Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Biomass

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Purdue process converts lignin in intact biomass to hydrocarbons for chemicals and fuels

December 18, 2014

A team of researchers from Purdue University’s Center for Direct Catalytic Conversion of Biomass to Biofuels, or C3Bio, has developed a process that uses a bimetallic Zn/Pd/C catalyst to convert lignin in intact lignocellulosic biomass directly into two methoxyphenol products (phenols are a class of aromatic hydrocarbon compounds used in perfumes and flavorings) leaving behind the carbohydrates as a solid residue.

Lignin-derived methoxyphenols can be further deoxygenated to propylcyclohexane—a cycloalkane. Cycloalkanes are important components of not only traditional vehicle fuels such as gasoline and diesel, but also jet fuels, such as Jet-A/Jet-A1/JP-8.

More... | Comments (4) | TrackBack (0)

DOE Bioenergy Technologies Office updates 5-year program plan; commercially viable hydrocarbon biofuel technologies by 2017; <$3/GGE

November 23, 2014

Beto1
BETO high-level schedule. Click to enlarge.

The US Department of Energy (DOE) Bioenergy Technologies Office (BTO) has updated its Multi-Year Program Plan (MYPP), which delineates the goals and structure of the office. BTO is one of the 10 technology development offices within the Office of Energy Efficiency and Renewable Energy (EERE) at DOE.

The MYPP identifies the research, development, demonstration, and deployment (RDD&D) activities the Office will focus on over the next five years and explains why these activities are important. The MYPP is intended for use as an operational guide to help BETO manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

More... | Comments (7) | TrackBack (0)

Purdue team demonstrates proof-of-concept of H2Bioil process; liquid fuel range hydrocarbons from biomass

November 17, 2014

H2bioil
H2Bioil concept. Venkatakrishnan et al. Click to enlarge.

Researchers at Purdue University report a proof-of-concept of a their novel consecutive two-step process (H2Bioil) for the production of liquid fuel range hydrocarbons (C4+) with undetectable oxygen content from cellulose and an intact biomass (poplar). (Earlier post.)

Purdue University filed a patent application on the H2Bioil concept, which is based on fast-hydropyrolysis and downstream vapor-phase catalytic hydrodeoxygenation (HDO), in 2008. The process adds hydrogen into the biomass-processing reactor and is made possible by development of a new catalyst and the innovative reactor design. Findings are described in a research paper published online in the RSC journal Green Chemistry.

More... | Comments (5) | TrackBack (0)

Researchers in China produce highest octane gasoline fuel reported from biomass

November 11, 2014

Researchers in China have generated gasoline fuel with a research octane number of 95.4 from biomass-derived γ-valerolactone (GVL)—the highest octane number reported for biomass-derived gasoline fuel—using an ionic liquid catalyst. A paper on their work is published in the RSC journal Green Chemistry.

In the study, they converted biomass-derived γ-valerolactone into gasoline by the decarboxylation of valerolactone to produce butenes and the subsequent alkylation of the produced butenes with butane using [CF3CH2OH2][CF3CH2OBF3] as an efficient catalyst. The obtained gasoline was rich in trimethylpentane (isooctane), with the RON of 95.4.

More... | Comments (1) | TrackBack (0)

Ensyn begins generation & sale of cellulosic biofuel RINs under RFS2

November 09, 2014

Ensyn has initiated the generation and sale of its first RINs (Renewable Identification Numbers) under the US Renewable Fuel Standard (RFS2) (earlier post); Ensyn’s D7 cellulosic RINs have received QAP certification. Ensyn is the first company to generate cellulosic RINs under the US Environmental Protection Agency’s expanded definition of Heating Oil under RFS2, which became effective in December 2013. Ensyn believes it is now the leading producer of cellulosic D7 RINs in 2014.

D7 RINs are generated by Ensyn by displacing petroleum heating fuels (including #6, #4 or #2 diesel fuel oil) in customers’ boilers with Ensyn’s RFO (Renewable Fuel Oil) produced via Ensyn’s RTP (Rapid Thermal Processing) fast pyrolysis technology. (Earlier post.) RFO is a cellulosic biofuel produced from non-food solid biomass including forest residues. RFO is used to displace petroleum fuels in heating operations and is also a renewable feedstock for conventional petroleum refineries for the production of gasoline and diesel.

More... | Comments (0) | TrackBack (0)

U Wisc. scientists develop new method to convert lignin to simple chemicals under mild conditions

November 03, 2014

Researchers at the University of Wisconsin have disclosed a new method to convert lignin, an important component of biomass waste, into simple chemicals. Lignin, which accounts for nearly 30% of the organic carbon in the biosphere, is a complex material containing chains of six-carbon rings. These aromatics could be the basis for a sustainable supply of useful chemicals, but only if the chains of lignin can be broken down into the individual units. Lignin, however, is highly resistant to breakdown, especially in a cost-effective way.

Prof. Shannon Stahl and his colleagues developed, in work funded by the Great Lakes Bioenergy Research Center at UW-Madison, a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60 wt% yield of low-molecular-mass aromatics. A paper on the method is published in the journal Nature.

More... | Comments (3) | TrackBack (0)

California Energy Commission to award up to $3M for advanced biofuel projects

October 28, 2014

The California Energy Commission’s Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP) announced (PON-14-602) the availability of up to $3 million in grant funds for biofuels projects that are in the early/pre-commercial technology development stage. This solicitation is emphasizing transformative technology solutions to significant biofuels industry problems that increase yields, productivity, or cost effectiveness of biofuel production; and/or that target a significant unmet need in California’s biofuels industry.

The ARFVTP has an annual budget of approximately $100 million and provides financial support for projects that increase the use of alternative and renewable fuels and advanced vehicle technologies.

More... | Comments (1) | TrackBack (0)

Cooper Tire begins testing tires made with guayule component; consortium progress on genomics, agronomics

October 22, 2014

Cooper Tire & Rubber Company has completed tire builds using rubber derived from guayule plants and new guayule related materials. The tires are being evaluated by Cooper’s technical team using wheel, road and track tests, which are ongoing, but to date suggest tire performance that is at least equal to tires made of components derived from the Hevea rubber plant.

This development was reported by Cooper to its consortium partners—PanAridus, Arizona State University, Cornell University, and the Agricultural Research Service of the United States Department of Agriculture (USDA-ARS)—as the group met recently in Maricopa, Arizona for its third annual meeting and progress report on their $6.9-million Biomass Research and Development Initiative (BRDI) grant, “Securing the Future of Natural Rubber—An American Tire and Bioenergy Platform from Guayule.” (Earlier post.)

More... | Comments (1) | TrackBack (0)

Abengoa opens cellulosic ethanol plant in Hugoton; 1st commercial deployment of Abengoa enzymatic hydrolysis

October 17, 2014

Hugoton-aeriel-2
The Hugoton cellulosic ethanol plant covers 400 acres, more than 380 of which will be used to store biomass from local farmers. Click to enlarge.

Abengoa held the grand opening of its cellulosic ethanol plant in Hugoton, Kansas, located about 90 miles (145 km) southwest of Dodge City. Abengoa’s new biorefinery finished construction in mid-August and began producing cellulosic ethanol at the end of September with the capacity to produce up to 25 million gallons (94.6 million liters) per year. Abengoa received a $132.4-million loan guarantee and a $97-million grant through the Department of Energy to support construction of the Hugoton facility.

The plant utilizes only “second generation” (2G) biomass feedstocks for ethanol production—i.e.non-edible agricultural crop residues (such as stalks and leaves) that do not compete with food or feed grain. The facility also features an electricity cogeneration component allowing it to operate as a self-sufficient renewable energy producer. By utilizing residual biomass solids from the ethanol conversion process, the plant generates 21 megawatts (MW) of electricity—enough to power itself and provide excess clean renewable power to the local Stevens County community.

More... | Comments (5) | TrackBack (0)

New WSU palladium-iron catalyst could improve drop-in biofuels production from pyrolysis oils

Acs_catalysis_motion
The addition of palladium (Pd) prevents deactivation (addition of oxygen, red spheres) of an iron catalyst in the reaction that removes oxygen from biofuel feedstock. Credit: ACS, Hensley et al.. Click to enlarge.

Washington State University researchers have developed a new palladium-iron hydrodeoxygenation catalyst (Pd/Fe2O3) that could lead to making drop-in biofuels cheaply and more efficiently. Their work is described in two papers in the October issue of the journal ACS Catalysis and is featured on the cover.

The first WSU paper (Hong et.al) describes the synthesis of a series of Pd/Fe2O3 catalysts and their performance for the hydrodeoxygenation of m-cresol—a phenolic compounds used as a model compound in the HDO research, as it can be derived from pyrolysis of lignin. The second (Hensley et al.) reports on a combined experimental and theoretical approach to understand the potential function of the surface Pd in the reduction of Pd/Fe2O3.

More... | Comments (0) | TrackBack (0)

DEINOVE and MBI partner on cellulosic biofuels using DEINOL and AFEX

October 16, 2014

France-based DEINOVE and US-based MBI have formed a technological partnership to demonstrate the effectiveness of the DEINOVE’s DEINOL technology for producing biofuels based on lignocellulosic biomass (2G biofuels) using MBI’s AFEX (ammonia fiber expansion) pretreatment system.

DEINOL uses Deinococcus bacteria to break down the complex sugars contained in pre-treated lignocellulosic biomass and then to convert them into ethanol in a single operation, replacing the microorganisms that are traditionally used and a large part of the enzyme treatment that precedes fermentation. (Earlier post.) MBI, in close collaboration with Michigan State University (MSU), has developed and is scaling up its AFEX pretreatment technology. (Earlier post.)

More... | Comments (0) | TrackBack (0)

New one-pot catalytic process efficiently converts biomass to liquid alkanes under mild conditions

October 13, 2014

Debeeck1
Conversion of microcrystalline cellulose to liquid alkanes with the biphasic system in function of time and temperature. Yield insoluble products (%) = cellulose conversion (%) - total yield dissolved products (%). de Beeck et al. Click to enlarge.

A team from KU Leuven, Belgium, together with colleagues at the Leibniz Institute for Solid State and Materials Research in Germany, have designed a novel one-pot biphasic catalytic system that is able directly to transform cellulose into straight-chain alkanes (mainly n-hexane) with high yields.

The carbon-based yields are high (up to 82%) and the process completes in less than 6 hours at a comparatively mild 220 ˚C. The resulting bio-derived light naphtha fraction is a green feedstock suited for existing processes that produce aromatics, gasoline or olefins. With low-cost cellulosic residue and the absence of required pretreatment for this process, the researchers said, this approach seems highly promising en route to more sustainable chemicals and fuels. A paper on the work is published in the RSC journal Energy & Environmental Science.

More... | Comments (9) | TrackBack (0)

DOE awarding up to $13.4M for 5 projects for advanced biofuels and bioproducts

October 09, 2014

The US Department of Energy (DOE) will award up to $13.4 million for five projects to develop advanced biofuels and bioproducts that will help drive down the cost of producing gasoline, diesel, and jet fuel from biomass. These products not only will help reduce carbon emissions, but also advance the department’s work to enable the production of drop-in biofuel at $3 per gallon by 2022.

The research and development projects will focus on developing integrated processes for the production of advanced biofuels and chemicals. Two of these selections will address research efforts on the efficient conversion of biogas (a mixture of gases generated from the biological breakdown of organic material) to valuable products other than power.

More... | Comments (1) | TrackBack (0)

BNL team devises new method to boost oil accumulation in plant leaves; implications for biofuel production

October 08, 2014

Researchers at DOE’s Brookhaven National Laboratory (BNL) have developed a new method to increase significantly the amount of oil accumulated in plant leaves, which could then serve as a source for biofuel production. Rather than adding genes, as some other research teams have done in their efforts to boost oil accumulation, the BNL method is based on is based on disabling or inactivating genes through simple mutations.

A series of detailed genetic studies revealed previously unknown biochemical details about plant metabolic pathways, including new ways to increase the accumulation of oil in leaves. Using these methods, the scientists grew experimental Arabidopsis plants (widely used as model organisms in plant biology), the leaves of which accumulated 9 wt % oil. This represented an approximately 150-fold increase in oil content compared to wild type leaves. A paper on their work is published in the journal The Plant Cell.

More... | Comments (0) | TrackBack (0)

Neste Oil de-emphasizing microbial oil R&D for renewable diesel; seeking other uses for cellulosic biomass

October 07, 2014

Neste Oil, the producer of NExBTL renewable diesel, is realigning its long-term R&D and switching from an emphasis on research into the production of microbial oil as a feedstock for NExBTL renewable diesel and renewable jet fuel (earlier post) to other areas of technology for using cellulosic forestry and agricultural waste, due in part to feedstock cost issues.

Despite the decision to de-emphasize microbial oil, Neste Oil emphasized that cellulosic waste will continue to play an important role in its research strategy, adding that it remains committed to its goal of further extending its feedstock base and making greater use of waste and residues in this area in particular.

More... | Comments (1) | TrackBack (0)

USDA provides $91M loan guarantee to Cool Planet for biogasoline blendstock plant; biomass pyrolysis and catalytic conversion

October 05, 2014

Cp2
Gas chromatography comparison of Conoco fuel and a Conoco-CoolPlanet blend. Cool Planet’s biogasoline blendstock is 100% compatible with pump gasoline. Source: Cool Planet. Click to enlarge.

USDA has reached an agreement with Silicon Valley Bank to provide a $91-million Biorefinery Assistance Program loan guarantee to Cool Planet to help the company finish construction on an advanced biofuel plant at the Port of Alexandria in Louisiana. (Earlier post.)

Cool Planet has devised a biomass-to-liquids thermochemical conversion process that simultaneously produces liquid fuels and sequesterable biochar useful as a soil amendment. The Cool Planet plant will produce approximately 8 million to 10 million gallons of high-octane, renewable gasoline blendstocks (reformate), as well the biochar, all made from sustainable wood residues.

More... | Comments (10) | TrackBack (0)

Researchers enhance yeast thermotolerance and ethanol tolerance; potential for significant impact on industrial biofuel production

October 03, 2014

The yeast Saccharomyces cerevisiae plays a central role in global biofuel production; currently, about 100 billion liters of ethanol are produced annually worldwide by fermentation of mainly sugarcane saccharose and corn starch by the yeast. There are also efforts underway to use the yeast with cellulosic biomass.

Boosting the yield and lowering the cost of fermentative production of biofuel would not only result in a significant immediate financial impact to commercial ethanol operations, but also support cost reductions that would be helpful to advance other advanced biofuels using the same or a similar pathway. However, boosting production has been gated by two key conditions: the ability of the yeast to tolerate higher temperatures, and the ability of the yeast to survive high concentrations of ethanol. Now, two new separate studies report progress on each of those fronts; the findings could have a significant impact on industrial biofuel production. Both papers are published in the current issue of the journal Science.

More... | Comments (1) | TrackBack (0)

ARPA-E to award $60M to 2 programs: enhancing biomass yield and dry-cooling for thermoelectric power

October 02, 2014

Phenotypingvision
ARPA-E’s vision of advanced phenotyping to enhance biomass yield. Click to enlarge.

The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) will award up to $60 million to two new programs ($30 million each). The Transportation Energy Resources from Renewable Agriculture (TERRA) program (DE-FOA-0001211) seeks to accelerate biomass yield gains (especially energy sorghum) through automated, predictive and systems-level approaches to biofuel crop breeding. The Advanced Research In Dry cooling (ARID) program (DE-FOA-0001197) aims to develop low-cost, highly efficient and scalable dry-cooling technologies for thermoelectric power plants.

TERRA. ARPA-E posited that there is an urgent need to accelerate energy crop development for the production of renewable transportation fuels from biomass. While recent advances in technology has enabled the extraction of massive volumes of genetic, physiological, and environmental data from certain crops, the data still cannot be processed into the knowledge needed to predict crop performance in the field. This knowledge is required to improve the breeding development pipeline for energy crops.

More... | Comments (0) | TrackBack (0)

Southwest Airlines signs purchase agreement with Red Rock Biofuels for renewable jet fuel from forest residues; ~3M gallons per year

September 24, 2014

Southwest Airlines has signed an agreement with Red Rock Biofuels LLC (RRB) to purchase low carbon renewable jet fuel, made using forest residues that will help reduce the risk of destructive wildfires in the Western United States. The airline’s agreement with RRB covers the purchase of approximately three million gallons per year. The blended product will be used at Southwest’s Bay Area operations with first delivery expected in 2016.

RRB’s first plant will convert approximately 140,000 dry tons of woody biomass feedstock into at least 12 million gallons per year of renewable jet, diesel, and naphtha fuels. The company recently received a $70-million grant under phase 2 of the US Defense Production Act Title III Advanced Drop-in Biofuels project for construction of the facility, which will also produce mil-spec fuels. (Earlier post.)

More... | Comments (3) | TrackBack (0)

Departments of the Navy, Energy and Agriculture award $210M in contracts for 3 drop-in fuel biorefineries; more than 100M gallons/year

September 20, 2014

The US Departments of Navy, Energy, and Agriculture have awarded contracts worth a combined $210 million to three companies—Emerald Biofuels, Fulcrum BioEnergy and Red Rock Biofuels—to construct and commission biorefineries capable of producing drop-in biofuels. In total, these projects are intended to produce more than 100 million gallons of military-grade fuel beginning in 2016 and 2017 at a price competitive with their petroleum counterparts.

The awards were made through the Department of Defense’s (DOD) Defense Production Act (DPA) of 1950, which was passed at the beginning of the Korean War to empower the President, among other things, with an array of authorities to shape national defense preparedness programs and to take appropriate steps to maintain and enhance the domestic industrial base. DPA has been re-authorized multiple times since then.

More... | Comments (9) | TrackBack (0)

California Energy Commission awards $5M grant to AltAir Fuels to expand renewable diesel production; $3M to GFP Ethanol for sorghum feedstock

September 11, 2014

The California Energy Commission approved $8 million in grants to two biofuel companies stemming from a solicitation issued earlier this year (PON-13-609: Pilot-Scale and Commercial-Scale Advanced Biofuels Production Facilities).

AltAir Fuels LLC (earlier post) will receive $5 million to expand production of renewable diesel fuels at its Paramount facility in Los Angeles County from 30 million gallons per year to 40 million gallons per year, and allow for processing of additional feedstocks. This facility will also co-produce renewable jet at commercial scale and a byproduct chemical and gasoline component. GFP Ethanol is receiving $3 million to support the development of sorghum as a feedstock for lower carbon intensity ethanol.

More... | Comments (1) | TrackBack (0)

New clean one-pot process for high-yield production of biofuel GVL from biomass-derived levulinic acid

September 08, 2014

A team from Brown University and Lakehead University (Ontario, Canada) has devised a one-pot process for the clean and highly selective production of γ-valerolactone (GVL) from biomass-derived levulinic acid (LA) at up to 96.3% yield using a series of robust, stable and reusable Pd nanoparticles in water solvent. A paper on the work is published in the Journal of Cleaner Production.

GVL (C5H8O2) is a feedstock of interest in the production of both fuels and fine chemicals from biomass. With more energy than ethanol, GVL can be used on its own, used as an additive, or used as a precursor to other fuels. (Earlier post.) GVL could also be useful as a “green” solvent or a building block for creating renewable polymers from sustainable materials.

More... | Comments (1) | TrackBack (0)

PNNL study uncovers role of water in forming impurity in bio-oil upgrading; insight into fundamentals of biofuel catalysis

August 21, 2014

In working to elucidate the chemistry of hydrodeoxygenation (HDO) for the catalytic upgrading of pyrolytic bio-oil to fuel-grade products, researchers at Pacific Northwest National Laboratory (PNNL) have discovered that water in the conversion process helps form an impurity which, in turn, slows down key chemical reactions. Results of the study, which was reported in the Journal of the American Chemical Society, can help improve processes that produce biofuels from plants.

The study examines the conversion of bio-oil, produced from biomass such as wood chips or grasses, into transportation fuels. Researchers used density functional theory (DFT)-based ab initio molecular dynamics calculations to provide a detailed atomic-level understanding of how the hydrogenation reactions are influenced by the presence of water and also by the nature of the hydrogenating metal. The results of the study apply not only to water but to related liquids in bio-oil such as alcohols and certain acids.

More... | Comments (1) | TrackBack (0)

JBEI researchers develop “bionic” liquids: ionic liquids derived from lignin and hemicelullose; towards closed-loop biorefineries

August 19, 2014

Socha1
Hypothetical process flow for a closed-loop biorefinery using ionic liquids derived from lignocellulosic biomass (“bionic liquids”) for biomass deconstruction. Socha et al. Click to enlarge.

Researchers at the US Department of Energy’s Joint BioEnergy Institute (JBEI) have developed “bionic liquids”—ionic liquids derived from lignin and hemicellulose, two by-products of biofuel production from biorefineries. JBEI is a multi-institutional partnership led by Lawrence Berkeley National Laboratory (Berkeley Lab) that was established by the DOE Office of Science to accelerate the development of advanced, next-generation biofuels.

Ionic liquids show great promise for liberating fermentable sugars from lignocellulose and improving the economics of advanced biofuels. The concept of bionic liquids opens the door to realizing a closed-loop process for future lignocellulosic biorefineries, and has far-reaching economic impacts for other ionic liquid-based process technologies that currently use ionic liquids synthesized from petroleum sources, said Blake Simmons, a chemical engineer who is JBEI’s Chief Science and Technology Officer and heads JBEI’s Deconstruction Division.

More... | Comments (1) | TrackBack (0)

UC Riverside team develops new high efficiency method for conversion of biomass to biofuels

August 04, 2014

Unknown
Overview of the process. Cai et al. (2014) Click to enlarge.

A team of researchers, led by Professor Charles E. Wyman, the Ford Motor Company Chair in Environmental Engineering at the University of California, Riverside’s Bourns College of Engineering, has developed a versatile, relatively non-toxic, and efficient way to convert lignocellulosic biomass into biofuels and chemicals.

The method couples the use of a metal halide selective catalyst with a highly tunable co-solvent—renewable tetrahydrofuran (THF)—to enhance co-production of the fuel precursors furfural and 5-HMF from biomass in a single-phase reaction strategy capable of integrating biomass deconstruction with catalytic dehydration of sugars. Those fuel precursors can then be converted into ethanol, chemicals or drop-in fuels.

More... | Comments (0) | TrackBack (0)

U Mich professor finds fuel cycle analysis for evaluating CO2 impacts of liquid fuels is fatally flawed; calls for focus on CO2 removal

July 28, 2014

Fuel cycle analysis (FCA)—or “well-to-wheels analysis”—is a type of lifecycle analysis (LCA) that examines fuel products and their supply chains, and that has greatly influenced climate-related research priorities and public policies for transportation fuels.

However, in a major review of methods for evaluating the net CO2 impacts of liquid transportation fuels, Professor John DeCicco at the University of Michigan Energy Institute (UMEI) compared FCA to other methods of analysis, and found “flaws fatal enough to raise serious concerns about the role of FCA in shaping fuel-related CO2 mitigation strategies. Instead, DeCicco proposes “setting the lifecycle paradigm aside” and focusing on the problem of carbon dioxide removal.

More... | Comments (4) | TrackBack (0)

California Energy Commission selects 11 advanced biofuels projects for $43.6M in awards

July 25, 2014

The California Energy Commission (CEC) has selected 11 biofuel projects projects—including gasoline substitutes, diesel substitutes and biomethane projects—for $43,633,421 in awards under a grant solicitation released in January for the development of new, or the modification of, existing California-based biofuel production facilities that can sustainably produce low carbon transportation fuels.

The grant solicitation had announced a total of $24 million available for projects funded by the solicitation; however, the Energy Commission, at its sole discretion, reserves the right to increase or reduce the amount of funds available.

More... | Comments (3) | TrackBack (0)

Researchers synthesize diesel- and jet-range cycloalkanes from lignocellulosic platform compounds

July 18, 2014

Researchers at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, have synthesized, for the first time, a mixture of C9−C15 branched alkanes and cycloalkanes with relatively higher density from 2-Methylfuran (2-MF) and cyclopentanone (CPO)—selective hydrogenation products of furfural, which can be produced in industrial scale with lignocellulose.

Most work done so far with lignocellulose-based platform compounds has concentrated on the production of diesel (C9−C21) or jet fuel (C8−C16) range straight-chain alkanes and/or branched-chain alkanes, the team notes in their paper in the ACS journal Energy & Fuels. Although those alkanes have good thermal stability and excellent combustion efficiency, their lower densities require blending with conventional jet fuel (a mixture of straight-chain alkanes, branched-chain alkanes, and cyclic hydrocarbons) to meet the specifications of aviation fuel.

More... | Comments (1) | TrackBack (0)

DOE, USDA awarding $12.6M to 10 biomass genomics research projects for improved biofuels

July 17, 2014

The US Department of Energy (DOE) and the US Department of Agriculture (USDA) have selected 10 projects that will receive funding aimed at accelerating genetic breeding programs to improve plant feedstocks for the production of biofuels, biopower, and bio-based products.

The $12.6 million in research grants are awarded under a joint DOE-USDA program that began in 2006 focused on fundamental investigations of biomass genomics, with the aim of harnessing nonfood plant biomass for the production of fuels such as ethanol or renewable chemical feedstocks. Dedicated feedstock crops tend to require less intensive production practices and can grow on poorer quality land than food crops, making this a critical element in a strategy of sustainable biofuels production that avoids competition with crops grown for food.

More... | Comments (1) | TrackBack (0)

Edeniq and Global Bio-chem to develop and commercialize technology to convert corn stover to industrial sugars for fuels

July 16, 2014

Edeniq, Inc., a cellulosic sugar producer (earlier post), has signed a letter of intent with China-based Global Bio-chem Technology Group Company Limited to develop and to commercialize processes to convert corn stover to industrial sugars for use in the production of chemicals, fuels, and other bio-based products.

Pursuant to the letter of intent, Edeniq and Global Bio-chem intend to integrate their technologies in a commercial demonstration plant to produce 50,000 metric tons per year of industrial sugars from corn stover, and subsequently to form a joint venture to further develop and commercialize their technology platform. Global Bio-chem is currently working on modification of corn stover—leaves, stalks and cobs of corn—at its facility in the Jilin Province of China.

More... | Comments (1) | TrackBack (0)

Cobalt and Andritz sign exclusive agreement for technology and engineering for production of cellulosic n-butanol

July 11, 2014

Cobalt Technologies, Inc. signed an exclusive global cooperation and supply agreement with Andritz Inc., the US subsidiary of international technology Group Andritz, to integrate Cobalt’s proprietary lignocellulosic pre-treatment process for the production of n-butanol with Andritz’s customized pre-treatment systems.

The primary alcohol n-butanol has traditionally been produced from fossil fuels. Engineered to achieve low production costs, Cobalt’s technology naturally converts both C5 and C6 sugars into bio-butanol, using any non-food lignocellulosic, renewable and sustainable feed-stock.

More... | Comments (0) | TrackBack (0)

EPA qualifies new biogas and electricity pathways for cellulosic biofuel requirement under RFS; defers decision on other proposed pathways

July 03, 2014

In a newly released rule, the US Environmental Protection Agency (EPA) has clarified the number of cellulosic biofuel renewable identification numbers (RINs, earlier post) that may be generated for fuel made with feedstocks of varying cellulosic content; qualified additional fuel pathways to meet the lifecycle greenhouse gas (GHG) reduction requirements for cellulosic biofuel under the National Renewable Fuel Standard (RFS) program; and clarified or amended a number of RFS program regulations that define terms or address registration, record-keeping, and reporting requirements. The final rule also clarifies that EPA considers corn kernel fiber to be a crop residue.

However, the final rule differs in several ways from the Notice of Proposed Rulemaking EPA had issued in June 2013 (earlier post):

More... | Comments (4) | TrackBack (0)

New one-pot process for conversion of cellulose to n-hexane, a gasoline component

June 26, 2014

Master.img-000
One-pot process for conversion of cellulose to hexane, a gasoline component. Credit: ACS, Liu et al. Click to enlarge.

Researchers at Tohoku University in Japan have developed a one-pot process to convert cellulose to n-hexane in the presence of hydrogen gas. According to the US Environmental Protection Agency (EPA), unleaded gasoline contains about 11.6% n-hexane.

In a paper in the journal ACS Sustainable Chemistry & Engineering, the Tohuku team reports achieving a yield of n-hexane of 83% from ball-milled cellulose and 78% from microcrystalline cellulose. Even using a high weight ratio of cellulose to water (1:1), a 71% yield of n-hexane could be obtained from ball-milled cellulose.

More... | Comments (4) | TrackBack (0)

DOE awards $100M in 2nd funding round for 32 Energy Frontier Research Centers

June 24, 2014

The US Department of Energy (DOE) is awarding $100 million in the second round of funding for Energy Frontier Research Centers (EFRCs); research supported by this initiative will enable fundamental advances in energy production, storage, and use.

The 32 projects receiving funding were competitively selected from more than 200 proposals. Ten of these projects are new while the rest received renewed funding based both on their achievements to date and the quality of their proposals for future research.

More... | Comments (1) | TrackBack (0)

LowCVP reports indicate pathways for meeting renewable energy targets in transportation, decarbonizing fuel to 2030 and beyond

June 18, 2014

Lowcvp
Illustrative impact of the fuel roadmap. Source: LowCVP, Element Energy. Click to enlarge.

The UK’s LowCVP has published twin reports which set out how the UK could meet its 2020 targets defined in the EU’s Renewable Energy Directive, and proceed on a pathway to decarbonize road transport fuel in the period to 2030 and beyond.

The LowCVP—the stakeholder body which brings government, industry and other stakeholders together to focus on the challenges of decarbonizing road transport—commissioned energy consultancy Element Energy to analyze the UK’s options for meeting the Renewable Energy Directive’s (RED) 2020 transport target which states that at least 10% of the final energy consumption in transport must come from renewable sources. This and the parallel Fuels Roadmap report benefitted from wide industry consultation and explicitly set out to align with existing powertrain roadmaps (including those published by the Automotive Council and the LowCVP).

More... | Comments (0) | TrackBack (0)

International team sequences Eucalyptus genome; potential for improving biofuel and biomaterial production

June 14, 2014

An international team of researchers has sequenced the genome of the eucalyptus tree (Eucalyptus grandis) and published the analysis in an open access paper in the journal Nature. With its prodigious growth habit, the eucalyptus tree, one of the world’s most widely planted hardwood trees, has the potential to enhance sustainable biofuels and biomaterials production, and to provide a stable year-round source of biomass that doesn’t compete with food crops.

The researchers reported the sequencing and assembly of more than 94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes, which can be substituted catalytically for jet fuel.

More... | Comments (24) | TrackBack (0)

Study suggests energy and GHG impacts of synthetic hydrocarbon fuels from CO2 are greater than impacts of existing hydrocarbon fuels

June 06, 2014

Master.img-001
Synthetic fuel production from fuel-combustion-based energy and CO2 (top) and from atmospheric CO2 using solar electricity (bottom). Credit: ACS, van der Giesen et al. Click to enlarge.

Researchers at the Institute of Environmental Sciences at Leiden University, The Netherlands) have concluded that the energy demand and climate impacts of using CO2 to produce synthetic hydrocarbon fuels by using existing technologies can be greater than the impacts of existing hydrocarbon fuels. Their quantitative lifecycle assessment of the environmental merits of liquid hydrocarbon fuels produced from CO2, water and energy compared to alternative fuel production routes is published in the ACS journal Environmental Science & Technology.

In their study, the researchers evaluated five hypothetical production routes using different sources of CO2 and energy. The team undertook the work specifically to investigate four general arguments that have been proposed in support of such fuels:

More... | Comments (22) | TrackBack (0)

UGA-led team engineers bacterium for the direct conversion of unpretreated biomass to ethanol

June 03, 2014

A team led by Dr. Janet Westpheling at the University of Georgia has engineered the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which in the wild efficiently uses un-pretreated biomass—to produce ethanol from biomass without pre-treatment of the feedstock. A paper on the work is published in Proceedings of the National Academy of Sciences (PNAS).

In January, Dr. Westpheling and her colleagues reported in the journal Science their discovery that an enzyme (the cellulase CelA) from C. besciia can digest cellulose almost twice as fast as Cel7A, the current leading component cellulase enzyme on the market. (Earlier post.)

More... | Comments (2) | TrackBack (0)

GTI and Haldor Topsøe report successful operation of $35M pilot plant for converting woody biomass to gasoline; vehicle testing starting

May 30, 2014

Gti0
Pilot plant integrating Carbona gasification with TIGAS syngas-to-gasoline process. Click to enlarge.

In a recently completed project, Gas Technology Institute (GTI) worked with Haldor Topsøe, Inc. on an integrated biorefinery to make renewable “drop-in” gasoline. The use of renewable gasoline could reduce lifecycle greenhouse gas emissions by approximately 92% when compared to conventional gasoline.

The almost $35-million pilot-scale project, supported by the US Department of Energy (DOE) integrated biorefineries program ($25 million from DOE, $9,771,659 cost-share), converted woody biomass into bio-derived gasoline by fully integrating and optimizing biomass gasification and syngas cleanup steps with a unique process to turn syngas into gasoline. (Earlier post.)

More... | Comments (6) | TrackBack (0)

Roadmap shows how to improve lignocellulosic biofuel biorefining with high-value products from isolated lignin

May 19, 2014

A new review article in the journal Science highlights emerging opportunities to increase the transformation of lignin to value-added products—i.e., lignin valorization. The resulting roadmap uses the integration of genetic engineering with analytical chemistry tools to tailor the structure of lignin and its isolation so it can be used for materials, chemicals and fuels, said lead author Arthur Ragauskas, a professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology.

Potential high-value products from isolated lignin include low-cost carbon fiber, engineering plastics and thermoplastic elastomers, polymeric foams and membranes, and a variety of fuels and chemicals—all currently sourced from petroleum. Each product stream, however, has its own distinct challenges.

More... | Comments (0) | TrackBack (0)

California Energy Commission publishes investment plan for alt and renewable fuel and vehicle technology, 2014-2015

May 14, 2014

The California Energy Commission has published the “2014‐2015 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle Technology Program”. The 2014‐2015 Investment Plan Update covers the sixth year of the program and reflects laws, executive orders, and policies to reduce greenhouse gas emissions, petroleum dependence, and criteria emissions. It details how the California Energy Commission, with input from stakeholders and the program Advisory Committee, determines the program’s goal‐driven priorities, coupled with project opportunities for funding.

The Energy Commission held public Advisory Committee workshops to collect feedback on the initial and then revised staff drafts; a lead commissioner report version was released on 8 April 2014, and the Energy Commission adopted this commission report at its Business Meeting on 22 April 2014.

More... | Comments (1) | TrackBack (0)

Study finds alcohol mix from biomass-derived syngas could be suitable replacement for ethanol in fuel blending

May 12, 2014

Master.img-006
AlcoMix displays antiknock blending characteristics similar to those of ethanol when blended at various concentrations with non-oxygenated gasoline (RON = 82). Credit: ACS, Rapp et al. Click to enlarge.

Results of a study by a team from the US and Austria suggest that the primary alcohol mixture (“AlcoMix,” comprising 75% ethanol, 11% 1-propanol, 8% 1-butanol, and 6% 1-pentanol) produced from biomass-based syngas could be used as a substitute for ethanol as a primary fuel or as an antiknock blending component.

The purpose of the study, reported in the ACS journal Energy & Fuels, was to determine whether AlcoMix,the probable outcome of the thermochemical conversion of biomass using Fischer–Tropsch chemistry with synthesis gas, might be a suitable replacement for ethanol in fuel blending as an antiknock blending component for spark-ignited engines.

More... | Comments (3) | TrackBack (0)

Study finds that optimized integrated catalytic processing of biomass could produce renewable jet fuel with selling price as low as $2.88/gallon

May 09, 2014

GA
Integrated processing of hardwood to renewable jet and chemicals. Click to enlarge.

A team from seven US universities and the Korea Institue of Science and Technology, led by George Huber, Professor of Chemical and Biological Engineering at the University of Wisconsin-Madison, has developed an integrated catalytic process for the conversion of whole biomass into drop-in aviation fuels with maximal carbon yields.

The researchers expect that in its current state, the proposed technology could deliver jet fuel-range liquid hydrocarbons for a minimum selling price of $4.75 per gallon—assuming nth commercial plant that produces 38 million gallons liquid fuels per year with a net present value of the 20 year biorefinery set to zero. Future improvements in this technology, including replacing precious metal catalysts by base metal catalysts and improving the recyclability of water streams, could reduce this cost to $2.88 per gallon.

More... | Comments (9) | TrackBack (0)

DOE seeking stakeholder input on 8 strategic biofuels pathways

May 04, 2014

The US Department of Energy (DOE) has issued a request for information (DE-FOA-0001124) seeking stakeholder input regarding the 8 representative biofuel technology pathways that the Office of Energy Efficiency and Renewable Energy’s (EERE) Bioenergy Technologies Office (BETO) has selected to guide its Research and Development (R&D) strategy in the near-term.

DOE is also seeking input on other pre-commercial pathways that it should consider in the near- to long-term.

More... | Comments (0) | TrackBack (0)

Study finds removing corn residue for biofuel production can decrease soil organic carbon and increase CO2 emissions; may miss mandated 60% GHG reduction

April 21, 2014

Liska
Contribution of modeled CO2 emissions from SOC to the life cycle of biofuel from corn residue. Error bars are ± one standard deviation. Liska et al. Click to enlarge.

Using corn crop residue to make ethanol and other biofuels reduces soil carbon and under some conditions can generate more greenhouse gases than gasoline, according to a major, multi-year study by a University of Nebraska-Lincoln team of researchers published in the journal Nature Climate Change. The findings cast doubt on whether biofuels produced from corn residue can be used to meet federal mandates for cellulosic biofuels to reduce greenhouse gas emissions 60% compared to gasoline.

The study, led by assistant professor Adam Liska, was funded through a three-year, $500,000-grant from the US Department of Energy, and used carbon dioxide measurements taken from 2001 to 2010 to validate a soil carbon model that was built using data from 36 field studies across North America, Europe, Africa and Asia. Using USDA soil maps and crop yields, they extrapolated potential carbon dioxide emissions across 580 million 30-meter by 30-meter geospatial cells in Corn Belt states.

More... | Comments (16) | TrackBack (0)

DOE announces $10M for upgrading technologies for production of renewable drop-in fuels

April 16, 2014

The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) announced up to $10 million in funding to advance the development, improvement and demonstration of integrated biological or chemical upgrading technology for the production of substitutes for petroleum‐based feedstocks, products and fuels. (DE-FOA-0001085).

The DOE’s Bioenergy Technologies Office (BETO) has funded research on biochemical conversion processes since 2007, with particular focus on the development of improved cellulases and fermentative organisms for ethanol production from cellulosic feedstocks. EERE is seeking to diversify the BETO portfolio to include a variety of chemical and biological upgrading technologies for the production of a suite of hydrocarbon fuels, fuel intermediates and chemicals (beyond ethanol) to be produced in an integrated fashion from biologically or chemically derived intermediate feed streams, such as but not limited to cellulosic sugars, lignocellulose derivatives, lignin, cellulosic alcohols, bio‐solids and biogases.

More... | Comments (0) | TrackBack (0)

DOE releases five-year strategic plan, 2014-2018; supporting “all of the above” energy strategy

April 08, 2014

The US Department of Energy (DOE) released its five-year 2014-2018 Strategic Plan. The plan is organized into 12 strategic objectives aimed at three distinct goals: Science and Energy; Nuclear Security; and Management and Performance. These objectives represent broad cross-cutting and collaborative efforts across DOE headquarters, site offices, and national laboratories.

The overarching goal for Science and Energy is: “Advance foundational science, innovate energy technologies, and inform data driven policies that enhance US economic growth and job creation, energy security, and environmental quality, with emphasis on implementation of the President’s Climate Action Plan to mitigate the risks of and enhance resilience against climate change.” Under that, the plan sketches out 3 strategic goals:

More... | Comments (1) | TrackBack (0)

ERTRAC publishes roadmap on energy carriers and powertrains; role for power-to-gas

April 07, 2014

Ertrac
Main technology trends and the vision share of engines in Europe. [ERTRAC / EUCAR] Click to enlarge.

The European Road Transport Research Advisory Council (ERTRAC) has published a new roadmap assessing energy carriers and powertrains in the context of the European target to achieve a 60% reduction in CO2 emissions from transport by 2050. ERTRAC is the European Technology Platform (ETP) for Road Transport recognized and supported by the European Commission. ERTRAC has more than 50 members, representing all the actors of the Road Transport System: transport industry, European associations, EU Member States, local authorities, European Commission services, etc.

The analysis concludes that while the goal is challenging, it is also realizable; however the overall high-level goals need to be segmented into precise targets for the different industries and stakeholders. For the topic of future road mobility these are the development of alternative and decarbonized fuels and energy carriers; and higher powertrain efficiency leading to cleaner mobility and reduction in resource demand.

More... | Comments (16) | TrackBack (0)

Researchers engineer poplar trees for easier degradation of lignin to ease production of biofuels

April 04, 2014

POW-Ralph-Science-Paper-040314-2
Poplar vascular tissue showing feruloyl-coenzyme A (CoA) monolignol transferase (FMT) expression. Source: GLBRC. Click to enlarge.

Researchers from Michigan State University and the University of Wisconsin-Madison and their colleagues report successfully engineering poplar trees to produce lignin that degrades more easily, thereby lowering the effort and cost to convert wood to biofuel. A paper on their work appears in the journal Science.

Poplar trees are a fast-growing wood crop widely planted throughout the United States and Canada, and are particularly valuable to the bioenergy, bio-products, and fiber industries. Lignin provides strength to wood but also impedes efficient degradation when wood is used as feedstock for biofuel. The researchers identified an enzyme (coniferyl ferulate feruloyl-CoA monolignol transferase) in other plants that contain more digestible lignin monomers, then expressed it in poplar. The resulting trees showed no difference in growth habit under greenhouse conditions, but their lignin showed improved digestibility.

More... | Comments (2) | TrackBack (0)

JEC updates well-to-wheels study on automotive fuels and powertrains; electro-mobility, natural gas and biofuels

March 27, 2014

Ice
WTW energy expended and GHG emissions for conventional fuels ICE and hybrid vehicles shows the potential for improvement of conventional fuels and ICE based vehicles. Source: EUR 26236 EN - 2014 Click to enlarge.

Europe’s Joint Research Centre (JRC) and its partners in the JEC Consortium—JRC, EUCAR (the European Council for Automotive R&D) and CONCAWE (the oil companies European association for environment, health and safety in refining and distribution)—have published a new version of the Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context. (Earlier post.)

The updated version includes a longer-term outlook by expanding the time horizon from 2010 and beyond to 2020 and beyond. It adds an assessment of electrically chargeable vehicle configurations, such as plug-in hybrid, range extended, battery and fuel-cell electric vehicles. It also introduces an update of natural gas pathways, taking into account the addition of a European shale gas pathway. Furthermore, biofuel pathways, including an entirely new approach to NOx emissions from farming, were thoroughly revised.

More... | Comments (3) | TrackBack (0)

Lawrence Livermore, JBEI researchers engineer bacteria with tolerance to ionic liquids for enhanced production of advanced biofuels

March 26, 2014

Researchers from Lawrence Livermore National Laboratory in conjunction with the Joint BioEnergy Institute (JBEI) have engineered tolerance to ionic liquids (ILs)—used for biomass pretreatment, but generally toxic to bacteria—into biofuel-producing bacteria.

The results, reported in an open access paper in Nature Communications are likely to eliminate a bottleneck in JBEI’s biofuels production strategy, which relies on ionic liquid pretreatment of cellulosic biomass. The research also demonstrates how the adverse effects of ionic liquids can be turned into an advantage, by inhibiting the growth of other bacteria.

More... | Comments (1) | TrackBack (0)

Cellulosic fuels company KiOR reveals “substantial doubts” about its viability; funding needed by 1 April

March 19, 2014

In its Form 10-K (annual report) filed with the SEC on 17 March, cellulosic renewable fuels company KiOR said it has “substantial doubts about [its] ability to continue as a going concern”. Ongoing viability will require additional capital to provide additional liquidity. (Earlier post.)

On 16 March, the company received a $25-million investment commitment from Vinod Khosla (one of the company’s investors), conditioned on the achievement of certain performance milestones to be mutually agreed upon. Other than that commitment, however, Kior said it has no other near-term sources of financing. Kior said that if it is unsuccessful in finalizing definitive documentation with Khosla on or before 1 April 2014—i.e., in two weeks—it will not have adequate liquidity to fund operations and meet obligations (including debt payment obligations), and would not expect other sources of financing to be available.

More... | Comments (0) | TrackBack (0)

UPM, Fortum and Valmet partnering to develop new catalytic pyrolysis technology for advanced lignocellulosic fuels

March 12, 2014

Fortum, UPM and Valmet have joined forces to develop a new catalytic pyrolysis technology to produce advanced high value lignocellulosic fuels, such as transportation fuels or higher value bio-liquids.

The five-year project is called LignoCat (lignocellulosic fuels by catalytic pyrolysis). The project is a natural continuation of the consortium’s earlier bio-oil project together with the VTT Technical Research Centre of Finland, commercializing integrated pyrolysis technology for production of sustainable bio-oil for replacement of heating oil in industrial use.

More... | Comments (0) | TrackBack (0)

Vertimass licenses ORNL ethanol-to-hydrocarbon conversion technology; overcoming the blend wall with drop-in fuels

March 07, 2014

Vertimass LLC, a California-based start-up company, has licensed an Oak Ridge National Laboratory (ORNL) technology that directly converts ethanol under moderate conditions at one atmosphere without the use of hydrogen into a hydrocarbon blend-stock for use in transportation fuels.

The technology developed by ORNL’s Chaitanya Narula, Brian Davison and Associate Laboratory Director Martin Keller uses an inexpensive zeolite catalyst to transform ethanol into a blend-stock consisting of a mixture of C3 – C16 hydrocarbons containing paraffin, iso-parrafins, olefins, and aromatic compounds with a calculated motor octane number of 95. Fractional collection of the fuel product allows for the different fractions to be used as blend-stock for gasoline, diesel, or jet fuel.

More... | Comments (8) | TrackBack (0)

Fleet testing shows UPM renewable diesel from wood biomass performs as well as petroleum diesel

March 03, 2014

The first fleet tests of UPM’s BioVerno renewable diesel have shown that the fuel works in cars just as well as any conventional petroleum diesel. The fleet tests, conducted by the VTT Technical Research Center of Finland, were started in May last year and ran until early 2014. (Earlier post.)

The UPM BioVerno diesel fleet tests focused on investigating UPM’s renewable diesel in terms of fuel functionality in engine and fuel consumption. The tests were conducted with a fuel blend including 20% UPM BioVerno and 80% fossil diesel. With this blend fuel consumption matched the consumption of fossil diesel.

More... | Comments (1) | TrackBack (0)

Neste Oil and DONG Energy partner on renewable diesel and jet fuels from ag residues via microbial oil

February 28, 2014

Neste Oil, the world’s largest producer of premium-quality renewable fuels, is working with DONG Energy, one of the leading energy groups in Northern Europe, to develop an integrated process to produce renewable diesel and aviation fuel derived from agricultural residues.

DONG Energy’s Inbicon technology will be used in the first part of the process to pre-treat biomass and produce cellulosic sugars that can then be converted into microbial oil with Neste Oil’s technology (earlier post). Microbial oil can be used as a feedstock for Neste’s NExBTL process for premium-quality renewable fuels such as renewable diesel and renewable aviation fuel.

More... | Comments (2) | TrackBack (0)

DOE to issue funding opportunity for bioenergy technologies; outliers to current multi-year program plan

February 13, 2014

The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Bioenergy Technologies Office (BETO), a Funding Opportunity Announcement (DE-FOA-0000974) entitled “Bioenergy Technologies Incubator”.

BETO’s mission is to engage in R&D and demonstration at increasing scale activities to transform renewable biomass resources into commercially viable, high-performance biofuels, and bioproducts and biopower that enable biofuel production. To accomplish this mission, BETO develops a multi-year program plan (MYPP) to identify the technical challenges and barriers that need to be overcome. These technical challenges and barriers form the basis for BETO to issue funding opportunities announcements (FOAs) for financial assistance awards in these specific areas.

More... | Comments (0) | TrackBack (0)

Navigant Research forecasts 58% growth in global biofuels consumption by 2022; biodiesel and drop-in fuels gain market share

February 05, 2014

In a new report, “Biofuels for Transportation Markets”, Navigant Research forecasts that global demand for biofuels in the road transportation sector will grow from representing almost 6% of the liquid fuels market in 2013 to roughly 8% by 2022. Of that 8%, 8% will consist of advanced drop-in fuels, according to the research firm. Navigant forecasts that global biofuels consumption in the road transportation sector will grow from more than 32.4 billion gallons per year (BGPY) in 2013 to more than 51.1 BGPY in 2022—an increase of 58%.

Overall, Navigant forecasts that global retail sales of all liquid fuels for the road transportation sector will grow from more than $2.6 trillion in 2013 to more than $4.5 trillion in 2022 (73% growth).

More... | Comments (2) | TrackBack (0)

DOE to award up to $12M for technologies to produce renewable carbon fiber from biomass

February 04, 2014

The US Department of Energy (DOE) will award (DE-FOA-0000996) up to $12 million in funding to advance the development of a cost-competitive pathway to produce high-performance carbon fiber for vehicle lightweighting from renewable non-food biomass. Reducing a vehicle’s weight by just 10% can improve fuel economy by 6% to 8%.

Carbon fiber composites are lightweight, yet strong, materials that can greatly improve vehicle fuel efficiency when incorporated into structural and non-structural components. Carbon fibers are polymers that are typically made from petroleum and natural gas feedstocks (propylene and ammonia, respectively) that react to form acrylonitrile (ACN) which is then polymerized and spun into polyacrylonitrile (PAN).

More... | Comments (17) | TrackBack (0)

UC Davis process produces gasoline-range hydrocarbons from biomass-derived levulinic acid; field-to-tank yield of >60% claimed

Mascal
GC-MS chromatogram of the liquid products obtained after hydrodeoxygenation of angelica lactone dimer. Source: Mascal et al. SI. Click to enlarge.

Researchers at the University of California, Davis have developed a process for the production of branched C7–C10 hydrocarbons in the gasoline volatility range from biomass-derived levulinic acid with good yield, operating under relatively mild conditions, with short reaction times.

Considering that levulinic acid is available with more than 80% conversion from raw biomass, a field-to-tank yield of drop-in, cellulosic gasoline of more than 60% is possible, the researchers claimed. A paper on their work is published in the journal Angewandte Chemie International Edition; UC Davis has filed provisional patents on the process, and is making it available for licensing.

More... | Comments (6) | TrackBack (0)

AVA Biochem begins commercial-scale production of 5-HMF from biomass using HTC

February 03, 2014

AVA Biochem in Muttenz (Switzerland) has begun commercial-scale production of 5-(hydroxymethyl)furfural (5-MHF) from biomass at its Biochem-1 facility using a modified version of a hydrothermal carbonization (HTC) process developed by the Karlsruhe Institute of Technology (KIT). 5-HMF is a platform chemical that can serve as a precursor for various fuels and plastics. (Earlier post.)

In the first phase, AVA Biochem will produce up to 20 tonnes of biomass-derived 5-HMF per year. Various levels of purity—up to 99.9%—are now available for delivery.

More... | Comments (0) | TrackBack (0)

Boeing, UAE partners make progress with oilseed halophytes as feedstock for renewable jet fuel; desert plants fed by seawater

January 23, 2014

Boeing and research partners in the United Arab Emirates have made breakthroughs in sustainable aviation biofuel development, finding that desert plants fed by seawater (the oilseed-producing halophyte Salicornia bigelovii) can produce biofuel more efficiently than other well-known feedstocks. (Earlier post.) The Sustainable Bioenergy Research Consortium (SBRC), affiliated with the Masdar Institute of Science and Technology in Abu Dhabi, will test these findings in a project that could support biofuel crop production in arid countries, such as the UAE.

S. bigelovii is a leafless, C3, succulent annual salt marsh plant that produces an oilseed on seawater irrigation in coastal desert environments; the oil from the seeds is suitable for biofuel production. Yields on seawater are similar to conventional oilseeds under ideal conditions. SBRC research also found that the entire shrublike plant (i.e., its lignocellulosic biomass as well as the the oil) can be turned into biofuel effectively.

More... | Comments (6) | TrackBack (0)

Global Bioenergies to collaborate with Audi on development of drop-in bio-isooctane

January 21, 2014

Global Bioenergies (GBE), a leading developer of one-step fermentation processes for the direct and cost-efficient transformation of renewable resources into light olefins (earlier post), has signed a collaboration agreement with Audi on the development of bio-isooctane—a high-performance drop-in biofuel for gasoline engines—derived from bio-isobutene. In 2011, GBE had announced an agreement “with a major German car manufacturer” regarding an undisclosed application of GEB’s technology. (Earlier post.)

Under the agreement, GBE will supply Audi with isooctane derived from isobutene produced at its new pre-commercial pilot system at the Fraunhofer CBP in Leuna. (Earlier post.) During the two-year collaboration, this agreement also foresees the possibility for Audi to acquire shares of Global Bioenergies corresponding to less than 2% of its capital.

More... | Comments (1) | TrackBack (0)

California Energy Commission to award up to $24M for new biofuel projects

January 17, 2014

The California Energy Commission announced the availability of up to $24 million in grant funds for the development of new, or the modification of existing, California-based biofuel production facilities that can sustainably produce low-carbon transportation fuels. (PON-13-609) Eligible biofuels are diesel substitutes, gasoline substitutes, and biomethane as defined in the solicitation.

The allocation of funds by fuel category is: Diesel Substitutes – $9.0 million; Gasoline Substitutes – $9.0 million; and Biomethane – $6.0 million. The Energy Commission will conduct two rounds of scoring. The first round of scoring will fund at least $4.027 million in passing projects; remaining funds will be applied to the second round of scoring.

More... | Comments (1) | TrackBack (0)

UW-Madison team develops high-yield non-enzymatic process for production of sugars from biomass using GVL

Researchers at the University of Wisconsin-Madison, led by Dr. James Dumesic, have developed a process for for the non-enzymatic production of sugars from biomass using γ-valerolactone (GVL) itself derived from biomass. A paper on their work, which was funded by the National Science Foundation and the US Department of Energy’s Great Lakes Bioenergy Research Center (GLBRC), is published in the journal Science.

Using a solvent mixture of biomass-derived GVL, water, and dilute acid (0.05 weight percent H2SO4), they produced soluble carbohydrates from corn stover, hardwood, and softwood at high yields (70 to 90%) at laboratory scale. The sugars can then be chemically or biologically upgraded into biofuels. With support from the Wisconsin Alumni Research Foundation (WARF), the team will begin scaling up the process later this year.

More... | Comments (0) | TrackBack (0)

DEINOVE produces ethanol at 9% titer with its optimized Deinococcus bacteria

January 16, 2014

DEINOVE, a technology company that designs, develops and markets a new generation of industrial processes based on optimized Deinococci bacteria, has produced ethanol at a titer of 9% via its fermentation of biomass sugars in 20L pre-industrial fermentors. In September 2012, the company had reported that its optimized strain of Deinococcus generated ethanol from wheat-based biomass with a titer of 3%. (Earlier post.)

The 9% content v/v (volume/volume)—equal to 7.2% wt/v (weight/volume)—exceeds the 5% alcohol content wt/v considered to be the threshold for industrial exploitation of a process for 2nd generation biofuels, the company said. The obtained performance is gradually approaching the maximum theoretical yield, the company added. The use of Deinoccoccus offers several benefits:

More... | Comments (5) | TrackBack (0)

Study cautions on sole focus on energy crop biomass yield; perennial grasslands deliver greater ecosystems services than corn

January 14, 2014

A study by a team from the DOE’s Great Lakes Bioenergy Center has concluded that focusing on the yield of an energy crop alone can come at the expense of many other environmental benefits. The study, published as an open access paper in the Proceedings of the National Academy of Sciences (PNAS), found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than corn.

Although the corn biomass yield was higher, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands.

More... | Comments (2) | TrackBack (0)

KiOR halts cellulosic fuels production at Columbus in Q1 to optimize production; need for R&D to boost yield and cut costs

January 13, 2014

In a conference call on Friday, KiOR President and CEO Fred Cannon said that the company will halt production of cellulosic gasoline, diesel and fuel oil at its plant in Columbus, Mississippi in order to implement a number of optimization projects it identified as necessary—based on its experience in 2013—to optimize production to enhance yield, throughput and operability and to minimize cost.

In December 2013, Cannon had said that KiOR would operate the Columbus plant “on a limited campaign basis only” to verify the impact of improvements. (Earlier post.) In the Friday call, he said that the company would only operate the Columbus facility during Q1 “only to the extent we want to test and prove optimization projects.” The current execution plan for 2014 is to focus exclusively on bringing the plant to its nameplate basis, and further to develop yield and process efficiency through R&D.

More... | Comments (6) | TrackBack (0)

NREL/UGA study finds microbial enzyme digests cellulose ~2x fast as current leading commercial cellulase; implications for biofuels cost

January 04, 2014

Researchers at the Energy Department’s National Renewable Energy Laboratory (NREL) and the University of Georgia have discovered that an enzyme from a microorganism first found in the Valley of Geysers on the Kamchatka Peninsula in Russia in 1990 can digest cellulose almost twice as fast as Cel7A, the current leading component cellulase enzyme on the market.

The high-performance enzyme CelA was discovered 15 years ago, but until this recent work, all that was known about this complex protein was its general architecture and that it had the ability to degrade cellulose. If it continues to perform well in larger tests, it could help drive down the price of making lignocellulosic fuels, from ethanol to other biofuels that can be dropped into existing infrastructure. A paper reporting this finding appears in the journal Science.

More... | Comments (0) | TrackBack (0)

ARPA-E piloting crowdsourced energy challenge in biofuels

January 02, 2014

The US Department of Energy’s (DOE’s) Advanced Research Projects Agency - Energy (ARPA-E) is piloting a crowdsourced energy challenge, focused on ARPA-E’s PETRO (Plants Engineered To Replace Oil) program, which aims to increase the viability of biofuels by investing in research to double the energy-capture-per-unit area from that of corn ethanol. (Earlier post.)

The challenge asks “solvers” to present a detailed description and scientific rationale for a simple, rapid, and minimally invasive method to determine the energy content of plant material. Winners could receive up to $30,000.

More... | Comments (1) | TrackBack (0)

MSU-Ford team evaluates 12 biofuel compounds for effects on cold flow properties of diesel and jet blends

Lown
Cloud point temperatures of a high aromatic diesel (HAD) in mixtures with various biofuel compounds. Lown et al. Click to enlarge.

Researchers from Michigan State University and Ford Motor Company's Research and Advanced Engineering Group recently tested 12 potential biofuel compounds containing oxygen in different functional groups in mixtures with three diesel fuels and one jet fuel to determine the effects of the functional groups on low-temperature fuel properties.

Groups evaluated included diesters, esters, ketones and ethers; alkanes were used for comparison. Fuels included a standard #2 US diesel (USD); a European standard diesel (ESD); and a high aromatic diesel (HAD), as well as JP-8 donated by the US Air Force.

More... | Comments (0) | TrackBack (0)

Field trials with genetically modified poplars shows potential for efficient conversion to sugars but with impact on biomass yield

December 31, 2013

Vanacker
Ethanol yield (g/L) for the Belgian and French field trials. Van Acker et al. Click to enlarge.

The results of field trials with genetically modified poplar trees in Belgium and France shows that the wood of the modified poplar trees—down-regulated for cinnamoyl-CoA reductase (CCR), an enzyme in the lignin biosynthetic pathway—improved saccharification yield—i.e., it can be more efficiently converted into sugars for producing bio-based products such as bio-plastics and bio-ethanol.

However, the study, published as an open access paper in Proceedings of the National Academy of Sciences (PNAS), also found that strong down-regulation of CCR also affected biomass yield. The team, from Belgium, France and the US, led by researchers from VIB and Ghent University, concluded that CCR down-regulation may become a successful strategy to improve biomass processing if the yield penalty can be overcome.

More... | Comments (1) | TrackBack (0)

KiOR expects to produce 920K gallons of cellulosic biofuels by year end; short-term focus on economics

December 24, 2013

Cellulosic gasoline and diesel company KiOR, Inc. expects that, given current and anticipated operations through the remainder of the year, its Columbus, Mississippi facility will produce approximately 410,000 gallons of renewable fuel during the fourth quarter of 2013, bringing full year production total from the facility to approximately 920,000 gallons. (Earlier post.) The ratio between gasoline, diesel and fuel oil expected to be produced during the year is approximately 35% gasoline, 40% diesel, and 25% fuel oil.

In August, the US Environmental Protection Agency (EPA) finalized the 2013 percentage standards for four fuel categories that are part of the Renewable Fuel Standard (RFS) program. With the final 2013 overall volumes and standards requiring 16.55 billion gallons of renewable fuels to be blended into the US fuel supply (a 9.74% blend), EPA projected 6 million gallons (0.004%) of cellulosic biofuels. Of that, EPA projected the bulk to come from the KiOR Columbus plant (5-6 million gallons of renewable gasoline and diesel).

More... | Comments (1) | TrackBack (0)

ICCT suggests minor changes to Fed tax policy to cut higher investment risk of 2nd-gen biofuels and advance the industry

December 22, 2013

Minor changes to an existing Federal tax incentive for second-generation biofuels (i.e., biofuel made from cellulose, algae, duckweed, or cyanobacteria) could mitigate the current elevated risk of investing in the industry that is retarding its advance, according to a new paper by a team from the International Council on Clean Transportation (ICCT) and Johns Hopkins University. Some of the ICCT recommendations are mirrored in the recently released Baucus draft proposal for tax reform (earlier post), notes Dr. Chris Malins of the ICCT, one of the study’s co-authors.

Previous studies have attempted to explain the slow commercialization of cellulosic and algal biofuels qualitatively, however few have presented financial analysis across the sector, the authors observe. Using publicly available financial data, they applied investment analysis tools (the capital assets pricing model, CAPM) that are generally not applied to this space in order to develop a more rigorous understanding of the investment risk in the industry.

More... | Comments (0) | TrackBack (0)

Ford brings cellulose fiber reinforced thermoplastic to 2014 Lincoln MKX

December 20, 2013

Crparmrest
Early version of CRP-based armrest piece under development. Source: Weyerhaeuser. Click to enlarge.

A three-year collaboration between Lincoln, Weyerhaeuser and auto parts supplier Johnson Controls has resulted in the creation of a tree-based, renewable alternative to fiberglass for use in auto parts. (Earlier post.) The 2014 Lincoln MKX features the use of Cellulose Reinforced Polypropylene (called “THRIVE” composites by Weyerhaeuser) in the floor console armrest substrate—a structural piece located within the center console armrest.

Pieces made from CRP are roughly 6% lighter, and decrease the reliance on less-environmentally friendly fiberglass parts. The use of Cellulose Reinforced Polypropylene in the MKX, while relatively small, marks an advancement that has the potential to play a more impactful role in the future, suggested Dr. Ellen Lee, plastics research technical expert for Ford Motor Company. Ford engineers are using the company’s development and deployment of soy-based foam as an model—i.e., starting out small, then improving the material and widening the application.

More... | Comments (5) | TrackBack (0)

BASF to partner with Renmatix for the production of industrial sugars from biomass; bio-based precursors for chemicals and fuels

December 18, 2013

BASF and US-based supercritical hydrolysis company Renmatix Inc. signed a non-exclusive joint development agreement to scale up the Renmatix Plantrose process for the production of industrial sugars based on lignocellulosic biomass. The parties have also agreed to key financial terms for future commercial licenses, which BASF can exercise at its discretion. The collaboration follows BASF’s $30 million investment in Renmatix in January 2012. (Earlier post.)

The Plantrose technology developed by Renmatix enables industrial sugar to be produced, at competitive costs, from a variety of non-edible biomass (lignocellulose) sources. The proprietary process breaks down lignocellulosic sources (e.g. wood, agricultural-residues or straw) into industrial sugars using supercritical water (water at high temperature and pressure).

More... | Comments (0) | TrackBack (0)

Green Car Congress © 2014 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group