Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Bio-hydrocarbons

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

BA and Solena Fuels to build GreenSky landfill-waste-to-jet-fuel plant in Thurrock; completion in 2017

April 16, 2014

Solena
Solena’s IBGTL solution consists of five integrated processing “islands”: (i) Solena’s proprietary high-temperature gasification; (ii) BioSynGas conditioning; (iii) Fischer-Tropsch processing; (iv) FT wax upgrading; and (v) Power production. Click to enlarge.

British Airways and its partner Solena Fuels announced that the UK GreenSky facility to convert landfill waste into jet fuel (earlier post) will be built in Thames Enterprise Park, part of the site of the former Coryton oil refinery in Thurrock, Essex. The site has excellent transport links and existing fuel storage facilities. One thousand construction workers will be hired to build the facility which is due to be completed in 2017, creating up to 150 permanent jobs.

The plant will convert approximately 575,000 tonnes of post-recycled waste, normally destined for landfill or incineration into 120,000 tonnes of clean burning liquid fuels using Solena’s Integrated Biomass-Gas to Liquid (IBGTL) technology. British Airways has committed to purchasing, at market competitive prices, the jet fuel produced by the plant for the next 11 years which equates to about $550 million at today’s prices. It is also providing construction capital and becoming a minority share holder in GreenSky.

More... | Comments (2) | TrackBack (0)

DOE issues draft loan solicitation for up to $4B for renewable energy and energy efficiency projects; drop-in biofuels a key area

The US Department of Energy (DOE) issued a draft loan guarantee solicitation for renewable energy and energy efficiency projects located in the US that avoid, reduce, or sequester greenhouse gases. The Renewable Energy and Efficient Energy Projects Loan Guarantee solicitation is intended to support technologies that will have a catalytic effect on commercial deployment of future projects, are replicable, and are market ready.

When finalized, the solicitation is expected to make as much as $4 billion in loan guarantees available to help commercialize technologies that may be unable to obtain full commercial financing.

More... | Comments (4) | TrackBack (0)

DOE announces $10M for upgrading technologies for production of renewable drop-in fuels

The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) announced up to $10 million in funding to advance the development, improvement and demonstration of integrated biological or chemical upgrading technology for the production of substitutes for petroleum‐based feedstocks, products and fuels. (DE-FOA-0001085).

The DOE’s Bioenergy Technologies Office (BETO) has funded research on biochemical conversion processes since 2007, with particular focus on the development of improved cellulases and fermentative organisms for ethanol production from cellulosic feedstocks. EERE is seeking to diversify the BETO portfolio to include a variety of chemical and biological upgrading technologies for the production of a suite of hydrocarbon fuels, fuel intermediates and chemicals (beyond ethanol) to be produced in an integrated fashion from biologically or chemically derived intermediate feed streams, such as but not limited to cellulosic sugars, lignocellulose derivatives, lignin, cellulosic alcohols, bio‐solids and biogases.

More... | Comments (0) | TrackBack (0)

ARB posts 5 new LCFS pathways; two renewable diesel

April 15, 2014

California Air Resources Board (ARB) staff has posted five new and one revised Low Carbon Fuel Standard (LCFS) fuel pathway applications to the LCFS public comment website. The new pathways include two renewable diesel pathways; two biodiesel pathways, and one corn ethanol pathway. The revised package is for corn oil biodiesel.

The renewable diesel proposals both come from Diamond Green Diesel (DGD) in Louisiana, using used cooking oil (UCO) as a feedstock; the proposals differ in the mode of shipment to California: one by rail, one by ship.

More... | Comments (0) | TrackBack (0)

Navy researchers test direct sugar-to-hydrocarbon fuel (farnesene) in multiple engines

April 09, 2014

A team from the US Naval Academy and the US Navy have tested a Direct Sugar to Hydrocarbon (DSH) biosynthetic fuel in multiple diesel engines. Their results, reported in a paper presented at the SAE World Congress in Detroit, show that DSH meets all three of their proposed combustion acceptance metrics.

Further, they determined that a 50/50 blend of DSH and F76 (the Navy standard distillate primary fuel for propulsion and power generation) is fit for use in compression ignition engines and an acceptable candidate blend to continue with full-scale diesel engine qualification testing.

More... | Comments (0) | TrackBack (0)

US Navy demos recovery of CO2 and production of H2 from seawater, with conversion to liquid fuel; “Fuel from Seawater”

April 08, 2014

Researchers at the US Naval Research Laboratory (NRL), Materials Science and Technology Division have demonstrated novel NRL technologies developed for the recovery of CO2 and hydrogen from seawater and their subsequent conversion to liquid fuels. Flying a radio-controlled replica of the historic WWII P-51 Mustang red-tail aircraft (of the legendary Tuskegee Airmen), NRL researchers Dr. Jeffrey Baldwin, Dr. Dennis Hardy, Dr. Heather Willauer, and Dr. David Drab used a novel liquid hydrocarbon fuel to power the aircraft’s unmodified two-stroke internal combustion engine.

The test provides a proof-of-concept for an NRL-developed process to extract CO2 and produce hydrogen gas from seawater, subsequently catalytically converting the CO2 and H2 into fuel by a gas-to-liquids process. The potential longer term payoff for the Navy is the ability to produce fuel at or near the point of use when it is needed, thereby reducing the logistics tail on fuel delivery, enhancing combat capabilities, and providing greater energy security by fixing fuel cost and its availability.

More... | Comments (36) | TrackBack (0)

Lawrence Livermore, JBEI researchers engineer bacteria with tolerance to ionic liquids for enhanced production of advanced biofuels

March 26, 2014

Researchers from Lawrence Livermore National Laboratory in conjunction with the Joint BioEnergy Institute (JBEI) have engineered tolerance to ionic liquids (ILs)—used for biomass pretreatment, but generally toxic to bacteria—into biofuel-producing bacteria.

The results, reported in an open access paper in Nature Communications are likely to eliminate a bottleneck in JBEI’s biofuels production strategy, which relies on ionic liquid pretreatment of cellulosic biomass. The research also demonstrates how the adverse effects of ionic liquids can be turned into an advantage, by inhibiting the growth of other bacteria.

More... | Comments (1) | TrackBack (0)

Engine testing shows environmental and performance benefits of hydrotreated vegetable oil as renewable diesel fuel

March 25, 2014

Kim1
Comparison of power loss and fuel consumption among BD, HVO and iso-HVO. Source: Kim et al. Click to enlarge.

Researchers in South Korea from SK Innovation and Chungbuk National University compared the engine and emissions performance of 16 different blends of petro-diesel, biodiesel (BD), hydrotreated vegetable oil (HVO, i.e., drop-in renewable diesel); and iso-HVO (isomerized-hydrotreated vegetable oil) on an engine dynamometer and chassis dynamometer with a 1.5-liter diesel engine and passenger car.

The results, reported in a paper in the journal Fuel, show that iso-HVO has much better engine performance than BD and slightly better than HVO, but slightly worse than petro-diesel. On the emissions side, iso-HVO and HVO blended diesel emit less THC and CO than BD, even though iso-HVO blended diesel emits similar level of NOx and PM to blended BD. All three kinds biofuels at 50% blend ratios showed a decrease of particle concentrations at all size ranges compared to petro-diesel.

More... | Comments (0) | TrackBack (0)

Cellulosic fuels company KiOR reveals “substantial doubts” about its viability; funding needed by 1 April

March 19, 2014

In its Form 10-K (annual report) filed with the SEC on 17 March, cellulosic renewable fuels company KiOR said it has “substantial doubts about [its] ability to continue as a going concern”. Ongoing viability will require additional capital to provide additional liquidity. (Earlier post.)

On 16 March, the company received a $25-million investment commitment from Vinod Khosla (one of the company’s investors), conditioned on the achievement of certain performance milestones to be mutually agreed upon. Other than that commitment, however, Kior said it has no other near-term sources of financing. Kior said that if it is unsuccessful in finalizing definitive documentation with Khosla on or before 1 April 2014—i.e., in two weeks—it will not have adequate liquidity to fund operations and meet obligations (including debt payment obligations), and would not expect other sources of financing to be available.

More... | Comments (0) | TrackBack (0)

Vertimass licenses ORNL ethanol-to-hydrocarbon conversion technology; overcoming the blend wall with drop-in fuels

March 07, 2014

Vertimass LLC, a California-based start-up company, has licensed an Oak Ridge National Laboratory (ORNL) technology that directly converts ethanol under moderate conditions at one atmosphere without the use of hydrogen into a hydrocarbon blend-stock for use in transportation fuels.

The technology developed by ORNL’s Chaitanya Narula, Brian Davison and Associate Laboratory Director Martin Keller uses an inexpensive zeolite catalyst to transform ethanol into a blend-stock consisting of a mixture of C3 – C16 hydrocarbons containing paraffin, iso-parrafins, olefins, and aromatic compounds with a calculated motor octane number of 95. Fractional collection of the fuel product allows for the different fractions to be used as blend-stock for gasoline, diesel, or jet fuel.

More... | Comments (8) | TrackBack (0)

Fleet testing shows UPM renewable diesel from wood biomass performs as well as petroleum diesel

March 03, 2014

The first fleet tests of UPM’s BioVerno renewable diesel have shown that the fuel works in cars just as well as any conventional petroleum diesel. The fleet tests, conducted by the VTT Technical Research Center of Finland, were started in May last year and ran until early 2014. (Earlier post.)

The UPM BioVerno diesel fleet tests focused on investigating UPM’s renewable diesel in terms of fuel functionality in engine and fuel consumption. The tests were conducted with a fuel blend including 20% UPM BioVerno and 80% fossil diesel. With this blend fuel consumption matched the consumption of fossil diesel.

More... | Comments (1) | TrackBack (0)

Neste Oil and DONG Energy partner on renewable diesel and jet fuels from ag residues via microbial oil

February 28, 2014

Neste Oil, the world’s largest producer of premium-quality renewable fuels, is working with DONG Energy, one of the leading energy groups in Northern Europe, to develop an integrated process to produce renewable diesel and aviation fuel derived from agricultural residues.

DONG Energy’s Inbicon technology will be used in the first part of the process to pre-treat biomass and produce cellulosic sugars that can then be converted into microbial oil with Neste Oil’s technology (earlier post). Microbial oil can be used as a feedstock for Neste’s NExBTL process for premium-quality renewable fuels such as renewable diesel and renewable aviation fuel.

More... | Comments (2) | TrackBack (0)

DOE to issue funding opportunity for bioenergy technologies; outliers to current multi-year program plan

February 13, 2014

The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Bioenergy Technologies Office (BETO), a Funding Opportunity Announcement (DE-FOA-0000974) entitled “Bioenergy Technologies Incubator”.

BETO’s mission is to engage in R&D and demonstration at increasing scale activities to transform renewable biomass resources into commercially viable, high-performance biofuels, and bioproducts and biopower that enable biofuel production. To accomplish this mission, BETO develops a multi-year program plan (MYPP) to identify the technical challenges and barriers that need to be overcome. These technical challenges and barriers form the basis for BETO to issue funding opportunities announcements (FOAs) for financial assistance awards in these specific areas.

More... | Comments (0) | TrackBack (0)

Navigant Research forecasts 58% growth in global biofuels consumption by 2022; biodiesel and drop-in fuels gain market share

February 05, 2014

In a new report, “Biofuels for Transportation Markets”, Navigant Research forecasts that global demand for biofuels in the road transportation sector will grow from representing almost 6% of the liquid fuels market in 2013 to roughly 8% by 2022. Of that 8%, 8% will consist of advanced drop-in fuels, according to the research firm. Navigant forecasts that global biofuels consumption in the road transportation sector will grow from more than 32.4 billion gallons per year (BGPY) in 2013 to more than 51.1 BGPY in 2022—an increase of 58%.

Overall, Navigant forecasts that global retail sales of all liquid fuels for the road transportation sector will grow from more than $2.6 trillion in 2013 to more than $4.5 trillion in 2022 (73% growth).

More... | Comments (2) | TrackBack (0)

UC Davis process produces gasoline-range hydrocarbons from biomass-derived levulinic acid; field-to-tank yield of >60% claimed

February 04, 2014

Mascal
GC-MS chromatogram of the liquid products obtained after hydrodeoxygenation of angelica lactone dimer. Source: Mascal et al. SI. Click to enlarge.

Researchers at the University of California, Davis have developed a process for the production of branched C7–C10 hydrocarbons in the gasoline volatility range from biomass-derived levulinic acid with good yield, operating under relatively mild conditions, with short reaction times.

Considering that levulinic acid is available with more than 80% conversion from raw biomass, a field-to-tank yield of drop-in, cellulosic gasoline of more than 60% is possible, the researchers claimed. A paper on their work is published in the journal Angewandte Chemie International Edition; UC Davis has filed provisional patents on the process, and is making it available for licensing.

More... | Comments (6) | TrackBack (0)

Audi testing finds e-ethanol and e-diesel produced by Joule often perform better than conventional counterparts

February 03, 2014

AT140076_medium
Audi investigating its e-fuels in an optical research engine using laser-induced fluorescence. Click to enlarge.

Audi testing of synthetic ethanol (Audi e-ethanol = Joule Sunflow-E) and synthetic diesel (Audi e-diesel = Joule Sunflow-D), produced in partnership with Joule (earlier post) in a pressure chamber and optical research engine has shown that the Audi e-fuels often perform better than their conventional counterparts.

Joule’s Helioculture platform uses engineered microorganisms directly and continuously to convert sunlight and waste CO2 into infrastructure-ready fuels, including ethanol and hydrocarbons (n-alkanes) that serve as the essential chemical building blocks for diesel.

More... | Comments (1) | TrackBack (0)

Renewable Energy Group acquires drop-in renewable fuels company LS9 for up to $61.5 million

January 24, 2014

Biodiesel producer Renewable Energy Group, Inc. (REG) has acquired LS9, Inc., a synthetic biology company developing fermentation-derived drop-in renewable fuels and chemicals (earlier post), for a purchase price of up to $61.5 million, consisting of up front and earnout payments, in stock and cash. Most of the LS9 team, including the entire R&D leadership group, will join the newly named REG Life Sciences, LLC, which will operate out of LS9’s headquarters in South San Francisco, CA.

Under the terms of the agreement, REG paid $15.3 million in cash and issued 2.2 million shares of REG common stock (valued at approximately $24.7 million based on a trading average for REG stock) at closing. In addition, REG may pay up to $21.5 million in cash and/or shares of REG common stock consideration for achievement of certain milestones over the next five years related to the development and commercialization of products from LS9’s technology.

More... | Comments (0) | TrackBack (0)

Boeing, UAE partners make progress with oilseed halophytes as feedstock for renewable jet fuel; desert plants fed by seawater

January 23, 2014

Boeing and research partners in the United Arab Emirates have made breakthroughs in sustainable aviation biofuel development, finding that desert plants fed by seawater (the oilseed-producing halophyte Salicornia bigelovii) can produce biofuel more efficiently than other well-known feedstocks. (Earlier post.) The Sustainable Bioenergy Research Consortium (SBRC), affiliated with the Masdar Institute of Science and Technology in Abu Dhabi, will test these findings in a project that could support biofuel crop production in arid countries, such as the UAE.

S. bigelovii is a leafless, C3, succulent annual salt marsh plant that produces an oilseed on seawater irrigation in coastal desert environments; the oil from the seeds is suitable for biofuel production. Yields on seawater are similar to conventional oilseeds under ideal conditions. SBRC research also found that the entire shrublike plant (i.e., its lignocellulosic biomass as well as the the oil) can be turned into biofuel effectively.

More... | Comments (6) | TrackBack (0)

Global Bioenergies to collaborate with Audi on development of drop-in bio-isooctane

January 21, 2014

Global Bioenergies (GBE), a leading developer of one-step fermentation processes for the direct and cost-efficient transformation of renewable resources into light olefins (earlier post), has signed a collaboration agreement with Audi on the development of bio-isooctane—a high-performance drop-in biofuel for gasoline engines—derived from bio-isobutene. In 2011, GBE had announced an agreement “with a major German car manufacturer” regarding an undisclosed application of GEB’s technology. (Earlier post.)

Under the agreement, GBE will supply Audi with isooctane derived from isobutene produced at its new pre-commercial pilot system at the Fraunhofer CBP in Leuna. (Earlier post.) During the two-year collaboration, this agreement also foresees the possibility for Audi to acquire shares of Global Bioenergies corresponding to less than 2% of its capital.

More... | Comments (1) | TrackBack (0)

California Energy Commission to award up to $24M for new biofuel projects

January 17, 2014

The California Energy Commission announced the availability of up to $24 million in grant funds for the development of new, or the modification of existing, California-based biofuel production facilities that can sustainably produce low-carbon transportation fuels. (PON-13-609) Eligible biofuels are diesel substitutes, gasoline substitutes, and biomethane as defined in the solicitation.

The allocation of funds by fuel category is: Diesel Substitutes – $9.0 million; Gasoline Substitutes – $9.0 million; and Biomethane – $6.0 million. The Energy Commission will conduct two rounds of scoring. The first round of scoring will fund at least $4.027 million in passing projects; remaining funds will be applied to the second round of scoring.

More... | Comments (1) | TrackBack (0)

Boeing proposing direct blending of renewable diesel in jet fuel; seeking approval this year

January 16, 2014

Boeing is working with the US Federal Aviation Administration (FAA) and other stakeholders to gain approval for the direct blending of renewable “green” diesel into aviation fuel, thereby further reducing the aviation industry's carbon emissions.

Renewable diesel made using oils and fats is chemically similar to today’s aviation biofuels, according to Boeing analysis. If approved, the fuel would be blended directly with traditional jet fuel. A blend percentage would be established through the testing and review/approvals process, according to Jessica Kowal in Boeing’s Environmental Communications. The company’s internal goal is to see this approved this year.

More... | Comments (0) | TrackBack (0)

KiOR halts cellulosic fuels production at Columbus in Q1 to optimize production; need for R&D to boost yield and cut costs

January 13, 2014

In a conference call on Friday, KiOR President and CEO Fred Cannon said that the company will halt production of cellulosic gasoline, diesel and fuel oil at its plant in Columbus, Mississippi in order to implement a number of optimization projects it identified as necessary—based on its experience in 2013—to optimize production to enhance yield, throughput and operability and to minimize cost.

In December 2013, Cannon had said that KiOR would operate the Columbus plant “on a limited campaign basis only” to verify the impact of improvements. (Earlier post.) In the Friday call, he said that the company would only operate the Columbus facility during Q1 “only to the extent we want to test and prove optimization projects.” The current execution plan for 2014 is to focus exclusively on bringing the plant to its nameplate basis, and further to develop yield and process efficiency through R&D.

More... | Comments (6) | TrackBack (0)

Sandia study finds meeting RFS2 requirements unlikely without stronger enforcement mechanism; the importance of drop-in biofuels

January 06, 2014

Even if well-known technology, infrastructure, economic and political challenges in meeting the biofuel requirements of the RFS2 mandate are overcome, it is “highly unlikely” that the light-duty vehicle parc will be capable of consuming the RFS2 (Renewable Fuel Standard) mandated volumes of biofuels, according to a new analysis by a team from Sandia National Laboratory.

The Sandia researchers showed that the key to meeting the RFS2 targets is the fuel price differential between E85 fuel and conventional gasoline (low ethanol blends), so that E85 owners refuel with E85 whenever possible. In other words, RFS2 will be satisfied if gasoline becomes significantly more expensive than E85 on a per energy basis. This is, however, the opposite of historic pricing trends, and suggests that policy intervention of a stronger enforcement mechanism will be required to meet RFS2 targets by creating market conditions necessary for greater biofuel consumption.

More... | Comments (2) | TrackBack (0)

KiOR expects to produce 920K gallons of cellulosic biofuels by year end; short-term focus on economics

December 24, 2013

Cellulosic gasoline and diesel company KiOR, Inc. expects that, given current and anticipated operations through the remainder of the year, its Columbus, Mississippi facility will produce approximately 410,000 gallons of renewable fuel during the fourth quarter of 2013, bringing full year production total from the facility to approximately 920,000 gallons. (Earlier post.) The ratio between gasoline, diesel and fuel oil expected to be produced during the year is approximately 35% gasoline, 40% diesel, and 25% fuel oil.

In August, the US Environmental Protection Agency (EPA) finalized the 2013 percentage standards for four fuel categories that are part of the Renewable Fuel Standard (RFS) program. With the final 2013 overall volumes and standards requiring 16.55 billion gallons of renewable fuels to be blended into the US fuel supply (a 9.74% blend), EPA projected 6 million gallons (0.004%) of cellulosic biofuels. Of that, EPA projected the bulk to come from the KiOR Columbus plant (5-6 million gallons of renewable gasoline and diesel).

More... | Comments (1) | TrackBack (0)

US Army flies Black Hawk with 50:50 isobutanol-derived alcohol-to-jet fuel blend

December 23, 2013

Bio-isobutanol company Gevo, Inc. announced that the US Army has successfully flown the Sikorsky UH-60 Black Hawk helicopter on a 50:50 blend of Gevo’s ATJ-8 (Alcohol-to-Jet)—a renewable, drop-in alternative fuel for JP8 derived from isobutanol. (Earlier post.)

This flight marks the first Army Aircraft to fly on the isobutanol ATJ blend. (The US Air Force flew its first test flight using ATJ fuel in 2012. Earlier post.) The Army flight testing is being conducted at Aviation Flight Test Directorate (AFTD) on Redstone Arsenal, AL and is anticipated to be complete by March 2014.

More... | Comments (6) | TrackBack (0)

ICCT suggests minor changes to Fed tax policy to cut higher investment risk of 2nd-gen biofuels and advance the industry

December 22, 2013

Minor changes to an existing Federal tax incentive for second-generation biofuels (i.e., biofuel made from cellulose, algae, duckweed, or cyanobacteria) could mitigate the current elevated risk of investing in the industry that is retarding its advance, according to a new paper by a team from the International Council on Clean Transportation (ICCT) and Johns Hopkins University. Some of the ICCT recommendations are mirrored in the recently released Baucus draft proposal for tax reform (earlier post), notes Dr. Chris Malins of the ICCT, one of the study’s co-authors.

Previous studies have attempted to explain the slow commercialization of cellulosic and algal biofuels qualitatively, however few have presented financial analysis across the sector, the authors observe. Using publicly available financial data, they applied investment analysis tools (the capital assets pricing model, CAPM) that are generally not applied to this space in order to develop a more rigorous understanding of the investment risk in the industry.

More... | Comments (0) | TrackBack (0)

PNNL team develops continuous flow process for rapid production of green crude from algae; licensed for commercialization

December 18, 2013

1-s2.0-S2211926413000878-gr8
Process flow for liquid fuels from algae by hydrothermal processing. Elliott et al. Click to enlarge.

Researchers at the US Department of Energy’s (DOE’s) Pacific Northwest National Laboratory have created a continuous-flow process that produces useful crude oil less than one hour after receiving harvested algae. The research was reported recently in the journal Algal Research. A biofuels company, Utah-based Genifuel Corp., has licensed the technology and is working with an industrial partner to build a pilot plant using the technology. (Earlier post.)

The system runs at around 350 °C (662 °F) at a pressure of around 3,000 psi (20.7 MPa), and combines hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification. HTL converts wet algae slurries into an upgradeable biocrude. Catalytic hydrothermal gasification is applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. The combined process yields high conversion of algae to liquid hydrocarbon and gas products, along with low levels of organic contamination in the byproduct water.

More... | Comments (4) | TrackBack (0)

Amyris and Total form joint venture to produce and market renewable diesel and jet fuel

December 05, 2013

Amyris, Inc. and Total have formed Total Amyris BioSolutions B.V., a 50-50 joint venture that now holds exclusive rights and a license under Amyris’s intellectual property to produce and market renewable diesel and jet fuel from Amyris’s renewable farnesene. (Earlier post.) Total is Amyris’ largest investor, holding approximately 18% of its outstanding common stock, and is committed to the development of next-generation renewable fuels from biomass.

Amyris’ synthetic biology platform enables the modification of the genetic pathways of microorganisms, primarily yeast, to turn them into living factories to produce target molecules via fermentation. The primary biological pathway within the microbe Amyris currently uses to produce target molecules is the isoprenoid pathway.

More... | Comments (1) | TrackBack (0)

USDA awards nearly $10M for research on using beetle-killed trees as feedstock for on-site thermochemical conversion technologies

November 06, 2013

The US Department of Agriculture (USDA) awarded nearly $10 million to a consortium of academic, industry and government organizations led by Colorado State University (CSU) and their partners to research using insect-killed trees in the Rockies as a sustainable feedstock for bioenergy. Specifically, the team will explore recent advances in scalable thermochemical conversion technologies, which enable the production of advanced liquid biofuel and co-products on-site.

There are many benefits to using beetle-killed wood for renewable fuel production. It requires no cultivation, circumvents food-versus-fuel concerns and likely has a highly favorable carbon balance. However, there are some challenges that have been a barrier to its widespread use. The wood is typically located far from urban industrial centers, often in relatively inaccessible areas with challenging topography, which increases harvest and transportation costs. In addition to technical barriers, environmental impacts, social issues and local policy constraints to using beetle-killed wood and other forest residues remain largely unexplored.

More... | Comments (5) | TrackBack (0)

DOE BETO issues request for information on advanced biofuel, bioproducts and biopower validation and deployment

October 31, 2013

The Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) Bioenergy Technologies Office (BETO) is soliciting feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to advanced biofuel, bioproducts, and biopower technology validation and potential deployment strategies. (DE-FOA-0001013)

BETO’s mission is to develop and transform biomass resources into commercially viable, high performance biofuels, bioproducts, and biopower through targeted research, development, demonstration, and deployment supported through public and private partnerships. Specific goals are: 1) through R&D, make cellulosic biofuels competitive with petroleum-based fuels at a modeled cost for mature technology of $3 per gallon of gasoline equivalent (GGE) ($2011) based on EIA projected wholesale prices in 2017; and 2) help create an environment conducive to maximizing the production and use of biofuels by 2022.

More... | Comments (1) | TrackBack (0)

Amyris to enter partnership to supply renewable jet fuel from sugar to GOL Airlines

October 23, 2013

Amyris2
An overview of the direct sugar to hydrocarbon (DSHC) process for the production of renewable jet fuel. Source: Amyris. Click to enlarge.

Renewable fuels and chemicals company Amyris, Inc. and GOL Linhas Aéreas Inteligentes S.A., the largest low-cost and low-fare airline in Latin America, signed a memorandum of understanding that could pave the way for GOL commercial flights to use Amyris renewable jet fuel in 2014. The anticipated partnership was announced during the first commercial flight with a renewable jet fuel in Brazil by the airline earlier today.

Under the memorandum of understanding, GOL and Amyris will work together to establish a framework for bringing Amyris renewable jet fuel produced from Brazilian sugarcane (direct sugar to hydrocarbon pathway, DSHC) to GOL’s commercial flights following regulatory approvals and validation by standard-setting bodies, including ASTM International and Brazil’s Oil, Gas and Biofuels Agency (ANP).

More... | Comments (1) | TrackBack (0)

U Alberta spin-off Forge Hydrocarbons commercializing pyrolytic lipids-to-hydrocarbons process

October 14, 2013

Lth
Simplified process flow of LTH. Click to enlarge.

A University of Alberta spinoff company, Forge Hydrocarbons, is commercializing a patented lipids-to-hydrocarbons (LTH) process developed by David Bressler, a researcher in the Faculty of Agricultural, Life and Environmental Sciences. The process takes agricultural feedstocks such as animal fat, crop seed oil and restaurant grease, and converts them into drop-in liquid hydrocarbon fuels. The process also converts the same agricultural feedstocks into solvents and diluents.

Bressler’s process first hydrolyzes the feedstock with water in a reactor to produce a mixture of free fatty acids and glycerol. The fatty acids are separated from the glycerol and water, and then pyrolized to produce deoxygenated hydrocarbon liquids. Further processing converts the hydrocarbon liquid into the desired fuel such as gasoline, natural gas, jet fuel, diesel, lubricating oil, solvents or diluents.

More... | Comments (1) | TrackBack (0)

KIT’s fast biomass pyrolysis to liquids bioliq plant produces first gasoline

September 30, 2013

2013_119_Erstmals Benzin am KIT hergestellt_1
The multi-stage bioliq process produces high-quality synthetic fuels from straw and other biogenous residues. Graphic: N. Dahmen, KIT/IKFT. Click to enlarge.

The synthesis stage of Karlsruhe Institute of Technology’s (KIT’s) multi-stage bioliq pilot plant has begun operation and has produced biogasoline. All stages of the bioliq process—flash pyrolysis, high-pressure entrained-flow gasification, and now synthesis—have now been realized and the project will now be completed by testing the entire process chain and optimizing it for the large industrial scale.

As soon as all stages of the bioliq process will have been linked, the pilot plant will supply high-quality fuel from straw, probably in mid-2014. The complete bioliq process (Biomass to Liquid Karlsruhe) comprises four stages (earlier post):

More... | Comments (1) | TrackBack (0)

KiOR seeks to double cellulosic fuels production at Columbus plant; $50M in from Khosla for Columbus II

September 26, 2013

Cellulosic gasoline and diesel company KiOR, Inc. is pursuing plans to double production capacity at its Columbus, Mississippi, facility through construction of a second facility incorporating KiOR’s commercially proven technology. KiOR estimates that the Columbus II project will cost approximately $225 million; will break ground within 90 days of it raising sufficient equity and debt capital to commence the project; and will take approximately 18 months to construct and start up.

Once completed with its latest technology improvements, KiOR expects that the Columbus II project will allow each Columbus facility to achieve greater yields, production capacity and feedstock flexibility than the original design basis for the existing Columbus facility, enabling KiOR to more quickly make progress towards its long-term goal of 92 gallons per bone dry ton of biomass.

More... | Comments (2) | TrackBack (0)

Study finds HTL algal biofuels offer 50-70% lifecycle CO2 reduction compared to petroleum fuels; EROI and GHG comparable to or better than other biofuels

September 20, 2013

Liu
The EROI ratio and GHG emissions/MJ of (a) algae-derived diesel and (b) algae-derived gasoline produced using HTL. The results are benchmarked against commercialized biodiesel or bioethanol as well as petroleum-derived versions of the drop-in fuels. Credit: Liu et al. Click to enlarge.

A new life cycle analysis by a team led by researchers at the University of Virginia has concluded that biofuel produced from algae via hydrothermal liquefaction (HTL) can reduce life cycle CO2 emissions by 50 to 70% compared to petroleum fuels, and also has energy burdens and GHG (greenhouse gas) emission profiles that are comparable to or better than conventional biofuels, cellulosic ethanol and soybean biodiesel.

HTL algae-derived gasoline has a considerably lower GHG footprint and a better EROI relative to conventional ethanol made from corn on a per MJ basis, the team found. The data suggest that a shift to algae-derived gasoline could have immediate climate benefits even using existing technologies, the authors noted. In addition, given expected technological improvements, the benefits of algae-derived gasoline will likely improve.

More... | Comments (5) | TrackBack (0)

FAA launches new Center of Excellence for alternative jet fuels; $40M in funding over 10 years

September 13, 2013

The US Federal Aviation Administration (FAA) has selected a team of universities to lead a new Air Transportation Center of Excellence (COE) for alternative jet fuels and the environment. Led by Washington State University and the Massachusetts Institute of Technology, the COE will explore ways to meet the environmental and energy goals that are part of the Next Generation Air Transportation System (NextGen).

Core team partners include Boston University; Oregon State University; Purdue University; the University of Dayton; the University of Illinois at Urbana-Champaign; the University of Pennsylvania; the University of Washington; Missouri University of Science and Technology; Georgia Institute of Technology; Pennsylvania State University; Stanford University; the University of Hawaii; the University of North Carolina at Chapel Hill; and the University of Tennessee.

More... | Comments (1) | TrackBack (0)

DARPA awards WUSTL researcher $860,000 to engineer E. coli to produce gasoline-range molecules

The Defense Advanced Research Project Agency (DARPA) of the US Department of Defense has awarded Dr. Fuzhong Zhang, assistant professor of energy, environmental & chemical engineering at Washington University in St. Louis (WUSTL) a Young Faculty Award worth $860,000 to engineer the bacterium Escherichia coli to produce gasoline-range molecules.

Zhang’s award funds up to three years of research on his plan to engineer bacteria to produce non-natural fatty acids, which can be converted to advanced biofuels and chemicals. Zhang will engineer the fatty acid pathway to make a molecule with a chemical structure similar to isooctane—a major component in gasoline.

More... | Comments (1) | TrackBack (0)

Neste Oil and Raisioagro to research the potential of straw as a renewable diesel feedstock via microbial oil

September 02, 2013

Neste Oil, developer of the NExBTL process for renewable diesel, and agritrader Raisioagro have launched a research project to investigate the potential of straw as a raw material for producing NExBTL renewable diesel via Neste’s microbial oil technology. (Earlier post.)

Large quantities of waste straw are produced as agricultural residue in Finland and elsewhere, and only a small proportion of this is currently used. The project will study whether a logistically effective and efficient, large-scale straw harvesting chain could be created in Finland. The researchers will also look at the storability of straw for use as an industrial input year-round. The project will be carried out by TTS, a research, development, and training organization.

More... | Comments (0) | TrackBack (0)

Gevo opens renewable paraxylene plant next to renewable jet fuel plant; bio-isobutanol biorefinery

August 27, 2013

Bio-isobutanol producer Gevo, Inc. held a ribbon-cutting ceremony for its demonstration-scale paraxylene (p-xylene) plant in Silsbee, Texas. The paraxylene facility is located adjacent to Gevo’s existing jet fuel plant in Silsbee, and establishes the site as a biorefinery that will serve the renewable chemicals and drop-in biofuels markets.

Gevo has been working with The Coca-Cola Company since 2011 (earlier post) to deliver a new production technology for renewable paraxylene, a key building block for producing fully renewable PET for beverage bottles. Research and Development support for this plant was provided by The Coca-Cola Company under a Joint Development Agreement.

More... | Comments (0) | TrackBack (0)

LanzaTech and India’s Centre for Advanced Bio-Energy Research developing novel waste CO2 to fuels process

August 14, 2013

Co2acetic
CO2 to acetic acid fermentation. Source: LanzaTech. Click to enlarge.

LanzaTech, a producer of low-carbon fuels and chemicals from waste gases, has partnered with the Centre for Advanced Bio-Energy, a joint venture between Indian Oil Corporation, Ltd. (IOC) and the Indian government’s Department for Biotechnology (DBT), to create a novel process for the direct production of low carbon fuels from industrial CO2 emissions.

LanzaTech and the Centre will leverage each other’s expertise to create a new process for the direct conversion of waste CO2 into drop-in fuels through an acetates-to-lipids pathway. LanzaTech has developed gas fermentation technology that can directly convert waste CO2 gases into acetates. (Earlier post.) The Centre for Advanced Bio-Energy is working to increase the production yield of lipids (oils) by “feeding” acetates to microalgae.

More... | Comments (2) | TrackBack (0)

JBEI team develops one-pot, wash-free process for pretreatment and saccharification of switchgrass; avenues for driving down biofuel cost

Blake-1-step
Conventional separate pretreatment and saccharification of biofuel feedstock (a) entails water and waste disposal that the new one-pot system (b) eliminates. (Image courtesy of Joint BioEnergy Institute). Click to enlarge.

Researchers with the US Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) report the first demonstration of a one-pot, wash-free process that combines ionic liquid (IL) pretreatment and enzymatic saccharification into a single vessel using a thermostable IL-tolerant bacterial consortium comprising several species of thermophiles (microbes that thrive at extremely high temperatures and alkaline conditions).

Using this one-pot system, they liberated 81.2% glucose and 87.4% xylose (monomers and oligomers) at 72 h processing at 70 °C with an enzyme loading of 5.75 mg g−1 of biomass at 10% [C2mim][OAc]. Glucose and xylose were selectively separated by liquid–liquid extraction with over 90% efficiency, thus eliminating extensive water washing as a unit operation.

More... | Comments (0) | TrackBack (0)

Neste Oil in renewable diesel blend demonstration project aimed at commercialization; Diesel R33

August 01, 2013

R33_Coburg_1
Test bus for the Diesel R33 project. Click to enlarge.

Neste Oil is part of a fleet demonstration program of a new blend of diesel fuel in Coburg, Germany. The aim of the program is to introduce to the market a fuel with a significantly higher proportion of renewable content than current diesel blends. The German Minister of Transport, Peter Ramsauer, kicked off the project today in Coburg.

The new blend—Diesel R33—contains 26% NExBTL renewable diesel, an hydrogenated vegetable oil (HVO)-type renewable diesel fuel produced by Neste Oil; 7% conventional biodiesel (FAME) produced from used cooking oil; and 67% fossil diesel. With the 26% share of NExBTL, the new blend offers the highest biofuel content of any diesel blend that fulfills and exceeds the requirements for diesel fuels used in the European Union.

More... | Comments (0) | TrackBack (0)

JBEI researchers engineer bacterium to produce diesel-range biofuel using CO2 as sole carbon source

July 26, 2013

A team of researchers with the US Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) has engineered the bacterium Ralstonia eutropha—a microbe now used to produce biodegradable plastic—for the production of fatty acid-derived, diesel-range methyl ketones. A paper on their work is published in the journal Applied and Environmental Microbiology.

R. eutropha is a chemolithoautotroph (an organism that obtains its nutrition through the oxidation of non-organic compounds or other chemical processes) that can grow with organic substrates or H2 and CO2 under aerobic conditions. Under conditions of nutrient imbalance, R. eutropha produces “copious” amounts of polyhydroxybutyrate (PHB). Its ability to utilize CO2 as a sole carbon source renders it an interesting new candidate host for the production of renewable liquid transportation fuels, the team noted in their paper.

More... | Comments (8) | TrackBack (0)

Full genome map of oil palm indicates a way to raise yields and protect rainforest; single gene controls oil palm yield

July 25, 2013

A multinational team of scientists has identified a single gene, called Shell, that regulates yield of the oil palm tree. The Shell gene is responsible for the oil palm’s three known shell forms: dura (thick); pisifera (shell-less); and tenera (thin), a hybrid of dura and pisifera palms. Tenera palms contain one mutant and one normal version, or allele, of Shell, an optimum combination that results in 30% more oil per land area than dura palms.

The fruit and seeds of the oil palm are the source of nearly one-half of the supply of edible vegetable oil worldwide, and are one of the more promising sources of biofuel. The discovery, the product of a multiyear effort to provide a high-quality full genome map of the oil palm plant and to scour the sequence for genes of importance to both science and industry, has major implications for agriculture and the environment. The international team’s work is detailed in two papers published in the journal Nature.

More... | Comments (2) | TrackBack (0)

DOE to award up to $13M to four advanced biofuels projects

July 01, 2013

The US Department of Energy (DOE) has selected four research and development projects designed to bring next-generation biofuels on line faster and to drive down the cost of producing gasoline, diesel, and jet fuels from biomass. The projects represent up to a combined $13-million Energy Department investment.

In the United States, the transportation sector accounts for two-thirds of total US oil consumption and about one-third of total anthropogenic greenhouse gas emissions. Hydrocarbon-based biofuels made from non-food feedstocks, waste materials, and algae can directly replace gasoline and other fuels. DOE is continuing to pursue the development of these renewable biofuels, with the goal of producing cost-competitive drop-in biofuels at $3 per gallon by 2017.

More... | Comments (0) | TrackBack (0)

Engineered E. coli can mass-produce precursor to gasoline-like biofuel

June 26, 2013

By rerouting the metabolic pathway that makes fatty acids in E. coli bacteria, researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Department of Systems Biology at Harvard Medical School have devised a new way to make targeted precursors of high-octane biofuels. A paper on their work is published online in the Proceedings of the National Academy of Sciences.

Lines of bacteria engineered using the same strategy can also produce precursors of pharmaceuticals, bioplastics, herbicides, detergents, and more.

More... | Comments (1) | TrackBack (0)

CCST report: an integral role for next-gen biofuels in meeting California GHG targets requires advanced biofuels and demand reduction

June 11, 2013

Next-generation biofuels can reduce greenhouse gas emissions of transportation to meet California’s target greenhouse gas (GHG) reduction goal, but deep replacement of fossil fuels through implementation of low-carbon lignocellulosic ethanol and advanced biomass derived hydrocarbons (drop-in biofuels) and reduction in demand is required, according to a new report from the California Council on Science and Technology (CCST).

The study, “California Energy Future: the Potential for Biofuels,” co-authored by Energy Biosciences Institute (EBI) scientists Heather Youngs and Chris Somerville, is the seventh and final report in its California’s Energy Future (CEF) project. The CEF project seeks ways the State could meet the mandated reductions of greenhouse gas (GHG) emissions to 80% below 1990 levels by 2050, exploring possible energy strategies for California through in-depth examinations of different technology scenarios.

More... | Comments (2) | TrackBack (0)

United purchasing 15M gallons of renewable jet fuel from AltAir Fuel; Honeywell’s UOP Green Jet

June 04, 2013

United Airlines executed a definitive purchase agreement with AltAir Fuels (earlier post) for cost-competitive, sustainable, bio-synthetic paraffinic kerosene at commercial scale. With United’s strategic partnership, AltAir Fuels will retrofit part of an existing petroleum refinery to become a 30-million gallon, advanced biofuel refinery near Los Angeles, Calif.

AltAir will produce low-carbon, renewable jet fuel and other renewable products. United has collaborated with AltAir Fuels since 2009 and has agreed to buy 15 million gallons of lower-carbon, renewable jet fuel over a three-year period, with the option to purchase more. The airline is purchasing the advanced biofuel at a price competitive with traditional, petroleum-based jet fuel, and AltAir expects to begin delivering five million gallons of renewable jet fuel per year to United starting in 2014.

More... | Comments (0) | TrackBack (0)

Fulcrum BioEnergy demonstrates integrated process to convert MSW to jet and diesel; $4.7M DoD grant to begin plant engineering

May 28, 2013

Fulcrum BioEnergy, Inc. has successfully demonstrated the conversion of municipal solid waste (MSW)—household garbage—into jet and diesel fuels. Fulcrum says its ability to produce drop-in fuels from MSW opens up an 80 billion gallon per year fuel market and expands its customer base for its national development program.

This demonstrated process adds fuel diversity to Fulcrum’s products and complements its previously demonstrated MSW-to-ethanol process. For that process, Fulcrum uses a two-stage thermochemical process involving gasification of municipal solid waste (MSW) followed by the catalytic conversion of the syngas to ethanol. (Earlier post.)

More... | Comments (0) | TrackBack (0)

Australian techno-economic analysis of renewable aviation fuels identifies research priorities to lower the high costs

May 22, 2013

A techno-economic analysis of renewable aviation fuels by Australian researchers has found that, based on currently available long-term reputable technological data, biorefineries producing biofuels from microalgae, oil seeds of the Pongamia tree, and sugarcane feedstocks would be competitive with crude oil prices at $1,343, $374, and $301/bbl, respectively.

Sensitivity analyses of the major economic drivers suggest technological and market developments that would bring the corresponding figures down to $385, $255, and $168/bbl, the researchers said in their paper, published in the journal Biofuels, Bioproducts and Biorefining. The results of the study, which was conducted as part of the Queensland Sustainable Aviation Fuel Initiative, were presented at the Boeing-hosted Aero Environment Summit in Sydney.

More... | Comments (0) | TrackBack (0)

EPA proposes adding renewable diesel and naphtha from landfill biogas and butanol pathways to RFS

May 21, 2013

The US Environmental Protection Agency (EPA) has issued a proposed rulemaking for modifications to the Renewable Fuel Standard (RFS2) program. The proposal also includes various changes to the E15 misfueling mitigation regulations (E15 MMR), ultra low sulfur diesel survey requirements as well as other technical amendments.

The proposed rules include various changes related to biogas, including changes related to the revised compressed natural gas (CNG)/liquefied natural gas (LNG) pathway and amendments to various associated registration, recordkeeping, and reporting provisions. It also adds new pathways for renewable diesel, renewable naphtha, and renewable electricity (used in electric vehicles) produced from landfill biogas.

More... | Comments (0) | TrackBack (0)

China team engineers cyanobacterium for significant increase in alka(e)ne production

May 06, 2013

Strains of the cyanobacterium Synechocystis sp. PCC 6803 engineered by researchers from the Qingdao Institute of Bioenergy and Bioprocess Technology (China) increased their production of alka(e)nes by some 8 times compared with wildtype strains. Alkanes are the major constituents of gasoline, diesel and jet fuels. An open access paper on their work is published in the journal Biotechnology for Biofuels.

Some of the same researchers had earlier reported the application of a consolidated bioprocessing strategy to integrate photosynthetic biomass production and microbial conversion producing ethanol together into Synechocystis sp. PCC6803, with the resulting engineered organism directly converting carbon dioxide to ethanol in one single biological system. (Earlier post.)

More... | Comments (0) | TrackBack (0)

Former president of Shell Oil calls for aggressive action on alternative fuels to break oil monopoly on transportation

April 30, 2013

John Hofmeister, former President of Shell Oil Company and founder and CEO of Citizens for Affordable Energy (CFAE), is joining the Fuel Freedom Foundation (FFF) Advisory Board. Fuel Freedom is a non-partisan, non-profit organization dedicated to opening the fuel market to allow alternative fuels such as ethanol, methanol, natural gas and electricity fairly to compete with gasoline at the pump. CFAE’s mission is to educate citizens and government officials about pragmatic, non-partisan affordable energy solutions.

The purpose and the focus [of FFF] is exactly in line with what I promoted as president of Shell and subsequently as the founder of CFAE,” Hofmeister said to Green Car Congress. “From [these organizations’ standpoints], the reason we have to get away from doing nothing is that the public doesn’t fully appreciate or understand the situation it faces with respect to fuels’ futures.

More... | Comments (31) | TrackBack (0)

UPM and VTT begin fleet tests of BioVerno wood-based renewable diesel in Golf 1.6 TDIs

April 29, 2013

Finland-based forestry-industry company UPM, VTT and VV-Auto Group will start fleet tests of renewable diesel produced mainly from crude tall oil, which is a residue of chemical pulp production, UPM BioVerno. (Earlier post.) The biofuel will be produced by UPM, fleet tests will be coordinated by VTT, and cars will be supplied by VV-Auto Group, an importer and marketer of Volkswagen Group cars in Finland. Fleet tests with UPM BioVerno will start in May, lasting several months.

UPM BioVerno diesel has previously been studied in engine and vehicle tests conducted by VTT and others. The fleet tests will focus on investigating UPM renewable diesel in terms of fuel functionality in engine, emissions and fuel consumption.

More... | Comments (1) | TrackBack (0)

Univ. of Exeter team engineers unique biological pathway for the production of diesel range hydrocarbons by E. coli

April 23, 2013

Howrd
Hydrocarbons produced by cells expressing the synthetic alkane pathway (CEDDEC) or the cyanobacterial alkane pathway (AR and AD from N. punctiforme) without modifications to the fatty acid pool. n = 6 biological replicates; error bars represent SE of mean. Howard et al. Click to enlarge.

A team from the University of Exeter (UK), with support from Shell Technology Centre Thorton, has modified strains of E. coli bacteria to produce “petroleum-replica” hydrocarbons in the diesel range. While the technology still faces many significant commercialization challenges, the resulting drop-in fuel is almost identical to conventional diesel fuel and so does not need to be blended with petroleum products as is often required by biodiesels derived from plant oils.

In an open access paper on their work published in the Proceedings of the National Academies of Science, the researchers note that their work—rather than reconstituting existing metabolic routes to alkane production found in nature—demonstrated the ability to design and to implement artificial molecular pathways for the production of renewable, industrially relevant fuel molecules.

More... | Comments (0) | TrackBack (0)

US DOE to award nearly $18M to 4 biorefinery projects for mil-spec renewable hydrocarbon fuels

April 22, 2013

The US Department of Energy (DOE) will award nearly $18 million to four innovative pilot-scale biorefineries in California, Iowa and Washington that will produce and test drop-in renewable biofuels that meet military specifications for jet fuel and shipboard diesel.

The pilot-scale biorefinery projects selected today will use a variety of non-food biomass feedstocks, waste-based materials, and algae in innovative conversion processes. The projects will demonstrate technologies to cost-effectively convert biomass into advanced drop-in biofuels and assist these organizations to scale up the processes to commercial levels. Recipients are required to contribute a minimum of 50% matching funds for these projects.

More... | Comments (1) | TrackBack (0)

Green Car Congress © 2013 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group