Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Biorefinery

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

USDA, DOE to award $9M for bioenergy feedstocks, biofuels and bio-based products

June 06, 2017

The US Department of Agriculture’s (USDA) National Institute of Food and Agriculture (NIFA), in collaboration with the U.S. Department of Energy (DOE), announced that up to $9 million in funding will be made available through the Biomass Research and Development Initiative (BRDI) to support the development of bioenergy feedstocks, biofuels, and bio-based products (DE-FOA-0001637).

The projects funded through BRDI—a joint NIFA and DOE program—will help develop economically and environmentally sustainable sources of renewable biomass, increase the availability of renewable fuels and biobased products, and diversify the US energy portfolio. Both DOE and NIFA have been given statutory authorities to support the development of a biomass-based industry in the United States, under the Food, Conservation, and Energy Act of 2008 (FCEA) and the Energy Policy Act of 2005.

More... | Comments (1)

U of Illinois researchers develop new capabilities for genome-wide engineering of yeast

May 06, 2017

In a new open-access paper in Nature Communications, University of Illinois at Urbana-Champaign researchers describe how their successful integration of several cutting-edge technologies—creation of standardized genetic components, implementation of customizable genome editing tools, and large-scale automation of molecular biology laboratory tasks—will enhance the ability to work with yeast. The results of their new method demonstrate its potential to produce valuable novel strains of yeast for industrial use, as well as to reveal a more sophisticated understanding of the yeast genome.

The team focused on yeast in part because of its important modern-day applications; yeasts are used to convert the sugars of biomass feedstocks into biofuels such as ethanol and industrial chemicals such as lactic acid, or to break down organic pollutants. Because yeast and other fungi, like humans, are eukaryotes, organisms with a compartmentalized cellular structure and complex mechanisms for control of their gene activity, study of yeast genome function is also a key component of biomedical research.

More... | Comments (1)

Sugar-derived levulinic esters and cyclic ether show superior anti-knock quality to Euro95 reference gasoline

April 24, 2017

A team from The Netherlands and the US reports that the sugar-derived levulinic esters methyl levulinate (ML) and ethyl levulinate (EL) and the sugar-derived cyclic ether (furfuryl ethyl ether (FEE) demonstrate superior anti-knock quality (in 10% blends) to a reference Euro95 gasoline.

The sugar-derived ethyl tetrahydrofurfuryl ether (ETE), another cyclic ether, conversely, performed markedly worse than the reference fuel on both setups. ETE this may be a more appropriate fuel additive for compression ignition engines, the authors suggest in an open-access paper published in the journal Fuel.

More... | Comments (0)

CSIRO licenses technology to Amfora for production of oil in leaves and stems of plants; participates in Series A

April 17, 2017

US-based biotech startup Amfora and CSIRO (Commonwealth Scientific and Industrial Research Organisation, the federal government agency for scientific research in Australia) signed an agreement to advance development and commercialization of technology to produce oil in the leaves and stems of plants as well as the seeds.

Innovation Leader with CSIRO Agriculture and Food, Allan Green, said that this was the first of many applications of the technology, which can be used to produce energy-rich feed for livestock as well as for human food, biofuels and industrial uses.

More... | Comments (0)

Bio- and jet-fuel carinata feedstock company Agrisoma closes $15.4M Series B financing

April 16, 2017

Agrisoma Biosciences, an agricultural company that has commercialized carinata, a non-food oilseed crop designed for sustainable production of biofuels, has closed a $15.4-million Series B financing round, co-led by new investor Groupe Lune Rouge and current investors Cycle Capital Management, and BDC Venture Capital. This Series B round is used to support the global expansion of Agrisoma’s business.

Like other oilseed crops, such as canola, soybean and corn, carinata oil is extracted when the harvested seed is crushed. Unlike those crops, carinata is not meant for human food consumption; the oil it produces is intended for industrial use, mainly in the production of bio- and jet-fuels.

More... | Comments (0)

Renewable plastic precursor could reduce cost of cellulosic ethanol by >$2/gallon

April 10, 2017

A team of chemical and biological engineers at the University of Wisconsin–Madison has developed a new chemical pathway a way to produce from biomass a valuable compound—1,5-pentanediol, a plastic precursor primarily used to make polyurethanes and polyester plastics—that they estimate could lower the cost of cellulosic ethanol by more than two dollars per gallon.

The highly efficient approach devised by Professor George Huber and collaborators is much cheaper than a previously reported method—direct hydrogenolysis of tetrahydrofurfuryl alcohol (THFA)—and represents the first economically viable way of producing 1,5-pentanediol from biomass. A paper on their work is published in the journal ChemSusChem.

More... | Comments (7)

BP, DuPont JV Butamax acquires ethanol plant to add bio-isobutanol production capability as demo plant

April 03, 2017

Butamax Advanced Biofuels LLC, a 50/50 joint venture between BP and DuPont, acquired Nesika Energy, LLC and its ethanol facility in Scandia, Kansas. Butamax will now start the detailed engineering work to add bio-isobutanol capacity to the facility, while continuing to produce ethanol before and after adding this capacity.

Butamax plans to license its proprietary bio-isobutanol technology beyond this first facility on a global scale. When the newly acquired facility in Kansas has bio-isobutanol production capability, it will be used as a demonstration facility for potential licensees to see the technology in operation and serve as a proving ground for future developments.

More... | Comments (0)

Lux Research forecasts global biofuels output to rise to 67B GPY in 2022; advanced biofuels will nearly double to 9.6B GPY

February 14, 2017

New biofuel technology is finally starting to push aside traditional biofuels such as first-generation biodiesel, according to a new report by Lux Research. New facilities based on non-food feedstocks and producing novel fuels account for over half of new capacity deployment for the first time in the biofuel industry’s history, according to Lux. However, overall output will grow at a slower pace to 67 billion gallons a year (BGY) in 2022, from 59 BGY in 2016.

The report, titled “Biofuels Outlook 2022: The Dawn of a New Era in Global Biofuel Capacity Expansion,” is part of the Lux Research Alternative Fuels Intelligence service. Lux Research analysts quantified the commercial deployment of new technologies in the global biofuels industry using a database of nearly 2,000 facilities from 1,461 companies in 90 countries with nameplate capacity data through 2022. Among their findings:

More... | Comments (6)

Velocys establishes strategic alliance with TRI for gasification systems for BTL plants

January 27, 2017

Velocys plc, the developer of smaller scale gas-to-liquids (GTL), signed a memorandum of understanding (MoU) with ThermoChem Recovery International, Inc. (TRI), establishing a strategic alliance. TRI—a leading provider of steam reforming gasification systems suitable for woody biomass and other waste feedstocks—will be Velocys’ preferred supplier of gasification systems for its biomass-to-liquids (BTL) plants.

The agreement will see the alliance partners rapidly deploy an integrated biorefinery offering that combines Velocys’ Fischer-Tropsch (FT) technology with TRI’s proven gasification technology.

More... | Comments (2)

DOE Co-Optima initiative publishes report reviewing first 12 months; progress on fuels and engines

January 16, 2017

The US Department of Energy’s (DOE’s) Co-Optima initiative—a broad, joint effort to co-optimize the development of efficient engines and low greenhouse-gas fuels for on-road vehicles with the goal of reducing petroleum consumption by 30% by 2030 beyond what is already targeted (earlier post)—has published a year-in-review report for FY 2016—the initiative’s first 12 months.

Co-Optima’s premise is that current fuels constrain engine design—and thus engine efficiency. The researchers suggest that there are engine architectures that can provide higher thermodynamic efficiencies than available from modern internal combustion engines; however, new fuels are required to maximize efficiency and operability across a wide speed/load range. The report details the technical progress in a selection of projects across the initiative’s two main thrusts: spark ignition (SI) and advanced compression ignition (ACI).

More... | Comments (5)

DOE and USDA issue notice of intent for Biomass Research and Development Initiative

January 15, 2017

The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy’s (EERE’s) Bioenergy Technologies Office, in coordination with the US Department of Agriculture’s (USDA's) National Institute of Food and Agriculture (NIFA), announced its intent to issue a Request for Applications (RFA) through the Biomass Research and Development Initiative. (DE-FOA-0001711)

Projects funded through this RFA, titled “Fiscal Year 17 Biomass Research and Development Initiative (BRDI),” will help develop economically and environmentally sustainable sources of renewable biomass, and increase the availability of renewable fuels and biobased products. The BRDI program requires that funded projects address at least one of the following three legislatively mandated technical areas:

More... | Comments (1)

DOE and USDA partner to award up to $22.7M for integrated biorefineries

January 07, 2017

The US Department of Energy (DOE) and the US Department of Agriculture’s National Institute of Food and Agriculture (USDA-NIFA) jointly announced $22.7 million to support the optimization of integrated biorefineries (IBR). DOE is providing majority funding with up to $19.8 million and USDA-NIFA is providing up to $2.9 million in funding.

Federal support for first-of-a-kind IBRs could significantly reduce the technical and financial risks associated with the operation of commercial scale biorefineries. The DOE’s Bioenergy Technologies Office (BETO) has identified, via stakeholder engagements through a request for information (RFI) and a Biorefinery Optimization Workshop, areas in which DOE and USDA-NIFA can effectively support technology development and engineering solutions to economically and sustainably overcome technology barriers.

More... | Comments (1)

DOE BETO releases new strategic plan; biofuels to constitute 25% of US transportation fuels by 2040

December 31, 2016

The US Department of Energy’s Bioenergy Technologies Office (BETO) released its new strategic plan, titled Strategic Plan for a Thriving and Sustainable Bioeconomy. The strategic plan—with a vision for 2040—lays out BETO’s mission to accomplish its vision in a dynamic setting that realizes changes in the energy landscape, advances in technology, growing environmental awareness, and public expectations.

The strategic plan sets the foundation for the development of BETO’s multi-year program plans, annual operating plans, and technology program areas. It also takes a crosscutting approach to identify opportunities to adapt and align BETO activities and project portfolios with those in both the public and private sectors. The plan centers around four key opportunities: enhancing the bioenergy value proposition; mobilizing US biomass resources; cultivating end-use markets and customers; and expanding stakeholder engagement and collaboration.

More... | Comments (4)

DOE awarding $12.9M to 6 pilot- and demonstration-scale projects for manufacturing biofuels, bioproducts, and biopower

December 29, 2016

The US Department of Energy (DOE) has selected six projects—entitled, “Project Definition for Pilot- and Demonstration-Scale Manufacturing of Biofuels, Bioproducts, and Biopower”—-for up to $12.9 million in federal funding. These projects, required to share the cost at a minimum of 50%, will develop and execute plans for the manufacturing of advanced or cellulosic biofuels, bioproducts, refinery-compatible intermediates, and/or biopower in a domestic pilot- or demonstration-scale integrated biorefinery.

The projects will be evaluated in two phases. Award recipients will design and plan their facilities in Phase 1. In order to continue to Phase 2, projects will be evaluated on Phase 1 progress, as well as the ability to secure the required 50% cost share funding for Phase 2. DOE anticipates Phase 2 awards to be made in fiscal year 2018 to construct and operate the pilot- or demonstration-scale facility. Projects could receive additional federal funds of up to $15 million for pilot-scale facilities or $45 million for demonstration-scale facilities.

More... | Comments (1)

Synthetic biology startup Lygos closes $13M Series A to target oil-based specialty chemical industry

December 13, 2016

Lygos, Inc., a bio-based specialty chemicals company, closed $13 million in Series A financing led by IA Ventures and OS Fund. Other investors include First Round Capital, the Y Combinator Continuity Fund, 50 Years and Vast Ventures, along with notable angel investors. Lygos produces high-value specialty chemical traditionally produced in oil-based petrochemical processes in a process that commercially proven, acid-tolerant yeast and domestic sugars instead of petroleum, and has pioneered the world’s first bio-based production of malonic acid (a C3-dicarboxylic acid). (Earlier post.)

The current process used to produce malonic acid requires sodium cyanide and chloroacetic acid; Lygos’ engineered yeast produces malonic acid from sugar and CO2. Many Lygos target products are organic acids—compounds that are expensive to synthesize using petrochemistry but can be produced at high theoretical yield microbially.

More... | Comments (0)

DOE to issue funding opportunity for integrated biorefinery optimization

December 06, 2016

DOE to issue funding opportunity for integrated biorefinery optimization

The US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Bioenergy Technologies Office (BETO) and the US Department of Agriculture’s National Institute of Food and Agriculture, a funding opportunity announcement (DE-FOA-0001689) entitled, “Integrated Biorefinery Optimization.”

This FOA will support research and development to increase the performance efficiencies of biorefineries resulting in continuous operation and production of biofuels, bioproducts, and biopower at prices competitive with fossil-derived equivalents.

More... | Comments (3)

BP takes $30M stake in Fulcrum Bioenergy; 500M gallon renewable jet offtake agreement

November 08, 2016

Fulcrum BioEnergy and BP signed a major strategic partnership that includes a $30-million equity investment in Fulcrum by BP. With Fulcrum’s first plant under construction, this partnership accelerates the construction schedule for Fulcrum’s next renewable jet fuel plants.

Fulcrum and Air BP, the aviation division of BP, have also agreed to terms on a 500-million gallon jet fuel offtake agreement that will provide Air BP with 50 million gallons per year of low-carbon, drop-in jet fuel. Air BP will also have the opportunity to provide fuel supply chain services for the blending, certification and delivery of Fulcrum’s jet fuel to commercial and military aviation customers.

More... | Comments (11)

Researchers find “zip-lignin” native to multiple plant species; potential for new approaches to degrading lignin for biorefineries

October 15, 2016

In 2014, researchers from Michigan State University and the University of Wisconsin-Madison and their colleagues successfully engineered poplar trees to produce lignin that degrades more easily, thereby lowering the effort and cost to convert wood to biofuel. (Earlier post.)

Now, in an open-access paper published in Science Advances, some of those same researchers have discovered that various plant species might have naturally convergently evolved to express the same feature natively.

More... | Comments (0)

Rotterdam proposed location for Enerkem waste-to-chemicals plant

October 07, 2016

A partnership comprising AkzoNobel, Van Gansewinkel, Air Liquide, AVR and Enerkem is proposing to build a waste-to-chemicals plant in Rotterdam in collaboration with the Port of Rotterdam, the City of Rotterdam, the province of South Holland and InnovationQuarter.

The new chemical plant will use Enerkem’s innovative technology to convert residual waste into methanol, a raw material used in the chemical industry. The methanol will then be converted into chemicals such as acetic acid (e.g., for fibers and adhesives), thickening agents and dimethyl ether (clean propellant gases).

More... | Comments (0)

NREL lowers biofuel costs through catalyst regeneration and vapor-phase upgrading; R-Cubed

October 06, 2016

This past June, researchers at the National Renewable Energy Laboratory (NREL), in partnership with Particulate Solids Research, Inc. and Springs Fabrication, installed a recirculating regenerating riser reactor (R-Cubed) in the pilot-scale Thermochemical Process Development Unit (TCPDU). Funded by the DOE Bioenergy Technologies Office (BETO), this unique unit represents the next generation of thermochemical biomass conversion technology and adds additional capabilities to NREL’s state-of-the-art Thermochemical Users Facility.

The R-Cubed system will now allow for catalytic upgrading of biomass pyrolysis vapors—a process that can significantly improve the efficiency and reduce the costs associated with upgrading bio-oil to a finished fuel product—at an industrially-relevant pilot scale.

More... | Comments (0)

Toyota develops new DNA analysis technology to accelerate plant improvement; boosting biofuel crop yield

September 23, 2016

Toyota Motor Corporation (TMC) has developed a DNA analysis technology it calls Genotyping by Random Amplicon Sequencing (GRAS). This technology is capable of significantly improving the efficiency of identifying and selecting useful genetic information for agricultural plant improvement.

This newly developed technology could thus lead to substantial time and cost savings in the agricultural plant improvement process. Toyota says that the promising technology has the potential to boost sugar-cane production, and to increase biofuel crop yields per unit area of land. The company worked with analytical materials provided by the Kyushu Okinawa Agricultural Research Center (KARC) of the National Agriculture and Food Research Organization (NARO)

More... | Comments (0)

Strategic consortium to commercialize Virent’s BioForming Technology for low carbon fuels and bio-paraxylene

September 15, 2016

Renewable fuels and chemicals company Virent has established a strategic consortium with Tesoro, Toray, Johnson Matthey and The Coca-Cola Company focused on completing the development and scale up of Virent’s BioForming technology to produce low carbon bio-based fuels and bio-paraxylene (a key raw material for the production of 100% bio-polyester).

The consortium members will work together to finalize technical developments and commercial arrangements, with the objective of delivering a commercial facility to produce cost effective, bio-based fuels and bio-paraxylene. Earlier this month, Virent and petroleum refiner and marketer Tesoro reached an agreement for Tesoro to become Virent’s new strategic owner. (Earlier post.)

More... | Comments (0)

European consortium begins demonstration project for conversion of woody biomass to chemicals: BIOFOREVER

September 07, 2016

BIOFOREVER (BIO-based products from FORestry via Economically Viable European Routes)—a consortium of 14 European companies—has started a demonstration project for the conversion of woody biomass to value-adding chemical building blocks such as butanol, ethanol, and 2,5–furandicarboxylic acid (FDCA) on an industrial scale.

The demonstration project will run for 3 years. The overall budget is €16.2 million (US$18 million) with a €9.9-million (US$11-million) contribution from BBI JU. Woody biomass, including waste wood, will be converted to lignin, (nano-) cellulose and (hemi-) cellulosic sugars, and further converted to lignin derivatives and chemicals. Feedstocks will be benchmarked with crop residues and energy crops.

More... | Comments (0)

U-M study finds crop-based biofuels associated with net increase in GHGs; falsifying the assumption of inherent carbon neutrality

August 25, 2016

A new study from University of Michigan researchers challenges the assumption that crop-based biofuels such as corn ethanol and biodiesel are inherently carbon-neutral—i.e., that only production-related greenhouse gas (GHG) emissions need to be tallied when comparing them to fossil fuels.

In an open-access paper published in the journal Climatic Change, the researchers conclude that once estimates from the literature for process emissions and displacement effects including land-use change are considered, US biofuel use to date is associated with a net increase rather than a net decrease in CO2 emissions.

More... | Comments (6)

New genome sequences target next generation of yeasts with improved biotech uses

August 16, 2016

Metabolically, genetically and biochemically, yeasts (unicellular fungi) are highly diverse; more than 1,500 yeast species have been identified. Characteristics such as thick cell walls and tolerance of pressure changes that could rupture other cells mean yeasts are easily scaled up for industrial processes. In addition, they are easy to grow and modify and, with notable exceptions such as Candida albicans, most are not associated with human illness. While these capabilities can be used for a wide range of biotechnological applications, including biofuel production, so far industry has only harnessed a fraction of the diversity available among yeast species.

To help boost the use of a wider range of yeasts and to explore the use of genes and pathways encoded in their genomes, a team led by researchers at the US Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, conducted a comparative genomic analysis of 29 yeasts, including 16 whose genomes were newly sequenced and annotated. In a study being published this week in the Proceedings of the National Academy of Sciences (PNAS), the team mapped various metabolic pathways to yeast growth profiles.

More... | Comments (0)

MIT, Novogy team engineers microbes for competitive advantage in industrial fermentation; the ROBUST strategy

August 06, 2016

Researchers at MIT and startup Novogy have engineered bacteria and yeast (Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica) used as producer microbes in biofuel production to use rare compounds as sources of nutrients. The technique, described in a paper in the journal Science, provides the producer microbes with competitive advantage over other, contaminating microbes with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment.

Ethanol is toxic to most microorganisms other than the yeast used to produce it, naturally preventing contamination of the fermentation process. However, this is not the case for the more advanced biofuels and biochemicals under development. Thus, one problem facing the production of advanced biofuels via large-scale fermentation of complex low-cost feedstocks (e.g., sugarcane or dry-milled corn) is the contamination of fermentation vessels with other, unwanted microbes that can outcompete the designated producer microbes for nutrients, reducing yield and productivity.

More... | Comments (1)

2016 Billion Ton Report shows US could sustainably produce at least 1B tons biomass by 2040 for bioeconomy

July 13, 2016

Within 25 years, the United States could produce enough biomass to support a bioeconomy, including renewable aquatic and terrestrial biomass resources that could be used for energy and to develop products for economic, environmental, social, and national security benefits, according to the new 2016 Billion-Ton Report, jointly released by the US Department of Energy and Oak Ridge National Laboratory (ORNL).

The 2016 Billion-Ton Report, volume 1, updates and expands upon analysis in the 2011 US Billion-Ton Update (earlier post), which was preceded by the 2005 US Billion Ton Study (earlier post). The report uses scientific modeling systems to project biomass resource availability under specified economic and sustainability constraints.

More... | Comments (0)

DOE issues RFI on biomass supply systems to support billion-ton bioeconomy vision

June 09, 2016

The US Department of Energy (DOE) has issed a Request for Information (RFI) (DE-FOA-0001603) seeking feedback from industry, academia, research laboratories, government agencies, and other stakeholders to support a “billion-ton bioeconomy.” This request for information (RFI) asks for input about specific aspects in the development of large-scale supply systems and technologies to eventually supply up to a billion dry tons of biomass feedstocks annually for a variety of end uses.

In 2005, a joint study by the US Departments of Agriculture and Energy (USDA and DOE) concluded that the land resources of the US could produce a sustainable supply of biomass sufficient to displace 30% or more of the country’s then-present petroleum consumption. The study found that just forest land and agricultural land alone have a potential for 1.3 billion dry tons of biomass feedstock per year—leading to the shorthand “billion-ton bioeconomy.” (Earlier post.)

More... | Comments (0)

Green Car Congress © 2017 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group