid (or ester) route proposed in their earlier work, the new 2-MF–angelica lactone route offers higher HAA reactivity.

More... | Comments (0)

Mercedes-Benz Trucks approves HVO renewable diesel for its medium- and heavy-duty engines; neat or blended

February 22, 2016

With immediate effect, Mercedes-Benz Trucks is granting approval for the use of Hydrotreated Vegetable Oil (HVO) renewable diesel for the in-line six-cylinder engine variants of the Mercedes-Benz OM 470, OM 471 (first generation) and OM 936 as well as the in-line four-cylinder variants of the OM 934 meeting the Euro VI emissions standard. The engines are designed as standard to make use of the new HVO fuel. The approval applies to all engine variants whatever their output category.

HVO is a renewable diesel produced from waste materials such as waste fat, used cooking oil and also oil from crop plants. The HVO raw material is sourced from controlled and certified cultivation facilities and as such does not compete with foodstuff production. A leading example is Neste’s NEXBTL.

More... | Comments (1)

Process for production of jet-range hydrocarbons from crude Jatropha oil using hydrogen produced in-situ from formic acid

February 16, 2016

A team at the Korea Institute of Energy Research has developed a catalytic process for the production of jet-range oxygen-free hydrocarbons from crude Jatropha oil, using hydrogen produced in-situ from formic acid.

In a fixed bed reaction using a mixture of crude Jatropha oil and formic acid, normal hydrocarbon in the range of C10–C18 (mostly C15 and C17) was the main product—about 97% in the liquid product—and the degree of deoxygenation was about 99.5%. A paper on their work is published in the journal Fuel.

More... | Comments (0)

DOE to award up to $11.3M for biomass-to-hydrocarbon biofuels pathways; MEGA-BIO

February 09, 2016

The US Department of Energy (DOE) will provide up to $11.3 million in funding to develop flexible biomass-to-hydrocarbon biofuels conversion pathways that can be modified to produce advanced fuels and/or products based on external factors, such as market demand. (DE-FOA-0001433: MEGA-BIO: Bioproducts To Enable Biofuels.)

These pathways can consist of a route to a platform chemical that could be converted to products or renewable hydrocarbon fuels or a route that co-produces chemicals and renewable hydrocarbon fuels.

More... | Comments (1)

UCR team advances direct production of chemical and fuel precursors in yeast

January 28, 2016

A team led by a researcher at the University of California, Riverside has adapted the CRISPR-Cas9 gene editing system for use in a yeast strain that can produce useful lipids and polymers. The development will lead to new precursors for biofuels, specialty polymers, adhesives and fragrances.

Published recently in an open-access paper in the journal ACS Synthetic Biology, the research involves the oleaginous (oil-producing) yeast Yarrowia lipolytica, which is known for converting sugars to lipids and hydrocarbons that are difficult to make synthetically. Until now, Y. lipolytica has been hard to manipulate at the genetic level, but the application of CRISPR-Cas9 will change that, allowing scientists to tap into its bio-manufacturing potential.

More... | Comments (0)

Oslo Airport first to supply Air BP renewable biojet via main fuel hydrant system; initial batch from Neste

January 23, 2016

In a first for commercial aviation, Air BP, together with Norwegian airport operator Avinor, and sustainable biofuel specialist SkyNRG, announced that all airlines landing at Oslo Airport can have jet biofuel delivered from the airport’s main fuel farm, via the existing hydrant mechanism.

Lufthansa Group was the first airline to confirm that it will uplift the Air BP aviation biofuel at Oslo, and began by refueling an Airbus A320 aircraft. Further airlines including Scandinavian national carrier SAS and KLM Royal Dutch Airlines confirmed they will also purchase jet biofuel at Oslo.

More... | Comments (1)

Tesoro to support development of renewable biocrude for its refineries; Fulcrum, Virent, Ensyn partners

January 22, 2016

Tesoro Corporation plans to foster the development of biocrude, made from renewable biomass, which can be co-processed in its existing refineries along with conventional fossil crude oil to produce lower-carbon drop-in fuels.

Tesoro expects that converting renewable biomass into biocrude will enable existing refining assets to produce fuels with lower carbon intensities (CIs) at a significantly lower capital and operating cost than competing technologies. This could lower Tesoro’s compliance costs with the federal renewable fuel standard (RFS) and California’s low carbon fuel standard (LCFS) by generating credits, while producing fuels fully compatible with the nation’s existing fuel infrastructure as well as current vehicle fleet warranties.

More... | Comments (2)

New one-pot high-yield “high-gravity” process for cellulosic ethanol; potential for drop-in fuels

January 14, 2016

Researchers with the US Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have developed a “high-gravity” one-pot process for producing ethanol from cellulosic biomass that gives unprecedented yields while minimizing water use and waste disposal. “High gravity” means high biomass loading—the higher the biomass loading, the lower the costs for converting it to fuels.

The process utilizes a combination of ionic liquid pretreatment, enzymatic saccharification, and yeast fermentation for the production of concentrated fermentable sugars that result in high-titer cellulosic ethanol. Details on this one-pot process for producing ethanol from cellulosic biomass have been reported in the RSC journal Energy and Environmental Science.

More... | Comments (1)

Global Bioenergies and Lanzatech strengthen cooperation to broaden feedstock flexibility of renewable isobutene process

January 11, 2016

Global Bioenergies and LanzaTech have signed a new collaboration agreement to broaden the feedstock flexibility of Global Bioenergies’ renewable isobutene process and the product-portfolio of LanzaTech’s carbon capture technology. (Earlier post.)

Global Bioenergies has developed a process in which a microorganism can produce isobutene from renewable feedstock via the fermentation of sugars. Whereas the company’s primary focus has historically been to use industrial-grade or waste-derived sugars as feedstocks, the technological maturity of the process now allows consideration of a broader range of feedstocks, including non-biomass-derived sources of carbon.

More... | Comments (0)

Testing shows Virent SAK bio-jet provides more than 50% reduction in PM emissions while maintaining engine performance

January 07, 2016

Bio-jet emissions testing by Rolls-Royce, supported by the Federal Aviation Administration (FAA) under the Continuous Lower Energy, Emissions, and Noise (CLEEN) program, has confirmed that jet fuels containing Virent’s BioForm Synthesized Aromatic Kerosene (SAK) fuel blend produced a greater than 50% reduction in particulate matter emissions compared to conventional jet fuel.

The testing thus verified the potential for the SAK fuel to reduce the adverse environmental impact and health effects resulting from jet fuel combustion. The emissions data and other successfully completed test results have been summarized in a report released by Rolls-Royce, British Airways, and the FAA.

More... | Comments (2)

Global Bioenergies widens cooperation with Audi; new agreement to broaden feedstocks for bio-isobutene to isooctane process

January 04, 2016

Global Bioenergies and Audi have signed a new collaboration agreement (earlier post) to further broaden the feedstock flexibility of Global Bioenergies’ bio-isobutene process, which uses fermentation of sugars.

The two companies last year announced the delivery by Global Bioenergies to Audi of a first batch of bio-isobutene-derived iso-octane, a premium drop-in fuel for gasoline engines. (Earlier post.) Global Bioenergies had produced isobutene using its pilot plant located on the agri-business site of Pomacle, France. The isobutene was then shipped to Germany and converted into isooctane.

More... | Comments (0)

Fulcrum BioEnergy files LCFS application for municipal solid waste to FT diesel pathway with low CI of 37.47 g/MJ

January 03, 2016

Fulcrum BioEnergy, the parent company of Fulcrum Sierra BioFuels, has applied for a new fuel pathway under the California Low Carbon Fuel Standard (LCSF) for its process of converting municipal solid waste (MSW) into Fischer-Tropsch (“FT”) diesel fuel.

The California LCFS mandates a 10% reduction by 2020 in the carbon intensity (CI) of transportation fuels. The program requires that transportation fuels used in California meet a baseline target for carbon intensity which is reduced each year. For 2016, the target for diesel and diesel substitutes is 99.97 gCO2e/MJ (Earlier post.) Fulcrum is requesting a CI of 37.47 g/MJ for its MSW-to-FT diesel.

More... | Comments (8)

Large-scale reaction screening study of advanced cellulosic biofuel pathways finds ethyllevulinate and 2-MTHF promising alternatives to ethanol

December 30, 2015

A team at RWTH Aachen University has identified ethyllevulinate and 2-methyltetrahydrofuran as promising alternatives to cellulosic bioethanol with respect to cost and environmental impact based on a large-scale reaction screening study.

In addition, the study of 97 reactions for 23 advanced biofuel candidates found that lignin-based biofuels can be excluded from further consideration and that methane, while attractive economically, shows significant environmental impact. The paper on their work is published in the ACS journal Energy & Fuels.

More... | Comments (1)

Study shows branched ketone biofuels derived from alcohols have potential for use in aviation fuel blends

December 25, 2015

Researchers at the University of Bath (UK) have demonstrated that branched ketone biofuels produced from the alkylation of isoamyl alcohol and isobutanol with acetone have the potential to be used as blending agents with Jet A-1 fuel. A paper on their work is published in the ACS journal Energy & Fuels.

Although the technology to produce cellulosic ethanol is becoming established, ethanol’s low energy density and high affinity for water have led to the development of higher energy density alochol alternatives such as n-butanol, isoamyl alcohol, and isobutanol. However, the water affinity, low flash point, and low boiling point still make these compounds unsuitable for aviation use without further upgrading.

More... | Comments (3)

DOE to issue MEGA-BIO funding opportunity for drop-in renewable hydrocarbon fuels from biomass with a focus on byproducts

December 23, 2015

The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Bioenergy Technologies Office (BETO), a Funding Opportunity Announcement (FOA) entitled “MEGA-BIO: Bioproducts to Enable Biofuels” (DE-FOA-0001434). This FOA supports BETO’s goal of meeting its 2022 cost target of $3/gallon gasoline equivalent (gge) for the production of hydrocarbon fuels from lignocellulosic biomass.

Previously, BETO has focused on conversion pathways that produce biofuels, with little or no emphasis on coproducing bioproducts. As BETO increasingly focuses on hydrocarbon fuels, it is examining strategies that capitalize on revenue from bioproducts as part of cost-competitive biofuel production.

More... | Comments (3)

USPTO awards patent to UMD team for process to make gasoline through fermentation; electrofuels

December 22, 2015

The US Patent and Trademark Office issued patent Nº 9,217,161 for a process using naturally occurring microorganisms to ferment biomass or gases directly to hydrocarbons such as hexane and octane. The fuels separate and rise to the surface of the fermentation broth, and are exactly the same as current components of gasoline.

The inventors are Professor Richard Kohn and Faculty Research Associate Dr. Seon-Woo Kim from the University of Maryland (UMD). The team was awarded a separate patent earlier this year (9,193,979) for ethanol-tolerant microorganisms that convert cellulosic biomass to ethanol. (Earlier post.) Both processes were developed based on their theory, described in in a paper published in the Journal of Theoretical Biology, that fermentation systems drive toward thermodynamic equilibrium.

More... | Comments (1)

$3M UK project to develop low-carbon aviation fuels from captured CO2 and waste biomass

Heriot-Watt University in the UK will lead a £2-million (US$3-million) project (EP/N009924/1) to develop low-carbon aviation fuels from captured CO2 and waste biomass. The multi-disciplinary project, funded by the Engineering and Physical Sciences Research Council (EPSRC) will be led by Heriot-Watt engineers and scientists in conjunction with teams from Aston and Oxford Universities and the University of Edinburgh.

The project aims to produce low-carbon synthetic aviation jet fuel using renewable energy from waste agricultural and forestry biomass and captured CO2. The project team will use integrated chemistry (a bottom-up method to develop novel catalysts and electrodes) and engineering (a top-down method to tailor heat and mass transport parameters influencing reaction conditions) with a focus on high selective and efficient jet fuel production.

More... | Comments (2)

Port of Seattle partners with Alaska Airlines and Boeing to supply sustainable aviation biofuel at Sea-Tac Airport

December 18, 2015

The Port of Seattle, Alaska Airlines and Boeing are partnering to move toward powering all flights by all airlines at Seattle-Tacoma International Airport with sustainable aviation biofuel. Sea-Tac is the first US airport to lay out a long-term roadmap to incorporate aviation biofuel into its infrastructure in a cost-effective, efficient manner.

At the Sea-Tac fuel farm earlier this week, executives for the port, Alaska Airlines, and Boeing signed a Memorandum of Understanding (MOU) to launch a $250,000 Biofuel Infrastructure Feasibility Study that will assess costs and infrastructure necessary to deliver a blend of aviation biofuel and conventional jet fuel to aircraft at Sea-Tac.

More... | Comments (0)

Hydrogen from biomethane; gasoline & diesel from tree residue; cellulosic ethanol among new proposed California LCFS fuel pathways

California Air Resources Board (ARB) staff posted 32 new Low Carbon Fuel Standard (LCFS) fuel pathway applications for comments at the LCFS website. Among the multiple applications for different processing pathways of corn or sorghum ethanol are four pathways from LytEn for hydrogen produced from biomethane; four pathways for renewable gasoline and diesel produced from tree residue from Ensyn; and one application for cellulosic ethanol using corn stover feedstock from POET.

The LCFS is a regulation to reduce the carbon intensity (CI) of fuels sold in California by 10% by 2020. The LCFS applies to liquid and non-liquid fuels. If a product is above the annual carbon intensity target, the fuel incurs deficits. If a product is below that target, the fuel generates credits which may be used later for compliance, or sold to other producers who have deficits. So far, fuel producers are over-complying with the regulation. (Earlier post.)

More... | Comments (11)

HeidelbergCement and Joule partnering to explore carbon-neutral fuel application in cement manufacturing

December 14, 2015

Joule, a pioneer in the production of liquid fuels from recycled CO2, and HeidelbergCement, a German multinational building material company, are partnering to explore application of Joule’s technology to mitigate carbon emissions in cement manufacturing. Cement manufacturing is highly energy and emissions intensive, currently contributing about 6% of global CO2 (Zhang et al. 2014).

As part of the agreement, emissions (or offtake gas) from various HeidelbergCement factories could provide Joule with the waste CO2 required to feed its advanced Helioculture platform that effectively recycles CO2 back into fuel.

More... | Comments (0)

IH2 biomass to drop-in fuels technology demonstration plant to be built in India

December 13, 2015

Shell India Markets Pvt Ltd (SIMPL) will proceed with the installation of a 5 tonne/day IH2 technology demonstration plant on the site of SIMPL’s new Technology Centre in Bangalore, India. SIMPL will build, operate and own the demonstration scale IH2 plant. IH2 technology is a continuous catalytic thermo-chemical process which converts a broad range of forestry/agricultural residues and municipal wastes directly into renewable hydrocarbon transportation fuels and/or blend stocks. (Earlier post.)

The IH2 technology was developed by US-based Gas Technology Institute in 2009 and is being further developed in collaboration with CRI Catalyst Company (CRI), Shell’s Catalyst business. CRI will supply the proprietary catalysts for the unit. The Basic Engineering Package for the plant will be provided by Zeton, Inc. of Ontario, Canada.

More... | Comments (1)

New catalytic process to convert lignin into jet-range hydrocarbons

December 11, 2015

Researchers at Washington State University (WSU) Tri-Cities have developed a catalytic process to convert corn stover lignin into hydrocarbons (C7–C18)—primarily C12–C18 cyclic structure hydrocarbons in the jet fuel range. The work is featured on the cover of the December issue of the RSC journal Green Chemistry.

The developer of the process, Bin Yang, an associate professor of biological systems engineering at WSU and his team are working with Boeing Co. to develop and test the hydrocarbons targeted to be jet fuel. Yang has filed for a patent on the process, with WSU as the assignee.

More... | Comments (1)

UMass Amherst computationl chemist to optimize zeolite biofuel production catalysts; more gasoline, less coke

December 09, 2015

University of Massachusetts Amherst computational chemist Scott Auerbach has been awarded a three-year, $330,000 grant from the National Science Foundation to improve basic understanding and optimize the catalytic process of producing fuels such as gasoline from plant biomass instead of from petroleum.

The study involves theoretical calculations aimed at understanding the complex catalysis involved in converting biomass-derived organic compounds to liquid fuel precursors in the confined spaces of zeolites while avoiding deactivation due to coke formation. Auerbach will employ a novel theoretical approach and benchmark it against experimental data.

More... | Comments (1)

Green Car Congress © 2016 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group