Green Car Congress
Home Topics About GCC Contact  RSS Subscribe Headlines
Google search

GCC Web

Biorefinery

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Lux: Despite softness in utilization, global biofuels capacity to grow to 61.4 BGY in 2018; driven by novel fuels and feedstocks

August 31, 2015

The global biofuels industry averaged 68% in utilization rate from 2005 to 2014, reached a high of 80.9% in 2007, dropped to a low of 56.9% in 2012, and climbed slightly back to 60.4% in 2014. Despite the still apparent softness in capacity utilization, and the on-going softness in fossil fuel prices, global biofuels capacity will continue to grow from 55.1 billion gallons per year (BGY) to 61.4 BGY in 2018, according to a forecast by Lux Research. However, Lux predicts, growth between now and 2018 will not be a continuation of current course.

While ethanol and biodiesel will continue to dominate in absolute terms, these will grow at only a 1.5% CAGR through 2018. Novel fuels and feedstocks will drive the biofuels industry forward at a much more rapid 17% and 22% CAGRs through 2018, respectively.

More... | Comments (1)

Researchers propose 2nd law of thermodynamics-based process to select and develop microorganisms for optimal biofuel production

August 17, 2015

Researchers at the University of Maryland are proposing a new process to isolate and to direct the evolution of microorganisms that convert cellulosic biomass or gaseous CO2 and H2 to biofuels such as ethanol, 1-butanol, butane, or hexane (among others).

The approach is based on the theory that fermentation systems drive toward thermodynamic equilibrium. Physical chemists, observe Richard Kohn and Seon-Woo Kim, both of the Department of Animal and Avian Sciences, in their paper published in the Journal of Theoretical Biology, have understood that all chemical reactions are controlled by either thermodynamic or kinetic mechanisms. With thermodynamic control, the feasibility of reactions and the availability of pathway branches depend on the second law of thermodynamics. This law governs whether or not a reaction can proceed spontaneously in the forward direction based on the concentrations of reactants and products.

More... | Comments (0)

U Georgia team discovers tungsten in novel bacterial enzyme; potential for cellulosic biofuels

August 16, 2015

A team at the University of Georgia, Athens led by Distinguished Research Professor Michael Adams has discovered tungsten in what appears to be a novel enzyme in the biomass-degrading thermophilic bacterium Caldicellulosiruptor bescii. Tungsten is exceptionally rare in biological systems.

The researchers hypothesized that this new tungstoenzyme plays a key role in C. bescii’s primary metabolism, and its ability to convert plant biomass to simple fermentable sugars. This discovery could ultimately lead to commercially viable conversion of cellulosic biomass to fuels and chemical feedstocks. The research is published in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.

More... | Comments (2)

UPS announces renewable diesel agreements with Neste, REG and Solazyme; up to 46M gallons over next 3 years

July 29, 2015

UPS announced agreements for up to 46 million gallons of renewable diesel over the next three years, constituting a 15-fold increase over prior contracts and making UPS one of the largest users of renewable diesel in the world.

Neste, Renewable Energy Group (REG) and Solazyme will supply renewable diesel to UPS to help facilitate the company’s shift to move more than 12% of its purchased ground fuel from conventional diesel and gasoline fuel to alternative fuels by the end of 2017. UPS has previously announced a goal of driving one billion miles with our alternative fuel and advanced technology vehicles by the end of 2017.

More... | Comments (0)

RedRock Biofuels to supply 3M gallons/year of renewable jet fuel to FedEx through 2024

July 21, 2015

Red Rock Biofuels LLC will produce approximately three million gallons of low-carbon, renewable jet fuel per year for FedEx Express, a subsidiary of FedEx Corporation. The agreement runs through 2024, with first delivery expected in 2017. FedEx joins Southwest Airlines, which signed a purchase agreement with RedRock in November 2014 for about 3 million gallons per year, in purchasing Red Rock’s total planned available volume of jet fuel. (Earlier post.)

Red Rock’s first refinery, funded in part by a $70-million Title III DPA grant from the U.S. Departments of Agriculture, Energy and Navy, is scheduled to break ground this fall in Lakeview, Ore. and will convert approximately 140,000 dry tons of woody biomass into 15 million gallons per year of renewable jet, diesel and naphtha fuels.

More... | Comments (0)

Argonne researchers developing multifunctional farm landscapes balancing economy, bioenergy and environment

July 08, 2015

In collaboration with the farming community of the Indian Creek Watershed in central Illinois, researchers from Argonne National Laboratory (ANL) are finding ways to meet three agrarian land management objectives simultaneously: maximizing a farmer’s production; growing feedstock for bioenergy; and protecting the environment.

Through careful data collection and modeling at a cornfield in Fairbury, the Argonne team found that achieving these goals—which might under some conditions be mutually exclusive—requires a multifunctional landscape. Such a landscape is one where resources are allocated efficiently and crops are situated in their ideal soil and landscape position. As an example, planting bioenergy crops such as willows or switchgrass in rows where commodity crops are having difficulty growing could both provide biomass feedstock and also limit the runoff of nitrogen fertilizer into waterways—all without hurting a farmer’s profits.

More... | Comments (1)

BioMim project seeks to mimic chemistry of brown rot fungus to improve biorefining

July 07, 2015

BioMim, a newly-launched $4 million, four-year project funded by the Research Council of Norway with industrial partners Borregaard and Kebony, is seeking to mimic the chemistry of the brown rot fungus to improve biorefining processes. Specifically, the international team of researchers will seek to utilize the brown-rot fungi’s unique mechanisms to remove biomass components in cell walls, creating much improved access for an optimized enzyme system.

The BioMim project is combining two processes. The first is a technology developed by Virginia Tech Professor Barry Goodell that borrows from the processes used by brown rot fungi that are commonly found breaking down woody debris on the forest floor. The resulting catalytic process for freeing cellulose from lignin has now been demonstrated at pilot scale. The BioMim team will expand on this technology and explore how it can be used efficiently in large-scale biorefineries.

More... | Comments (0)

Etihad Airways and partners launch roadmap for sustainable aviation biofuels in UAE

June 18, 2015

Etihad Airways, together with Boeing, Total, Takreer and the Masdar Institute of Science and Technology, launched a joint industry roadmap for the sustainable production of aviation biofuels in the United Arab Emirates (UAE). The BIOjet Abu Dhabi: Flight Path to Sustainability report outlines a set of recommended industry actions to create a commercially viable domestic aviation biofuel industry—a first for the Middle East. (Earlier post, earlier post.)

The BIOjet Abu Dhabi roadmap is the culmination of a year-long dialogue between Etihad Airways, its four BIOjet Abu Dhabi partners, and UAE and global stakeholders. It explains Abu Dhabi’s potential to produce aviation biofuel locally, in a sustainable way, taking account of all elements of the supply chain from feedstock supplies to biorefining and distribution.

More... | Comments (0)

EBI ketone condensation process for drop-in jet fuel or lubricant base oil from biomass; up to 80% lifecycle GHG savings

June 16, 2015

Researchers at the Energy Biosciences Institute (EBI), a partnership led by the University of California (UC) Berkeley that includes Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of Illinois at Urbana-Champaign, and BP, have developed a new method for producing drop-in aviation fuel as well as automotive lubricant base oils from sugarcane biomass. The strategy behind the process could also be applied to biomass from other non-food plants and agricultural waste that are fermented by genetically engineered microbes, the researchers said.

The catalytic process, described in an open-access paper in the Proceedings of the National Academy of Sciences (PNAS), selectively upgrades alkyl methyl ketones derived from sugarcane biomass into trimer condensates with better than 95% yields. These condensates are then hydro-deoxygenated into a new class of cycloalkane compounds that contain a cyclohexane ring and a quaternary carbon atom. These cycloalkane compounds can be tailored for the production of either jet fuel, or automotive lubricant base oils, resulting in products with superior cold-flow properties, density and viscosity that could achieve net life-cycle greenhouse gas savings of up to 80%, depending upon the optimization conditions.

More... | Comments (0)

Report for the EC evaluates prospects for sugar-based platforms for biofuels and biochemicals

May 08, 2015

A comprehensive review of 94 potential pathways to biofuels and biochemicals via the sugar platform, prepared for the European Commission (DG ENER) by a team from E4tech, RE-CORD and Wageningen UR, finds that the global market value of the sugar platform is today of the order of $65 billion, with bioethanol (from sugar and starch crops) by far the dominant product in the market.

While several newer biofuel and biochemical routes show significant growth potential, only a few are currently crossing the valley of death between research and commercialization. Of ten case studies (the technologies being at least at TRL5) considered in detail, most can deliver significant greenhouse gas (GHG) savings and identical (or improved) physical properties, but at an added cost to fossil alternatives.

More... | Comments (0) | TrackBack (0)

BIO: RFS policy instability has chilled advanced and cellulosic biofuel investments; $13.7B shortfall

May 04, 2015

EPA’s delays in rulemaking for the Renewable Fuel Standard (RFS) over the past two years have chilled necessary investment in advanced and cellulosic biofuels just as they reached commercial deployment. The industry has experienced an estimated $13.7-billion shortfall in investment as a result, according to a new analysis released by the Biotechnology Industry Organization (BIO).

To reach the 2015 RFS goal of producing 5.5 billion gallons of advanced biofuels (including 3 billion gallons of cellulosic and 2.5 billion gallons of advanced biofuel or biodiesel), Bio Economic Research Associates (bio-era) estimated the need for 110 operating plants requiring $20.34 billion dollars in cumulative investment. The research and advisory firm also estimated that more than $95 billion in cumulative capital investments would be needed by 2022 for construction of nearly 400 advanced biofuel biorefineries with the capacity to produce 23 billion gallons of advanced biofuel.

More... | Comments (3) | TrackBack (0)

Battelle passes 1,000-hour milestone with continuous hydrotreatment process for bio-oil to fuels

April 27, 2015

Researchers at Battelle led by principal investigator Dr. Zia Abdullah have demonstrated the durability of a continuous hydrotreatment process that converts bio-oil from biomass pyrolysis into transportation and aviation fuels, meeting the longevity goals of a challenge from the United States Department of Energy’s (DOE) to make commercially viable transportation fuels from biomass pyrolysis.

Battelle, with its proprietary process (earlier post) and catalyst from Pacific Northwest National Laboratory (PNNL) successfully registered more than 1,200 hours of operation of the system. The end hydrocarbon products are 30% blendable with ASTM petroleum fuels. The Battelle team has set its sights on achieving the near-commercial standard of 4,000 hours in the near future; 4,000 hours represents about half a year of continuous operation, Abdullah noted.

More... | Comments (0) | TrackBack (0)

Indian researchers propose fuel-chemicals-electricity cellulosic biomass biorefinery scheme

April 19, 2015

Researchers from the CSIR-Indian Institute of Petroleum are proposing a biorefinery scheme using lignocellulosic biomass feedstock (sugarcane bagasse) for the production of fuel (ethanol), chemicals (furfural), and energy (electricity). The proposed scheme could be integrated with existing sugar or paper mills, where the availability of biomass feedstock is in abundance as a means to address some of the cost and logistics issues, they suggest in their paper published in the ACS journal Energy & Fuels.

In their approach, they extract fermentable sugar components (xylose and glucose) from sugarcane bagasse employing acid hydrolysis and enzymatic saccharification; recovery and reuse of the enzyme is a process advantage. The pentose fraction is used for yeast biomass generation and furfural production. High-temperature fermentation of the hexose stream by the thermophilic yeast Kluyveromyces sp. IIPE453 with cell recycle produces ethanol with an overall yield of 88% ± 0.05% and a productivity of 0.76 ± 0.02 g/L h−1. A complete material balance on two consecutive process cycles, each starting with 1 kg of feedstock, resulted in an overall yield of 366 mL of ethanol, 149 g of furfural, and 0.30 kW of electricity.

More... | Comments (2) | TrackBack (0)

Algenol and Reliance launch algae fuels demonstration project in India

January 21, 2015

Algenol and Reliance Industries Ltd., have successfully deployed India’s first Algenol algae production platform. The demonstration module is located near the Reliance Jamnagar Refinery, the world’s largest. The demonstration has completed several production cycles of Algenol’s wildtype host algae, but ultimately could demonstrate the fuels production capabilities of Algenol’s advanced fuel producing algae and systems. Th

The Algenol fuel production process is designed to convert 1 tonne of CO2 into 144 gallons of fuel while recycling CO2 from industrial processes and converting 85% of the CO2 used into ethanol, gasoline, diesel and jet fuels. The advanced fuel producing algae technology is successfully operating at Algenol’s Fort Myers, Florida headquarters.

More... | Comments (6) | TrackBack (0)

Anellotech, IFPEN and Axens partner on bio-aromatics production from non-food biomass; targeting 2019 for industrial implementation

January 20, 2015

Anellotech Inc., IFP Energies nouvelles (IFPEN) and its subsidiary Axens have formed a strategic alliance to develop and to commercialize a new technology for the low cost production of bio-based benzene, toluene and paraxylene using Anellotech’s process of Catalytic Fast Pyrolysis (CFP) of non-food biomass. (Earlier post.)

The technology will address large-scale units and produce purified aromatics streams suitable for modern derivative production processes at a very competitive price with respect to their petroleum-based counterparts.

More... | Comments (1) | TrackBack (0)

New version of Argonne lifecycle model for water footprint of biofuels now includes cellulosic feedstocks

January 16, 2015

Argonne National Laboratory released the newest version (3.0) of the online tool Water Assessment for Transportation Energy Resources (WATER) this week. This latest version of WATER allows, for the first time, biofuels manufacturers to analyze water consumption associated with use of cellulosic feedstocks such as residue left from lumber production and other wood-based resources. The new tool also provides analysis down to the county level in the US for the first time.

WATER adopts a water footprint methodology, and contains extensive climate, land use, water resource, and process water data. Version 3.0 of WATER thus can help biofuels developers gain a detailed understanding of water consumption of various types of feedstocks, aiding development of sustainable fuels that will reduce impact on limited water resources.

More... | Comments (2) | TrackBack (0)

DOE Bioenergy Technologies Office updates 5-year program plan; commercially viable hydrocarbon biofuel technologies by 2017; <$3/GGE

November 23, 2014

Beto1
BETO high-level schedule. Click to enlarge.

The US Department of Energy (DOE) Bioenergy Technologies Office (BTO) has updated its Multi-Year Program Plan (MYPP), which delineates the goals and structure of the office. BTO is one of the 10 technology development offices within the Office of Energy Efficiency and Renewable Energy (EERE) at DOE.

The MYPP identifies the research, development, demonstration, and deployment (RDD&D) activities the Office will focus on over the next five years and explains why these activities are important. The MYPP is intended for use as an operational guide to help BETO manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

More... | Comments (7) | TrackBack (0)

U Wisc. scientists develop new method to convert lignin to simple chemicals under mild conditions

November 03, 2014

Researchers at the University of Wisconsin have disclosed a new method to convert lignin, an important component of biomass waste, into simple chemicals. Lignin, which accounts for nearly 30% of the organic carbon in the biosphere, is a complex material containing chains of six-carbon rings. These aromatics could be the basis for a sustainable supply of useful chemicals, but only if the chains of lignin can be broken down into the individual units. Lignin, however, is highly resistant to breakdown, especially in a cost-effective way.

Prof. Shannon Stahl and his colleagues developed, in work funded by the Great Lakes Bioenergy Research Center at UW-Madison, a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60 wt% yield of low-molecular-mass aromatics. A paper on the method is published in the journal Nature.

More... | Comments (3) | TrackBack (0)

GM Ventures invests in Telogis

October 28, 2014

Telogis has received an equity investment from GM Ventures, the venture capital subsidiary of General Motors. The investment extends the existing partnership between General Motors and Telogis that was formed earlier this year to take advantage of GM’s OnStar connected vehicle infrastructure to bring Telogis’ telematics and fleet management solutions to GM customers. The financial terms of the transaction were not disclosed.

More... | Comments (0) | TrackBack (0)

DOE awarding up to $13.4M for 5 projects for advanced biofuels and bioproducts

October 09, 2014

The US Department of Energy (DOE) will award up to $13.4 million for five projects to develop advanced biofuels and bioproducts that will help drive down the cost of producing gasoline, diesel, and jet fuel from biomass. These products not only will help reduce carbon emissions, but also advance the department’s work to enable the production of drop-in biofuel at $3 per gallon by 2022.

The research and development projects will focus on developing integrated processes for the production of advanced biofuels and chemicals. Two of these selections will address research efforts on the efficient conversion of biogas (a mixture of gases generated from the biological breakdown of organic material) to valuable products other than power.

More... | Comments (1) | TrackBack (0)

Departments of the Navy, Energy and Agriculture award $210M in contracts for 3 drop-in fuel biorefineries; more than 100M gallons/year

September 20, 2014

The US Departments of Navy, Energy, and Agriculture have awarded contracts worth a combined $210 million to three companies—Emerald Biofuels, Fulcrum BioEnergy and Red Rock Biofuels—to construct and commission biorefineries capable of producing drop-in biofuels. In total, these projects are intended to produce more than 100 million gallons of military-grade fuel beginning in 2016 and 2017 at a price competitive with their petroleum counterparts.

The awards were made through the Department of Defense’s (DOD) Defense Production Act (DPA) of 1950, which was passed at the beginning of the Korean War to empower the President, among other things, with an array of authorities to shape national defense preparedness programs and to take appropriate steps to maintain and enhance the domestic industrial base. DPA has been re-authorized multiple times since then.

More... | Comments (9) | TrackBack (0)

California Energy Commission awards $5M grant to AltAir Fuels to expand renewable diesel production; $3M to GFP Ethanol for sorghum feedstock

September 11, 2014

The California Energy Commission approved $8 million in grants to two biofuel companies stemming from a solicitation issued earlier this year (PON-13-609: Pilot-Scale and Commercial-Scale Advanced Biofuels Production Facilities).

AltAir Fuels LLC (earlier post) will receive $5 million to expand production of renewable diesel fuels at its Paramount facility in Los Angeles County from 30 million gallons per year to 40 million gallons per year, and allow for processing of additional feedstocks. This facility will also co-produce renewable jet at commercial scale and a byproduct chemical and gasoline component. GFP Ethanol is receiving $3 million to support the development of sorghum as a feedstock for lower carbon intensity ethanol.

More... | Comments (1) | TrackBack (0)

Green Car Congress © 2015 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group