Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Biomass

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Indian researchers propose fuel-chemicals-electricity cellulosic biomass biorefinery scheme

April 19, 2015

Researchers from the CSIR-Indian Institute of Petroleum are proposing a biorefinery scheme using lignocellulosic biomass feedstock (sugarcane bagasse) for the production of fuel (ethanol), chemicals (furfural), and energy (electricity). The proposed scheme could be integrated with existing sugar or paper mills, where the availability of biomass feedstock is in abundance as a means to address some of the cost and logistics issues, they suggest in their paper published in the ACS journal Energy & Fuels.

In their approach, they extract fermentable sugar components (xylose and glucose) from sugarcane bagasse employing acid hydrolysis and enzymatic saccharification; recovery and reuse of the enzyme is a process advantage. The pentose fraction is used for yeast biomass generation and furfural production. High-temperature fermentation of the hexose stream by the thermophilic yeast Kluyveromyces sp. IIPE453 with cell recycle produces ethanol with an overall yield of 88% ± 0.05% and a productivity of 0.76 ± 0.02 g/L h−1. A complete material balance on two consecutive process cycles, each starting with 1 kg of feedstock, resulted in an overall yield of 366 mL of ethanol, 149 g of furfural, and 0.30 kW of electricity.

More... | Comments (2) | TrackBack (0)

Virginia Tech team engineers optimized synthetic enzymatic pathway for high-yield production of H2 directly from biomass

April 07, 2015

A team of Virginia Tech researchers and colleagues has demonstrated the complete conversion of glucose and xylose from pretreated plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway crafted from more than 10 purified enzymes. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield.

The researchers used a nonlinear kinetic model fitted with experimental data to identify the enzymes that had the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L−1⋅h−1. The productivity was further enhanced to 54 mmol H2⋅L−1⋅h−1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method.

More... | Comments (16) | TrackBack (0)

Global investment in renewable power reached $270.2B in 2014, ~17% up from 2013; biofuel investment fell 8% to 10-year low

April 06, 2015

Global investment in renewable power and fuels (excluding large hydro-electric projects) was $270.2 billion in 2014, nearly 17% higher than the previous year, according to the latest edition of an annual report commissioned by the United Nations Environment Program’s (UNEP) Division of Technology, Industry and Economic (DTIE) in cooperation with Frankfurt School-UNEP Collaborating Centre for Climate & Sustainable Energy Finance and produced in collaboration with Bloomberg New Energy Finance.

This marked the first annual increase in dollar commitments to renewables—excluding large hydro—for three years, and brought the total up to just 3% below the all-time record of $278.8 billion set in 2011. The increase reflected several influences, according to the report, including a boom in solar installations in China and Japan—totalling $74.9 billion between those two countries—and a record $18.6 billion of final investment decisions on offshore wind projects in Europe.

More... | Comments (4) | TrackBack (0)

DOE Bioenergy Technologies Office updates Multi-Year Program Plan; focus on wet wastes

April 05, 2015

The US Department of Energy (DOE) Bioenergy Technologies Office (BETO) released its newly updated and detailed Multi-Year Program Plan (MYPP). The MYPP sets forth the goals and structure of the Office, and identifies the research, development, demonstration, market transformation, and crosscutting activities on which the Office is planning to focus over the next five years.

The latest version of the MYPP presents a merged conversion R&D section; the renaming of the demonstration and market transformation area; and emerging work in wet waste-to-energy feedstocks. BETO says that wet wastes represent an underused feedstock and an emerging pathway to advanced biofuels that has the potential to greatly contribute to BETO’s near-term and long-term advanced biofuel and bioproduct goals.

More... | Comments (0) | TrackBack (0)

A*STAR team combines fungal culture and acid hydrolyses for cost-effective production of fermentable sugars from palm oil waste

March 16, 2015

Researchers from A*STAR in Singapore have developed a fungal culture for use in a cheap and efficient method to transform waste oil palm material into biofuels and environmentally friendly plastics.

After the harvest of the fruit from oil palm trees, large amounts of leftover biomass known as empty fruit bunch remain. The industry wants to use these leftover fruit bunches to produce bioethanol and biodegradable plastic, but has stumbled in their efforts to convert the leftovers in a cost-efficient way. The new fungal culture could make it possible to produce fermentable sugars from this huge amount of waste in a cost-effective way, thereby increasing its commercial value, said one of the lead researchers, Jin Chuan Wu, from the A*STAR Institute of Chemical and Engineering Sciences.

More... | Comments (1) | TrackBack (0)

UW-Madison team develops novel hydrogen-producing photoelectrochemical cell using solar-driven biomass conversion as anode reaction

March 11, 2015

Researchers at the University of Wisconsin-Madison have developed an innovative hydrogen-producing photoelectrochemical cell (PEC), using solar-driven biomass conversion as the anode reaction. In a paper in the journal Nature Chemistry, the duo reports obtaining a near-quantitative yield and 100% Faradaic efficiency at ambient conditions without the use of precious-metal catalysts for this reaction, which is also thermodynamically and kinetically more favorable than conventional water oxidation at the anode. They thus demonstrated the utility of solar energy for biomass conversion (rather than catalysts) as well as the feasibility of using an oxidative biomass conversion reaction as an anode reaction in a hydrogen-forming PEC.

Chemistry Professor Kyoung-Shin Choi and postdoc Hyun Gil Cha said that their results suggest that solar-driven biomass conversion can be a viable anode reaction that has the potential to increase both the efficiency and the utility of PECs constructed for solar-fuel production.

More... | Comments (0) | TrackBack (0)

New engineered metabolic pathways in yeast enable efficient fermentation of xylose from biomass

March 05, 2015

Researchers with the Energy Biosciences Institute (EBI), a partnership that includes Berkeley Lab and the University of California (UC) Berkeley, have introduced new metabolic pathways from the fungus Neurospora crassa into the yeast Saccharomyces cerevisiae to increase the fermentative production of fuels and other chemicals from biomass. An open access paper on the work is publised in the journal eLife.

While S. cerevisiae is the industry mainstay for fermenting sugar from cornstarch and sugarcane into ethanol, it requires substantial engineering to ferment sugars derived from plant cell walls such as cellobiose and xylose. The new metabolic pathways enable the yeast to ferment sugars from both cellulose (glucose) and hemicellulose (xylose)—the two major families of sugar found in the plant cell wall—efficiently, without the need of environmentally harsh pre-treatments or expensive enzyme cocktails.

More... | Comments (0) | TrackBack (0)

$8.7M in FY 2015 funding available from USDA and DOE for bioenergy feedstocks, biofuels and bio-based products

March 03, 2015

The US Department Agriculture in collaboration with the Energy Department announced that up to $8.7 million in funding in fiscal year 2015 will be made available through the Biomass Research and Development Initiative (BRDI) to support feedstock development, biofuels and biobased products development, or biofuels development analysis. (USDA-NIFA-9008-004957)

The projects funded through BRDI—a joint program through the Department of Agriculture and the Energy Department—will help develop economically and environmentally sustainable sources of renewable biomass and increase the availability of renewable fuels and biobased products that can help reduce the need for gasoline and diesel fuels.

More... | Comments (0) | TrackBack (0)

UC Riverside CELF biomass pretreatment technology could cut cellulosic biofuel production cost by about 30%

February 25, 2015

Figure-4
Yields of glucose, xylose, and arabinose from CELF- and dilute acid-pretreated corn stover solid. “D” equals day. Source: UCR. Click to enlarge.

Researchers at the University of California, Riverside led by Professor Charles Wyman, the Ford Motor Company Chair in Environmental Engineering, have developed a novel biomass pretreatment called co-solvent-enhanced lignocellulosic fractionation (CELF) to reduce enzyme costs significantly for high sugar yields from hemicellulose and cellulose—an essential development for the low-cost conversion of biomass to fuels.

As partners in the BioEnergy Science Center (BESC), the team from the Bourns College of Engineering Department of Chemical and Environmental Engineering and Center for Environmental Research and Technology (CE-CERT) have shown that CELF could eliminate about 90% of the enzymes needed for biological conversion of lignocellulosic biomass to fuels compared to prior practice. This development could mean reducing enzyme costs from about $1 per gallon of ethanol to about 10 cents or less, with an overall reduction in the cost of the production of cellulosic biofuels of 30% or more.

More... | Comments (1) | TrackBack (0)

Engineered yeast produces ethanol from three important cellulosic biomass components simultaneously; higher yields, lower cost

February 11, 2015

A team led by researchers from the University of Illinois at Urbana−Champaign has, for the first time, integrated the fermentation pathways of both hexose and pentose sugars from biomass as well as an acetic acid reduction pathway into one strain of the yeast Saccharomyces cerevisiae using synthetic biology and metabolic engineering approaches.

The engineered strain co-utilized cellobiose, xylose, and acetic acid to produce ethanol with a substantially higher yield and productivity than the control strains. The results showed the unique synergistic effects of pathway coexpression, the team reported in a paper in the journal ACS Synthetic Biology.

More... | Comments (0) | TrackBack (0)

IU researchers find Z. mobilis can use N2 gas in cellulosic ethanol production; potential major cost savings

February 03, 2015

Researchers at Indiana University have shown—for the first time to their knowledge—that the ethanol-producing bacterium, Zymomonas mobilis, can use nitrogen (N2) gas in lieu of traditional nitrogen supplements. The finding, reported in a paper in Proceedings of the National Academy of Sciences (PNAS), could make cellulosic ethanol more competitive with corn ethanol and gasoline.

The raw materials for cellulosic ethanol are low in nitrogen, a nutrient required for ethanol-producing microbes to grow, so cellulosic ethanol producers are estimated to spend millions of dollars annually on nitrogen fertilizers such as corn steep liquor and diammonium phosphate. The IU team led by biologist James B. McKinlay showed that Z. mobilis can use N2 as a nitrogen source, something that the more traditional ethanol-producer, baker’s yeast, cannot do.

More... | Comments (0) | TrackBack (0)

Algenol and Reliance launch algae fuels demonstration project in India

January 21, 2015

Algenol and Reliance Industries Ltd., have successfully deployed India’s first Algenol algae production platform. The demonstration module is located near the Reliance Jamnagar Refinery, the world’s largest. The demonstration has completed several production cycles of Algenol’s wildtype host algae, but ultimately could demonstrate the fuels production capabilities of Algenol’s advanced fuel producing algae and systems. Th

The Algenol fuel production process is designed to convert 1 tonne of CO2 into 144 gallons of fuel while recycling CO2 from industrial processes and converting 85% of the CO2 used into ethanol, gasoline, diesel and jet fuels. The advanced fuel producing algae technology is successfully operating at Algenol’s Fort Myers, Florida headquarters.

More... | Comments (6) | TrackBack (0)

Anellotech, IFPEN and Axens partner on bio-aromatics production from non-food biomass; targeting 2019 for industrial implementation

January 20, 2015

Anellotech Inc., IFP Energies nouvelles (IFPEN) and its subsidiary Axens have formed a strategic alliance to develop and to commercialize a new technology for the low cost production of bio-based benzene, toluene and paraxylene using Anellotech’s process of Catalytic Fast Pyrolysis (CFP) of non-food biomass. (Earlier post.)

The technology will address large-scale units and produce purified aromatics streams suitable for modern derivative production processes at a very competitive price with respect to their petroleum-based counterparts.

More... | Comments (1) | TrackBack (0)

New version of Argonne lifecycle model for water footprint of biofuels now includes cellulosic feedstocks

January 16, 2015

Argonne National Laboratory released the newest version (3.0) of the online tool Water Assessment for Transportation Energy Resources (WATER) this week. This latest version of WATER allows, for the first time, biofuels manufacturers to analyze water consumption associated with use of cellulosic feedstocks such as residue left from lumber production and other wood-based resources. The new tool also provides analysis down to the county level in the US for the first time.

WATER adopts a water footprint methodology, and contains extensive climate, land use, water resource, and process water data. Version 3.0 of WATER thus can help biofuels developers gain a detailed understanding of water consumption of various types of feedstocks, aiding development of sustainable fuels that will reduce impact on limited water resources.

More... | Comments (2) | TrackBack (0)

Researchers suggest hybrid graphene oxide/cellulose microfibers could supersede carbon fibers

Researchers from Nanjing Forestry University and the University of Maryland have designed high-performance microfibers by hybridizing two-dimensional (2D) graphene oxide (GO) nanosheets and one-dimensional (1D) nanofibrillated cellulose (NFC) fibers. The resulting well-aligned, strong microfibers have the potential to supersede carbon fibers due to their low cost, the team suggests in an open access paper published in the journal NPG Asia Materials.

The hybrid microfibers are much stronger than microfibers composed of 1D NFC or 2D GO alone. In their paper, they reported that experimental results and molecular dynamics simulations reveal the synergistic effect between GO and NFC: the bonding between neighboring GO nanosheets is enhanced by NFC because the introduction of NFC provides the extra bonding options available between the nanosheets.

More... | Comments (5) | TrackBack (0)

NREL enzyme enables conversion of biomass to sugar up to 14x faster than current alternatives; changing the economics of conversion

January 13, 2015

Scientists at the US Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) have developed an enzyme that can enable the conversion of biomass to sugars up to 14 times faster and more cheaply than competing catalysts in enzyme cocktails today. The enzyme called CelA, a cellulase from the bacterium Caldicellulosiruptor bescii, could thus could change the economics of biofuel conversion.

In one scenario, the best commercially used enzyme converted sugars at a 30% extent in seven days. CelA converted to double that extent. And while it took the alternative enzyme seven days to achieve that conversion, CelA, with a small boost from an extra beta glucosidase, achieved double in just about two days. Among CelA’s many attributes:

More... | Comments (9) | TrackBack (0)

ARPA-E issues $125M open solicitation for energy R&D; transportation and stationary applications

January 07, 2015

The US Department of Energy (DOE) Advanced Research Projects Agency - Energy (ARPA-E) has issued a $125-million open Funding Opportunity Announcement (FOA). OPEN 2015 (DOE-FOA-0001261) will support the development of potentially disruptive new technologies in all areas of energy research and development, for both transportation and stationary applications.

OPEN 2015 is the third open funding solicitation issued by the agency. Open solicitations ensure that ARPA-E does not miss opportunities to support potentially transformational projects outside the scope of existing ARPA-E programs. The projects selected under OPEN 2015 will pursue novel approaches to energy innovation and support the development of potentially disruptive new technologies across the full spectrum of energy applications.

More... | Comments (0) | TrackBack (0)

Advanced furoate esters biofuel company xF Technologies appoints Tom Stephens to board

xF Technologies Inc., developer of a family of low cost, renewable furoate esters (xF) for use as oxygenating blend components (5%-20%) in both gasoline and diesel fuels, as well as heating oil and other specialty applications, has appointed former GM Vice Chairman and Chief Technology Officer Tom Stephens as an independent director of the Company, effective immediately. (xF calls its family of molecules “408”—a phonetic play on furoate.)

xF’s continuous production technology uses common materials (steel and plastic) at moderate operating conditions to convert a biomass feedstock into a chemical intermediate that is subsequently combined with an alcohol to form the furoate ester product. The technology allows the production of numerous products depending on the type of or mixture of alcohols. These products exhibit fuel properties similar to each other and are named for the primary alcohol used in their production. For the four smallest chain alcohols, the resultant products are called Methyl 408, Ethyl 408, Isopropyl 408 and Butyl 408.

More... | Comments (0) | TrackBack (0)

Vitruivan crowd-sourcing funding for novel biofuel from sewage treatment bio-solids

December 25, 2014

Vitruvian Energy is trying to crowd-fund its novel biofuel EEB (ethyl 3-ethoxybutyrate). EEB is produced from organic waste, including (and initially) sewage treatment bio-solids—the leftover, dirt-like organic material that remains after a community’s wastewater is treated. With 20 days left in the campaign, the company has raised $3,500 of a targeted $200,000.

EEB has higher energy content than ethanol: 26-29 MJ/L compared to 23. It can be used as a fuel additive to displace and clean up existing fossil fuels, and to lower their carbon footprint. Vitruvian has performed five years of research and development on EEB including combustion tests at Oak Ridge National Laboratory. Testing showed that blending EEB with diesel significantly reduces soot emissions, similar to how ethanol reduces emissions when blended with gasoline. EEB can also be blended with gasoline or burned to produce electricity.

More... | Comments (4) | TrackBack (0)

Purdue process converts lignin in intact biomass to hydrocarbons for chemicals and fuels

December 18, 2014

A team of researchers from Purdue University’s Center for Direct Catalytic Conversion of Biomass to Biofuels, or C3Bio, has developed a process that uses a bimetallic Zn/Pd/C catalyst to convert lignin in intact lignocellulosic biomass directly into two methoxyphenol products (phenols are a class of aromatic hydrocarbon compounds used in perfumes and flavorings) leaving behind the carbohydrates as a solid residue.

Lignin-derived methoxyphenols can be further deoxygenated to propylcyclohexane—a cycloalkane. Cycloalkanes are important components of not only traditional vehicle fuels such as gasoline and diesel, but also jet fuels, such as Jet-A/Jet-A1/JP-8.

More... | Comments (4) | TrackBack (0)

DOE Bioenergy Technologies Office updates 5-year program plan; commercially viable hydrocarbon biofuel technologies by 2017; <$3/GGE

November 23, 2014

Beto1
BETO high-level schedule. Click to enlarge.

The US Department of Energy (DOE) Bioenergy Technologies Office (BTO) has updated its Multi-Year Program Plan (MYPP), which delineates the goals and structure of the office. BTO is one of the 10 technology development offices within the Office of Energy Efficiency and Renewable Energy (EERE) at DOE.

The MYPP identifies the research, development, demonstration, and deployment (RDD&D) activities the Office will focus on over the next five years and explains why these activities are important. The MYPP is intended for use as an operational guide to help BETO manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

More... | Comments (7) | TrackBack (0)

Purdue team demonstrates proof-of-concept of H2Bioil process; liquid fuel range hydrocarbons from biomass

November 17, 2014

H2bioil
H2Bioil concept. Venkatakrishnan et al. Click to enlarge.

Researchers at Purdue University report a proof-of-concept of a their novel consecutive two-step process (H2Bioil) for the production of liquid fuel range hydrocarbons (C4+) with undetectable oxygen content from cellulose and an intact biomass (poplar). (Earlier post.)

Purdue University filed a patent application on the H2Bioil concept, which is based on fast-hydropyrolysis and downstream vapor-phase catalytic hydrodeoxygenation (HDO), in 2008. The process adds hydrogen into the biomass-processing reactor and is made possible by development of a new catalyst and the innovative reactor design. Findings are described in a research paper published online in the RSC journal Green Chemistry.

More... | Comments (5) | TrackBack (0)

Researchers in China produce highest octane gasoline fuel reported from biomass

November 11, 2014

Researchers in China have generated gasoline fuel with a research octane number of 95.4 from biomass-derived γ-valerolactone (GVL)—the highest octane number reported for biomass-derived gasoline fuel—using an ionic liquid catalyst. A paper on their work is published in the RSC journal Green Chemistry.

In the study, they converted biomass-derived γ-valerolactone into gasoline by the decarboxylation of valerolactone to produce butenes and the subsequent alkylation of the produced butenes with butane using [CF3CH2OH2][CF3CH2OBF3] as an efficient catalyst. The obtained gasoline was rich in trimethylpentane (isooctane), with the RON of 95.4.

More... | Comments (1) | TrackBack (0)

Ensyn begins generation & sale of cellulosic biofuel RINs under RFS2

November 09, 2014

Ensyn has initiated the generation and sale of its first RINs (Renewable Identification Numbers) under the US Renewable Fuel Standard (RFS2) (earlier post); Ensyn’s D7 cellulosic RINs have received QAP certification. Ensyn is the first company to generate cellulosic RINs under the US Environmental Protection Agency’s expanded definition of Heating Oil under RFS2, which became effective in December 2013. Ensyn believes it is now the leading producer of cellulosic D7 RINs in 2014.

D7 RINs are generated by Ensyn by displacing petroleum heating fuels (including #6, #4 or #2 diesel fuel oil) in customers’ boilers with Ensyn’s RFO (Renewable Fuel Oil) produced via Ensyn’s RTP (Rapid Thermal Processing) fast pyrolysis technology. (Earlier post.) RFO is a cellulosic biofuel produced from non-food solid biomass including forest residues. RFO is used to displace petroleum fuels in heating operations and is also a renewable feedstock for conventional petroleum refineries for the production of gasoline and diesel.

More... | Comments (0) | TrackBack (0)

U Wisc. scientists develop new method to convert lignin to simple chemicals under mild conditions

November 03, 2014

Researchers at the University of Wisconsin have disclosed a new method to convert lignin, an important component of biomass waste, into simple chemicals. Lignin, which accounts for nearly 30% of the organic carbon in the biosphere, is a complex material containing chains of six-carbon rings. These aromatics could be the basis for a sustainable supply of useful chemicals, but only if the chains of lignin can be broken down into the individual units. Lignin, however, is highly resistant to breakdown, especially in a cost-effective way.

Prof. Shannon Stahl and his colleagues developed, in work funded by the Great Lakes Bioenergy Research Center at UW-Madison, a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60 wt% yield of low-molecular-mass aromatics. A paper on the method is published in the journal Nature.

More... | Comments (3) | TrackBack (0)

California Energy Commission to award up to $3M for advanced biofuel projects

October 28, 2014

The California Energy Commission’s Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP) announced (PON-14-602) the availability of up to $3 million in grant funds for biofuels projects that are in the early/pre-commercial technology development stage. This solicitation is emphasizing transformative technology solutions to significant biofuels industry problems that increase yields, productivity, or cost effectiveness of biofuel production; and/or that target a significant unmet need in California’s biofuels industry.

The ARFVTP has an annual budget of approximately $100 million and provides financial support for projects that increase the use of alternative and renewable fuels and advanced vehicle technologies.

More... | Comments (1) | TrackBack (0)

Cooper Tire begins testing tires made with guayule component; consortium progress on genomics, agronomics

October 22, 2014

Cooper Tire & Rubber Company has completed tire builds using rubber derived from guayule plants and new guayule related materials. The tires are being evaluated by Cooper’s technical team using wheel, road and track tests, which are ongoing, but to date suggest tire performance that is at least equal to tires made of components derived from the Hevea rubber plant.

This development was reported by Cooper to its consortium partners—PanAridus, Arizona State University, Cornell University, and the Agricultural Research Service of the United States Department of Agriculture (USDA-ARS)—as the group met recently in Maricopa, Arizona for its third annual meeting and progress report on their $6.9-million Biomass Research and Development Initiative (BRDI) grant, “Securing the Future of Natural Rubber—An American Tire and Bioenergy Platform from Guayule.” (Earlier post.)

More... | Comments (1) | TrackBack (0)

Abengoa opens cellulosic ethanol plant in Hugoton; 1st commercial deployment of Abengoa enzymatic hydrolysis

October 17, 2014

Hugoton-aeriel-2
The Hugoton cellulosic ethanol plant covers 400 acres, more than 380 of which will be used to store biomass from local farmers. Click to enlarge.

Abengoa held the grand opening of its cellulosic ethanol plant in Hugoton, Kansas, located about 90 miles (145 km) southwest of Dodge City. Abengoa’s new biorefinery finished construction in mid-August and began producing cellulosic ethanol at the end of September with the capacity to produce up to 25 million gallons (94.6 million liters) per year. Abengoa received a $132.4-million loan guarantee and a $97-million grant through the Department of Energy to support construction of the Hugoton facility.

The plant utilizes only “second generation” (2G) biomass feedstocks for ethanol production—i.e.non-edible agricultural crop residues (such as stalks and leaves) that do not compete with food or feed grain. The facility also features an electricity cogeneration component allowing it to operate as a self-sufficient renewable energy producer. By utilizing residual biomass solids from the ethanol conversion process, the plant generates 21 megawatts (MW) of electricity—enough to power itself and provide excess clean renewable power to the local Stevens County community.

More... | Comments (5) | TrackBack (0)

New WSU palladium-iron catalyst could improve drop-in biofuels production from pyrolysis oils

Acs_catalysis_motion
The addition of palladium (Pd) prevents deactivation (addition of oxygen, red spheres) of an iron catalyst in the reaction that removes oxygen from biofuel feedstock. Credit: ACS, Hensley et al.. Click to enlarge.

Washington State University researchers have developed a new palladium-iron hydrodeoxygenation catalyst (Pd/Fe2O3) that could lead to making drop-in biofuels cheaply and more efficiently. Their work is described in two papers in the October issue of the journal ACS Catalysis and is featured on the cover.

The first WSU paper (Hong et.al) describes the synthesis of a series of Pd/Fe2O3 catalysts and their performance for the hydrodeoxygenation of m-cresol—a phenolic compounds used as a model compound in the HDO research, as it can be derived from pyrolysis of lignin. The second (Hensley et al.) reports on a combined experimental and theoretical approach to understand the potential function of the surface Pd in the reduction of Pd/Fe2O3.

More... | Comments (0) | TrackBack (0)

DEINOVE and MBI partner on cellulosic biofuels using DEINOL and AFEX

October 16, 2014

France-based DEINOVE and US-based MBI have formed a technological partnership to demonstrate the effectiveness of the DEINOVE’s DEINOL technology for producing biofuels based on lignocellulosic biomass (2G biofuels) using MBI’s AFEX (ammonia fiber expansion) pretreatment system.

DEINOL uses Deinococcus bacteria to break down the complex sugars contained in pre-treated lignocellulosic biomass and then to convert them into ethanol in a single operation, replacing the microorganisms that are traditionally used and a large part of the enzyme treatment that precedes fermentation. (Earlier post.) MBI, in close collaboration with Michigan State University (MSU), has developed and is scaling up its AFEX pretreatment technology. (Earlier post.)

More... | Comments (0) | TrackBack (0)

New one-pot catalytic process efficiently converts biomass to liquid alkanes under mild conditions

October 13, 2014

Debeeck1
Conversion of microcrystalline cellulose to liquid alkanes with the biphasic system in function of time and temperature. Yield insoluble products (%) = cellulose conversion (%) - total yield dissolved products (%). de Beeck et al. Click to enlarge.

A team from KU Leuven, Belgium, together with colleagues at the Leibniz Institute for Solid State and Materials Research in Germany, have designed a novel one-pot biphasic catalytic system that is able directly to transform cellulose into straight-chain alkanes (mainly n-hexane) with high yields.

The carbon-based yields are high (up to 82%) and the process completes in less than 6 hours at a comparatively mild 220 ˚C. The resulting bio-derived light naphtha fraction is a green feedstock suited for existing processes that produce aromatics, gasoline or olefins. With low-cost cellulosic residue and the absence of required pretreatment for this process, the researchers said, this approach seems highly promising en route to more sustainable chemicals and fuels. A paper on the work is published in the RSC journal Energy & Environmental Science.

More... | Comments (9) | TrackBack (0)

DOE awarding up to $13.4M for 5 projects for advanced biofuels and bioproducts

October 09, 2014

The US Department of Energy (DOE) will award up to $13.4 million for five projects to develop advanced biofuels and bioproducts that will help drive down the cost of producing gasoline, diesel, and jet fuel from biomass. These products not only will help reduce carbon emissions, but also advance the department’s work to enable the production of drop-in biofuel at $3 per gallon by 2022.

The research and development projects will focus on developing integrated processes for the production of advanced biofuels and chemicals. Two of these selections will address research efforts on the efficient conversion of biogas (a mixture of gases generated from the biological breakdown of organic material) to valuable products other than power.

More... | Comments (1) | TrackBack (0)

BNL team devises new method to boost oil accumulation in plant leaves; implications for biofuel production

October 08, 2014

Researchers at DOE’s Brookhaven National Laboratory (BNL) have developed a new method to increase significantly the amount of oil accumulated in plant leaves, which could then serve as a source for biofuel production. Rather than adding genes, as some other research teams have done in their efforts to boost oil accumulation, the BNL method is based on is based on disabling or inactivating genes through simple mutations.

A series of detailed genetic studies revealed previously unknown biochemical details about plant metabolic pathways, including new ways to increase the accumulation of oil in leaves. Using these methods, the scientists grew experimental Arabidopsis plants (widely used as model organisms in plant biology), the leaves of which accumulated 9 wt % oil. This represented an approximately 150-fold increase in oil content compared to wild type leaves. A paper on their work is published in the journal The Plant Cell.

More... | Comments (0) | TrackBack (0)

Neste Oil de-emphasizing microbial oil R&D for renewable diesel; seeking other uses for cellulosic biomass

October 07, 2014

Neste Oil, the producer of NExBTL renewable diesel, is realigning its long-term R&D and switching from an emphasis on research into the production of microbial oil as a feedstock for NExBTL renewable diesel and renewable jet fuel (earlier post) to other areas of technology for using cellulosic forestry and agricultural waste, due in part to feedstock cost issues.

Despite the decision to de-emphasize microbial oil, Neste Oil emphasized that cellulosic waste will continue to play an important role in its research strategy, adding that it remains committed to its goal of further extending its feedstock base and making greater use of waste and residues in this area in particular.

More... | Comments (1) | TrackBack (0)

USDA provides $91M loan guarantee to Cool Planet for biogasoline blendstock plant; biomass pyrolysis and catalytic conversion

October 05, 2014

Cp2
Gas chromatography comparison of Conoco fuel and a Conoco-CoolPlanet blend. Cool Planet’s biogasoline blendstock is 100% compatible with pump gasoline. Source: Cool Planet. Click to enlarge.

USDA has reached an agreement with Silicon Valley Bank to provide a $91-million Biorefinery Assistance Program loan guarantee to Cool Planet to help the company finish construction on an advanced biofuel plant at the Port of Alexandria in Louisiana. (Earlier post.)

Cool Planet has devised a biomass-to-liquids thermochemical conversion process that simultaneously produces liquid fuels and sequesterable biochar useful as a soil amendment. The Cool Planet plant will produce approximately 8 million to 10 million gallons of high-octane, renewable gasoline blendstocks (reformate), as well the biochar, all made from sustainable wood residues.

More... | Comments (10) | TrackBack (0)

Researchers enhance yeast thermotolerance and ethanol tolerance; potential for significant impact on industrial biofuel production

October 03, 2014

The yeast Saccharomyces cerevisiae plays a central role in global biofuel production; currently, about 100 billion liters of ethanol are produced annually worldwide by fermentation of mainly sugarcane saccharose and corn starch by the yeast. There are also efforts underway to use the yeast with cellulosic biomass.

Boosting the yield and lowering the cost of fermentative production of biofuel would not only result in a significant immediate financial impact to commercial ethanol operations, but also support cost reductions that would be helpful to advance other advanced biofuels using the same or a similar pathway. However, boosting production has been gated by two key conditions: the ability of the yeast to tolerate higher temperatures, and the ability of the yeast to survive high concentrations of ethanol. Now, two new separate studies report progress on each of those fronts; the findings could have a significant impact on industrial biofuel production. Both papers are published in the current issue of the journal Science.

More... | Comments (1) | TrackBack (0)

ARPA-E to award $60M to 2 programs: enhancing biomass yield and dry-cooling for thermoelectric power

October 02, 2014

Phenotypingvision
ARPA-E’s vision of advanced phenotyping to enhance biomass yield. Click to enlarge.

The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) will award up to $60 million to two new programs ($30 million each). The Transportation Energy Resources from Renewable Agriculture (TERRA) program (DE-FOA-0001211) seeks to accelerate biomass yield gains (especially energy sorghum) through automated, predictive and systems-level approaches to biofuel crop breeding. The Advanced Research In Dry cooling (ARID) program (DE-FOA-0001197) aims to develop low-cost, highly efficient and scalable dry-cooling technologies for thermoelectric power plants.

TERRA. ARPA-E posited that there is an urgent need to accelerate energy crop development for the production of renewable transportation fuels from biomass. While recent advances in technology has enabled the extraction of massive volumes of genetic, physiological, and environmental data from certain crops, the data still cannot be processed into the knowledge needed to predict crop performance in the field. This knowledge is required to improve the breeding development pipeline for energy crops.

More... | Comments (0) | TrackBack (0)

Southwest Airlines signs purchase agreement with Red Rock Biofuels for renewable jet fuel from forest residues; ~3M gallons per year

September 24, 2014

Southwest Airlines has signed an agreement with Red Rock Biofuels LLC (RRB) to purchase low carbon renewable jet fuel, made using forest residues that will help reduce the risk of destructive wildfires in the Western United States. The airline’s agreement with RRB covers the purchase of approximately three million gallons per year. The blended product will be used at Southwest’s Bay Area operations with first delivery expected in 2016.

RRB’s first plant will convert approximately 140,000 dry tons of woody biomass feedstock into at least 12 million gallons per year of renewable jet, diesel, and naphtha fuels. The company recently received a $70-million grant under phase 2 of the US Defense Production Act Title III Advanced Drop-in Biofuels project for construction of the facility, which will also produce mil-spec fuels. (Earlier post.)

More... | Comments (3) | TrackBack (0)

Departments of the Navy, Energy and Agriculture award $210M in contracts for 3 drop-in fuel biorefineries; more than 100M gallons/year

September 20, 2014

The US Departments of Navy, Energy, and Agriculture have awarded contracts worth a combined $210 million to three companies—Emerald Biofuels, Fulcrum BioEnergy and Red Rock Biofuels—to construct and commission biorefineries capable of producing drop-in biofuels. In total, these projects are intended to produce more than 100 million gallons of military-grade fuel beginning in 2016 and 2017 at a price competitive with their petroleum counterparts.

The awards were made through the Department of Defense’s (DOD) Defense Production Act (DPA) of 1950, which was passed at the beginning of the Korean War to empower the President, among other things, with an array of authorities to shape national defense preparedness programs and to take appropriate steps to maintain and enhance the domestic industrial base. DPA has been re-authorized multiple times since then.

More... | Comments (9) | TrackBack (0)

California Energy Commission awards $5M grant to AltAir Fuels to expand renewable diesel production; $3M to GFP Ethanol for sorghum feedstock

September 11, 2014

The California Energy Commission approved $8 million in grants to two biofuel companies stemming from a solicitation issued earlier this year (PON-13-609: Pilot-Scale and Commercial-Scale Advanced Biofuels Production Facilities).

AltAir Fuels LLC (earlier post) will receive $5 million to expand production of renewable diesel fuels at its Paramount facility in Los Angeles County from 30 million gallons per year to 40 million gallons per year, and allow for processing of additional feedstocks. This facility will also co-produce renewable jet at commercial scale and a byproduct chemical and gasoline component. GFP Ethanol is receiving $3 million to support the development of sorghum as a feedstock for lower carbon intensity ethanol.

More... | Comments (1) | TrackBack (0)

New clean one-pot process for high-yield production of biofuel GVL from biomass-derived levulinic acid

September 08, 2014

A team from Brown University and Lakehead University (Ontario, Canada) has devised a one-pot process for the clean and highly selective production of γ-valerolactone (GVL) from biomass-derived levulinic acid (LA) at up to 96.3% yield using a series of robust, stable and reusable Pd nanoparticles in water solvent. A paper on the work is published in the Journal of Cleaner Production.

GVL (C5H8O2) is a feedstock of interest in the production of both fuels and fine chemicals from biomass. With more energy than ethanol, GVL can be used on its own, used as an additive, or used as a precursor to other fuels. (Earlier post.) GVL could also be useful as a “green” solvent or a building block for creating renewable polymers from sustainable materials.

More... | Comments (1) | TrackBack (0)

PNNL study uncovers role of water in forming impurity in bio-oil upgrading; insight into fundamentals of biofuel catalysis

August 21, 2014

In working to elucidate the chemistry of hydrodeoxygenation (HDO) for the catalytic upgrading of pyrolytic bio-oil to fuel-grade products, researchers at Pacific Northwest National Laboratory (PNNL) have discovered that water in the conversion process helps form an impurity which, in turn, slows down key chemical reactions. Results of the study, which was reported in the Journal of the American Chemical Society, can help improve processes that produce biofuels from plants.

The study examines the conversion of bio-oil, produced from biomass such as wood chips or grasses, into transportation fuels. Researchers used density functional theory (DFT)-based ab initio molecular dynamics calculations to provide a detailed atomic-level understanding of how the hydrogenation reactions are influenced by the presence of water and also by the nature of the hydrogenating metal. The results of the study apply not only to water but to related liquids in bio-oil such as alcohols and certain acids.

More... | Comments (1) | TrackBack (0)

JBEI researchers develop “bionic” liquids: ionic liquids derived from lignin and hemicelullose; towards closed-loop biorefineries

August 19, 2014

Socha1
Hypothetical process flow for a closed-loop biorefinery using ionic liquids derived from lignocellulosic biomass (“bionic liquids”) for biomass deconstruction. Socha et al. Click to enlarge.

Researchers at the US Department of Energy’s Joint BioEnergy Institute (JBEI) have developed “bionic liquids”—ionic liquids derived from lignin and hemicellulose, two by-products of biofuel production from biorefineries. JBEI is a multi-institutional partnership led by Lawrence Berkeley National Laboratory (Berkeley Lab) that was established by the DOE Office of Science to accelerate the development of advanced, next-generation biofuels.

Ionic liquids show great promise for liberating fermentable sugars from lignocellulose and improving the economics of advanced biofuels. The concept of bionic liquids opens the door to realizing a closed-loop process for future lignocellulosic biorefineries, and has far-reaching economic impacts for other ionic liquid-based process technologies that currently use ionic liquids synthesized from petroleum sources, said Blake Simmons, a chemical engineer who is JBEI’s Chief Science and Technology Officer and heads JBEI’s Deconstruction Division.

More... | Comments (1) | TrackBack (0)

UC Riverside team develops new high efficiency method for conversion of biomass to biofuels

August 04, 2014

Unknown
Overview of the process. Cai et al. (2014) Click to enlarge.

A team of researchers, led by Professor Charles E. Wyman, the Ford Motor Company Chair in Environmental Engineering at the University of California, Riverside’s Bourns College of Engineering, has developed a versatile, relatively non-toxic, and efficient way to convert lignocellulosic biomass into biofuels and chemicals.

The method couples the use of a metal halide selective catalyst with a highly tunable co-solvent—renewable tetrahydrofuran (THF)—to enhance co-production of the fuel precursors furfural and 5-HMF from biomass in a single-phase reaction strategy capable of integrating biomass deconstruction with catalytic dehydration of sugars. Those fuel precursors can then be converted into ethanol, chemicals or drop-in fuels.

More... | Comments (0) | TrackBack (0)

U Mich professor finds fuel cycle analysis for evaluating CO2 impacts of liquid fuels is fatally flawed; calls for focus on CO2 removal

July 28, 2014

Fuel cycle analysis (FCA)—or “well-to-wheels analysis”—is a type of lifecycle analysis (LCA) that examines fuel products and their supply chains, and that has greatly influenced climate-related research priorities and public policies for transportation fuels.

However, in a major review of methods for evaluating the net CO2 impacts of liquid transportation fuels, Professor John DeCicco at the University of Michigan Energy Institute (UMEI) compared FCA to other methods of analysis, and found “flaws fatal enough to raise serious concerns about the role of FCA in shaping fuel-related CO2 mitigation strategies. Instead, DeCicco proposes “setting the lifecycle paradigm aside” and focusing on the problem of carbon dioxide removal.

More... | Comments (4) | TrackBack (0)

California Energy Commission selects 11 advanced biofuels projects for $43.6M in awards

July 25, 2014

The California Energy Commission (CEC) has selected 11 biofuel projects projects—including gasoline substitutes, diesel substitutes and biomethane projects—for $43,633,421 in awards under a grant solicitation released in January for the development of new, or the modification of, existing California-based biofuel production facilities that can sustainably produce low carbon transportation fuels.

The grant solicitation had announced a total of $24 million available for projects funded by the solicitation; however, the Energy Commission, at its sole discretion, reserves the right to increase or reduce the amount of funds available.

More... | Comments (3) | TrackBack (0)

Researchers synthesize diesel- and jet-range cycloalkanes from lignocellulosic platform compounds

July 18, 2014

Researchers at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, have synthesized, for the first time, a mixture of C9−C15 branched alkanes and cycloalkanes with relatively higher density from 2-Methylfuran (2-MF) and cyclopentanone (CPO)—selective hydrogenation products of furfural, which can be produced in industrial scale with lignocellulose.

Most work done so far with lignocellulose-based platform compounds has concentrated on the production of diesel (C9−C21) or jet fuel (C8−C16) range straight-chain alkanes and/or branched-chain alkanes, the team notes in their paper in the ACS journal Energy & Fuels. Although those alkanes have good thermal stability and excellent combustion efficiency, their lower densities require blending with conventional jet fuel (a mixture of straight-chain alkanes, branched-chain alkanes, and cyclic hydrocarbons) to meet the specifications of aviation fuel.

More... | Comments (1) | TrackBack (0)

DOE, USDA awarding $12.6M to 10 biomass genomics research projects for improved biofuels

July 17, 2014

The US Department of Energy (DOE) and the US Department of Agriculture (USDA) have selected 10 projects that will receive funding aimed at accelerating genetic breeding programs to improve plant feedstocks for the production of biofuels, biopower, and bio-based products.

The $12.6 million in research grants are awarded under a joint DOE-USDA program that began in 2006 focused on fundamental investigations of biomass genomics, with the aim of harnessing nonfood plant biomass for the production of fuels such as ethanol or renewable chemical feedstocks. Dedicated feedstock crops tend to require less intensive production practices and can grow on poorer quality land than food crops, making this a critical element in a strategy of sustainable biofuels production that avoids competition with crops grown for food.

More... | Comments (1) | TrackBack (0)

Edeniq and Global Bio-chem to develop and commercialize technology to convert corn stover to industrial sugars for fuels

July 16, 2014

Edeniq, Inc., a cellulosic sugar producer (earlier post), has signed a letter of intent with China-based Global Bio-chem Technology Group Company Limited to develop and to commercialize processes to convert corn stover to industrial sugars for use in the production of chemicals, fuels, and other bio-based products.

Pursuant to the letter of intent, Edeniq and Global Bio-chem intend to integrate their technologies in a commercial demonstration plant to produce 50,000 metric tons per year of industrial sugars from corn stover, and subsequently to form a joint venture to further develop and commercialize their technology platform. Global Bio-chem is currently working on modification of corn stover—leaves, stalks and cobs of corn—at its facility in the Jilin Province of China.

More... | Comments (1) | TrackBack (0)

Cobalt and Andritz sign exclusive agreement for technology and engineering for production of cellulosic n-butanol

July 11, 2014

Cobalt Technologies, Inc. signed an exclusive global cooperation and supply agreement with Andritz Inc., the US subsidiary of international technology Group Andritz, to integrate Cobalt’s proprietary lignocellulosic pre-treatment process for the production of n-butanol with Andritz’s customized pre-treatment systems.

The primary alcohol n-butanol has traditionally been produced from fossil fuels. Engineered to achieve low production costs, Cobalt’s technology naturally converts both C5 and C6 sugars into bio-butanol, using any non-food lignocellulosic, renewable and sustainable feed-stock.

More... | Comments (0) | TrackBack (0)

EPA qualifies new biogas and electricity pathways for cellulosic biofuel requirement under RFS; defers decision on other proposed pathways

July 03, 2014

In a newly released rule, the US Environmental Protection Agency (EPA) has clarified the number of cellulosic biofuel renewable identification numbers (RINs, earlier post) that may be generated for fuel made with feedstocks of varying cellulosic content; qualified additional fuel pathways to meet the lifecycle greenhouse gas (GHG) reduction requirements for cellulosic biofuel under the National Renewable Fuel Standard (RFS) program; and clarified or amended a number of RFS program regulations that define terms or address registration, record-keeping, and reporting requirements. The final rule also clarifies that EPA considers corn kernel fiber to be a crop residue.

However, the final rule differs in several ways from the Notice of Proposed Rulemaking EPA had issued in June 2013 (earlier post):

More... | Comments (4) | TrackBack (0)

New one-pot process for conversion of cellulose to n-hexane, a gasoline component

June 26, 2014

Master.img-000
One-pot process for conversion of cellulose to hexane, a gasoline component. Credit: ACS, Liu et al. Click to enlarge.

Researchers at Tohoku University in Japan have developed a one-pot process to convert cellulose to n-hexane in the presence of hydrogen gas. According to the US Environmental Protection Agency (EPA), unleaded gasoline contains about 11.6% n-hexane.

In a paper in the journal ACS Sustainable Chemistry & Engineering, the Tohuku team reports achieving a yield of n-hexane of 83% from ball-milled cellulose and 78% from microcrystalline cellulose. Even using a high weight ratio of cellulose to water (1:1), a 71% yield of n-hexane could be obtained from ball-milled cellulose.

More... | Comments (4) | TrackBack (0)

DOE awards $100M in 2nd funding round for 32 Energy Frontier Research Centers

June 24, 2014

The US Department of Energy (DOE) is awarding $100 million in the second round of funding for Energy Frontier Research Centers (EFRCs); research supported by this initiative will enable fundamental advances in energy production, storage, and use.

The 32 projects receiving funding were competitively selected from more than 200 proposals. Ten of these projects are new while the rest received renewed funding based both on their achievements to date and the quality of their proposals for future research.

More... | Comments (1) | TrackBack (0)

LowCVP reports indicate pathways for meeting renewable energy targets in transportation, decarbonizing fuel to 2030 and beyond

June 18, 2014

Lowcvp
Illustrative impact of the fuel roadmap. Source: LowCVP, Element Energy. Click to enlarge.

The UK’s LowCVP has published twin reports which set out how the UK could meet its 2020 targets defined in the EU’s Renewable Energy Directive, and proceed on a pathway to decarbonize road transport fuel in the period to 2030 and beyond.

The LowCVP—the stakeholder body which brings government, industry and other stakeholders together to focus on the challenges of decarbonizing road transport—commissioned energy consultancy Element Energy to analyze the UK’s options for meeting the Renewable Energy Directive’s (RED) 2020 transport target which states that at least 10% of the final energy consumption in transport must come from renewable sources. This and the parallel Fuels Roadmap report benefitted from wide industry consultation and explicitly set out to align with existing powertrain roadmaps (including those published by the Automotive Council and the LowCVP).

More... | Comments (0) | TrackBack (0)

International team sequences Eucalyptus genome; potential for improving biofuel and biomaterial production

June 14, 2014

An international team of researchers has sequenced the genome of the eucalyptus tree (Eucalyptus grandis) and published the analysis in an open access paper in the journal Nature. With its prodigious growth habit, the eucalyptus tree, one of the world’s most widely planted hardwood trees, has the potential to enhance sustainable biofuels and biomaterials production, and to provide a stable year-round source of biomass that doesn’t compete with food crops.

The researchers reported the sequencing and assembly of more than 94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes, which can be substituted catalytically for jet fuel.

More... | Comments (24) | TrackBack (0)

Study suggests energy and GHG impacts of synthetic hydrocarbon fuels from CO2 are greater than impacts of existing hydrocarbon fuels

June 06, 2014

Master.img-001
Synthetic fuel production from fuel-combustion-based energy and CO2 (top) and from atmospheric CO2 using solar electricity (bottom). Credit: ACS, van der Giesen et al. Click to enlarge.

Researchers at the Institute of Environmental Sciences at Leiden University, The Netherlands) have concluded that the energy demand and climate impacts of using CO2 to produce synthetic hydrocarbon fuels by using existing technologies can be greater than the impacts of existing hydrocarbon fuels. Their quantitative lifecycle assessment of the environmental merits of liquid hydrocarbon fuels produced from CO2, water and energy compared to alternative fuel production routes is published in the ACS journal Environmental Science & Technology.

In their study, the researchers evaluated five hypothetical production routes using different sources of CO2 and energy. The team undertook the work specifically to investigate four general arguments that have been proposed in support of such fuels:

More... | Comments (22) | TrackBack (0)

UGA-led team engineers bacterium for the direct conversion of unpretreated biomass to ethanol

June 03, 2014

A team led by Dr. Janet Westpheling at the University of Georgia has engineered the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which in the wild efficiently uses un-pretreated biomass—to produce ethanol from biomass without pre-treatment of the feedstock. A paper on the work is published in Proceedings of the National Academy of Sciences (PNAS).

In January, Dr. Westpheling and her colleagues reported in the journal Science their discovery that an enzyme (the cellulase CelA) from C. besciia can digest cellulose almost twice as fast as Cel7A, the current leading component cellulase enzyme on the market. (Earlier post.)

More... | Comments (2) | TrackBack (0)

GTI and Haldor Topsøe report successful operation of $35M pilot plant for converting woody biomass to gasoline; vehicle testing starting

May 30, 2014

Gti0
Pilot plant integrating Carbona gasification with TIGAS syngas-to-gasoline process. Click to enlarge.

In a recently completed project, Gas Technology Institute (GTI) worked with Haldor Topsøe, Inc. on an integrated biorefinery to make renewable “drop-in” gasoline. The use of renewable gasoline could reduce lifecycle greenhouse gas emissions by approximately 92% when compared to conventional gasoline.

The almost $35-million pilot-scale project, supported by the US Department of Energy (DOE) integrated biorefineries program ($25 million from DOE, $9,771,659 cost-share), converted woody biomass into bio-derived gasoline by fully integrating and optimizing biomass gasification and syngas cleanup steps with a unique process to turn syngas into gasoline. (Earlier post.)

More... | Comments (6) | TrackBack (0)

Roadmap shows how to improve lignocellulosic biofuel biorefining with high-value products from isolated lignin

May 19, 2014

A new review article in the journal Science highlights emerging opportunities to increase the transformation of lignin to value-added products—i.e., lignin valorization. The resulting roadmap uses the integration of genetic engineering with analytical chemistry tools to tailor the structure of lignin and its isolation so it can be used for materials, chemicals and fuels, said lead author Arthur Ragauskas, a professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology.

Potential high-value products from isolated lignin include low-cost carbon fiber, engineering plastics and thermoplastic elastomers, polymeric foams and membranes, and a variety of fuels and chemicals—all currently sourced from petroleum. Each product stream, however, has its own distinct challenges.

More... | Comments (0) | TrackBack (0)

California Energy Commission publishes investment plan for alt and renewable fuel and vehicle technology, 2014-2015

May 14, 2014

The California Energy Commission has published the “2014‐2015 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle Technology Program”. The 2014‐2015 Investment Plan Update covers the sixth year of the program and reflects laws, executive orders, and policies to reduce greenhouse gas emissions, petroleum dependence, and criteria emissions. It details how the California Energy Commission, with input from stakeholders and the program Advisory Committee, determines the program’s goal‐driven priorities, coupled with project opportunities for funding.

The Energy Commission held public Advisory Committee workshops to collect feedback on the initial and then revised staff drafts; a lead commissioner report version was released on 8 April 2014, and the Energy Commission adopted this commission report at its Business Meeting on 22 April 2014.

More... | Comments (1) | TrackBack (0)

Study finds alcohol mix from biomass-derived syngas could be suitable replacement for ethanol in fuel blending

May 12, 2014

Master.img-006
AlcoMix displays antiknock blending characteristics similar to those of ethanol when blended at various concentrations with non-oxygenated gasoline (RON = 82). Credit: ACS, Rapp et al. Click to enlarge.

Results of a study by a team from the US and Austria suggest that the primary alcohol mixture (“AlcoMix,” comprising 75% ethanol, 11% 1-propanol, 8% 1-butanol, and 6% 1-pentanol) produced from biomass-based syngas could be used as a substitute for ethanol as a primary fuel or as an antiknock blending component.

The purpose of the study, reported in the ACS journal Energy & Fuels, was to determine whether AlcoMix,the probable outcome of the thermochemical conversion of biomass using Fischer–Tropsch chemistry with synthesis gas, might be a suitable replacement for ethanol in fuel blending as an antiknock blending component for spark-ignited engines.

More... | Comments (3) | TrackBack (0)

Study finds that optimized integrated catalytic processing of biomass could produce renewable jet fuel with selling price as low as $2.88/gallon

May 09, 2014

GA
Integrated processing of hardwood to renewable jet and chemicals. Click to enlarge.

A team from seven US universities and the Korea Institue of Science and Technology, led by George Huber, Professor of Chemical and Biological Engineering at the University of Wisconsin-Madison, has developed an integrated catalytic process for the conversion of whole biomass into drop-in aviation fuels with maximal carbon yields.

The researchers expect that in its current state, the proposed technology could deliver jet fuel-range liquid hydrocarbons for a minimum selling price of $4.75 per gallon—assuming nth commercial plant that produces 38 million gallons liquid fuels per year with a net present value of the 20 year biorefinery set to zero. Future improvements in this technology, including replacing precious metal catalysts by base metal catalysts and improving the recyclability of water streams, could reduce this cost to $2.88 per gallon.

More... | Comments (9) | TrackBack (0)

DOE seeking stakeholder input on 8 strategic biofuels pathways

May 04, 2014

The US Department of Energy (DOE) has issued a request for information (DE-FOA-0001124) seeking stakeholder input regarding the 8 representative biofuel technology pathways that the Office of Energy Efficiency and Renewable Energy’s (EERE) Bioenergy Technologies Office (BETO) has selected to guide its Research and Development (R&D) strategy in the near-term.

DOE is also seeking input on other pre-commercial pathways that it should consider in the near- to long-term.

More... | Comments (0) | TrackBack (0)

Study finds removing corn residue for biofuel production can decrease soil organic carbon and increase CO2 emissions; may miss mandated 60% GHG reduction

April 21, 2014

Liska
Contribution of modeled CO2 emissions from SOC to the life cycle of biofuel from corn residue. Error bars are ± one standard deviation. Liska et al. Click to enlarge.

Using corn crop residue to make ethanol and other biofuels reduces soil carbon and under some conditions can generate more greenhouse gases than gasoline, according to a major, multi-year study by a University of Nebraska-Lincoln team of researchers published in the journal Nature Climate Change. The findings cast doubt on whether biofuels produced from corn residue can be used to meet federal mandates for cellulosic biofuels to reduce greenhouse gas emissions 60% compared to gasoline.

The study, led by assistant professor Adam Liska, was funded through a three-year, $500,000-grant from the US Department of Energy, and used carbon dioxide measurements taken from 2001 to 2010 to validate a soil carbon model that was built using data from 36 field studies across North America, Europe, Africa and Asia. Using USDA soil maps and crop yields, they extrapolated potential carbon dioxide emissions across 580 million 30-meter by 30-meter geospatial cells in Corn Belt states.

More... | Comments (16) | TrackBack (0)

Green Car Congress © 2015 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group