Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Biomass-to-Liquids (BTL)

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Altex & Unitel partner to demonstrate a new technology for making synthetic gasoline from biomass

April 05, 2016

Altex Technologies has selected Unitel to provide engineering services to design and build a pilot system that will produce 1 BPD of synthetic gasoline from biomass (Biomass Conversion to Synthetic Gasoline System, BCSGS). This project is funded by a ~$1-million grant from the California Energy Commission under the auspices of its Alternative and Renewable Fuels and Vehicle Testing Program.

The Altex process does not require the intermediate conversion of the feedstock into synthesis gas or pyrolysis liquids, plus it does not require hydrogen. Some of the feedstocks that Altex plans to use include alfalfa, corn stover, switchgrass, and processed woodchips.

More... | Comments (2)

China’s Kaidi to build €1B BTL biofuel refinery in Finland

February 13, 2016

China-based Kaidi plans to build a €1-billion (US$1.1-billion) biofuel refinery in Kemi. The planned refinery will produce 200,000 tons of biofuels per year, of which 75% will be biodiesel and 25% biogasoline.

The second-generation biomass plant will use energy wood as the main feedstock and it will be the first of its kind, not only in Finland but globally. Kaidi will make the final investment decision by the end of the year. The plant could be operational in 2019.

More... | Comments (1)

Hydrogen from biomethane; gasoline & diesel from tree residue; cellulosic ethanol among new proposed California LCFS fuel pathways

December 18, 2015

California Air Resources Board (ARB) staff posted 32 new Low Carbon Fuel Standard (LCFS) fuel pathway applications for comments at the LCFS website. Among the multiple applications for different processing pathways of corn or sorghum ethanol are four pathways from LytEn for hydrogen produced from biomethane; four pathways for renewable gasoline and diesel produced from tree residue from Ensyn; and one application for cellulosic ethanol using corn stover feedstock from POET.

The LCFS is a regulation to reduce the carbon intensity (CI) of fuels sold in California by 10% by 2020. The LCFS applies to liquid and non-liquid fuels. If a product is above the annual carbon intensity target, the fuel incurs deficits. If a product is below that target, the fuel generates credits which may be used later for compliance, or sold to other producers who have deficits. So far, fuel producers are over-complying with the regulation. (Earlier post.)

More... | Comments (11)

IH2 biomass to drop-in fuels technology demonstration plant to be built in India

December 13, 2015

Shell India Markets Pvt Ltd (SIMPL) will proceed with the installation of a 5 tonne/day IH2 technology demonstration plant on the site of SIMPL’s new Technology Centre in Bangalore, India. SIMPL will build, operate and own the demonstration scale IH2 plant. IH2 technology is a continuous catalytic thermo-chemical process which converts a broad range of forestry/agricultural residues and municipal wastes directly into renewable hydrocarbon transportation fuels and/or blend stocks. (Earlier post.)

The IH2 technology was developed by US-based Gas Technology Institute in 2009 and is being further developed in collaboration with CRI Catalyst Company (CRI), Shell’s Catalyst business. CRI will supply the proprietary catalysts for the unit. The Basic Engineering Package for the plant will be provided by Zeton, Inc. of Ontario, Canada.

More... | Comments (1)

Boeing, Canadian aviation industry launch sustainable aviation biofuel project using forestry waste

December 03, 2015

Boeing, the University of British Columbia (UBC) and SkyNRG, with support from Canada’s aviation industry and other stakeholders, are collaborating to turn leftover branches, sawdust and other forest-industry waste into sustainable aviation biofuel.

Canada, which has extensive sustainably certified forests, has long used mill and forest residues to make wood pellets that are used to generate electricity. A consortium that includes Boeing, Air Canada, WestJet, Bombardier, research institutions and industry partners will assess whether forest waste could also be harnessed to produce sustainable aviation biofuel using thermochemical processing.

More... | Comments (7)

RedRock Biofuels to supply 3M gallons/year of renewable jet fuel to FedEx through 2024

July 21, 2015

Red Rock Biofuels LLC will produce approximately three million gallons of low-carbon, renewable jet fuel per year for FedEx Express, a subsidiary of FedEx Corporation. The agreement runs through 2024, with first delivery expected in 2017. FedEx joins Southwest Airlines, which signed a purchase agreement with RedRock in November 2014 for about 3 million gallons per year, in purchasing Red Rock’s total planned available volume of jet fuel. (Earlier post.)

Red Rock’s first refinery, funded in part by a $70-million Title III DPA grant from the U.S. Departments of Agriculture, Energy and Navy, is scheduled to break ground this fall in Lakeview, Ore. and will convert approximately 140,000 dry tons of woody biomass into 15 million gallons per year of renewable jet, diesel and naphtha fuels.

More... | Comments (0)

United Airlines invests $30M in Fulcrum BioEnergy; renewable jet fuel offtake agreement, potential joint development of production

June 30, 2015

United Airlines made a $30-million equity investment in US-based Fulcrum BioEnergy, Inc., the developer of a process for converting municipal solid waste into low-cost sustainable aviation biofuel. (Earlier post.) The investment is so far the largest single investment by a US airline in alternative fuels.

In addition to the equity investment, United and Fulcrum have entered into an agreement that contemplates the joint development of up to five projects located near United’s hubs expected to have the potential to produce up to 180 million gallons of fuel per year.

More... | Comments (3)

Kyoto team develops two-stage process for direct liquefaction of low-rank coal and biomass under mild conditions

May 11, 2015

Researchers at Kyoto University in Japan have proposed a novel two-stage process to convert low-rank coals or biomass wastes under mild conditions to high-quality liquid fuel. A paper describing the process, which combines a degradative solvent extraction method they had developed earlier with the liquefaction of the resulting soluble, appears in the ACS journal Energy & Fuels.

One of the issues hampering the development of direct liquefaction of low-grade carbonaceous resources—such as low-rank coals and biomass wastes—to produce liquid fuel is their oxygen content. In low rank coals, cross-linking reactions among oxygen functional groups form large-molecular-weight compounds at temperatures lower than the liquefaction temperature; the oxygen-functional-group-derived cross-links may change to stronger carbon−carbon covalent linkages, suppressing the formation of light hydrocarbons.

More... | Comments (1) | TrackBack (0)

University of Adelaide team exploring novel configuration for solar hybridized coal-to-liquids process

April 13, 2015

Image
Simplified flowsheet of the proposed solar hybridized coal- to-liquids (SCTL) process with the proposed solar hybridized dual fluidized bed (SDFB) gasifier. Credit: ACS, Guo et al. Click to enlarge.

Researchers at the University of Adelaide (Australia) are proposing a novel configuration of a hybridized concentrated solar thermal (CST) dual fluidized bed (DFB) gasification process for Fischer–Tropsch liquids (FTL) fuels production. In their investigation of the process, reported in a paper in the ACS journal Energy & Fuels, they used lignite as the feedstock (Solar hybridized coal to liquids, SCTL), although the process could also be used with biomass.

Although fuel products produced via the Fischer-Tropsch process are high quality (free of sulfur, nitrogen and other contaminants found in petroleum-derived products), and coal is a plentiful and low-cost feedstock, the very high greenhouse gas emissions from coal-to-liquids production processes are a major barrier. As one approach to reducing the overall carbon intensity of FT fuels, there is growing interest in introducing concentrated solar power as a heat source into the gasification process.

More... | Comments (2) | TrackBack (0)

Green Car Congress © 2016 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group