Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Biorefinery

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

DOE issues RFI on biomass supply systems to support billion-ton bioeconomy vision

June 09, 2016

The US Department of Energy (DOE) has issed a Request for Information (RFI) (DE-FOA-0001603) seeking feedback from industry, academia, research laboratories, government agencies, and other stakeholders to support a “billion-ton bioeconomy.” This request for information (RFI) asks for input about specific aspects in the development of large-scale supply systems and technologies to eventually supply up to a billion dry tons of biomass feedstocks annually for a variety of end uses.

In 2005, a joint study by the US Departments of Agriculture and Energy (USDA and DOE) concluded that the land resources of the US could produce a sustainable supply of biomass sufficient to displace 30% or more of the country’s then-present petroleum consumption. The study found that just forest land and agricultural land alone have a potential for 1.3 billion dry tons of biomass feedstock per year—leading to the shorthand “billion-ton bioeconomy.” (Earlier post.)

More... | Comments (0)

New 3-step process for conversion of kraft lignin from black liquor into green diesel

June 01, 2016

Researchers in Sweden and Spain have devised a three-step process for the conversion of precipitated kraft lignin from black liquor into green diesel. Their paper appears in the journal ChemSusChem.

The kraft process converts wood into wood pulp for paper production. The process produces a toxic byproduct referred to as black liquor—a primarily liquid mixture of pulping residues (such as lignin and hemicellulose) and inorganic chemicals from the Kraft process (sodium hydroxide and sodium sulfide, for example). For every ton of pulp produced, the kraft pulping process produces about 10 tons of weak black liquor or about 1.5 tons of black liquor dry solids.

More... | Comments (0)

DOE to award up to $90M for integrated biorefinery projects

May 07, 2016

The US Department of Energy (DOE) will award up to $90 million in project funding focused on designing, constructing and operating integrated biorefinery facilities. (DE-FOA-0001232)

“Project Development for Pilot and Demonstration Scale Manufacturing of Biofuels, Bioproducts, and Biopower” is a funding opportunity that will support efforts to improve and demonstrate processes that break down complex biomass feedstocks and convert them to gasoline, diesel and jet fuel, as well as plastics and chemicals.

More... | Comments (0)

DOE to issue funding opportunity to develop plans for drop-in bio-hydrocarbon biorefinery

April 16, 2016

The US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) intends (DE-FOA-0001581) to issue, on behalf of the Bioenergy Technologies Office, a Funding Opportunity Announcement (DE-FOA-0001232) entitled “Project Definition for Pilot and Demonstration Scale Manufacturing of Biofuels, Bioproducts, and Biopower (PD2B3)”. The FOA will be issued on or about 2 May.

This FOA supports technology development plans for the manufacture of drop-in hydrocarbon biofuels, bioproducts, or biopower in a pilot- or demonstration-scale integrated biorefinery. Plans for facilities that use cellulosic biomass, algal biomass, or biosolids feedstocks will be considered under this funding opportunity.

More... | Comments (1)

ORNL team develops better moldable thermoplastic by using lignin; 50% renewable content

March 23, 2016

Researchers at Oak Ridge National Laboratory (ORNL) have developed a new class of high-performance thermoplastic elastomers for cars and other consumer products by replacing the styrene in ABS (acrylonitrile, butadiene and styrene) with lignin, a brittle, rigid polymer that, with cellulose, forms the woody cell walls of plants.

In doing so, they have invented a solvent-free production process that interconnects equal parts of nanoscale lignin dispersed in a synthetic rubber matrix to produce a meltable, moldable, ductile material that’s at least ten times tougher than ABS. The resulting thermoplastic—called ABL for acrylonitrile, butadiene, lignin—is recyclable, as it can be melted three times and still perform well. The results, published in the journal Advanced Functional Materials, may bring cleaner, cheaper raw materials to diverse manufacturers.

More... | Comments (1)

Double catalyst for the direct conversion of syngas to lower olefins

March 21, 2016

The light olefins ethylene, propylene, and butylene—usually made from petroleum—are key building blocks for chemical industry, and are starting materials for making plastics, synthetic fibers, and coatings. In the journal Angewandte Chemie, Chinese scientists report on a new bifunctional catalyst that converts syngas to lower olefins (C2-C4) with high selectivity. This could make it more attractive to make olefins from alternative sources of carbon, such as biomass, natural gas, or coal.

The design of bifunctional catalysts could result in further breakthroughs in developing one-step processes for selective production of fuels and chemicals such as gasoline, diesel, and aromatics from synthesis gas.

More... | Comments (2)

DOE seeking input on operation of integrated biorefineries

March 14, 2016

The US Department of Energy’s Office of Energy Efficiency and Renewable Energy’s (EERE’s) Bioenergy Technologies Office (BETO) is seeking (DE-FOA-0001481) input from industry, academia, research laboratories, government agencies, and other stakeholders that will help it better understand capabilities—as well as barriers and opportunities—for the operation of integrated biorefineries (IBRs) to produce biofuels, biochemicals, and bioproducts.

BETO is seeking information on all IBR processes and technologies, including any and all systems processes, technologies, methods and equipment employed to convert woody biomass, agricultural residues, dedicated energy crops, algae, municipal solid waste (MSW), sludge from wastewater treatment plants, and wet solids, into biofuels, biochemicals, and bioproducts.

More... | Comments (0)

Government of Alberta awarding $10M to SBI Bioenergy for production of drop-in hydrocarbon fuels; funds from carbon levy

March 10, 2016

Using revenue from the price Alberta’s large emitters pay for releasing greenhouse gases, the Climate Change and Emissions Management Corporation (CCEMC) has earmarked a $10-million contribution for Alberta-based SBI BioEnergy to support a $20-million facility for the demonstration-scale production of drop-in, renewable diesel, jet and gasoline fuels from plant oils and waste fats.

With this investment, SBI will be able to produce 10 million liters (2.6 million gallons US) of renewable diesel fuel annually. This support works in concert with Alberta’s Renewable Fuels Standard which requires commercial fuel producers to blend renewable products into their fuels. SBI’s facility strengthens Alberta’s expanding industrial bio-product sector and gives Alberta farmers a new market for off-grade canola.

More... | Comments (3)

Tohoku researchers develop efficient hydrodynamic reactor for pretreatment of biomass

March 07, 2016

Researchers at Tohoku University in Japan have developed a new system combining hydrodynamic cavitation with sodium percarbonate (SP) (an environmentally benign oxidation reagent) for the efficient pre-treatment of biomass. Compared to a pretreatment system using ultrasonication and SP (US-SP), the new HD-SP system was more efficient for glucose and xylose production; both systems resulted in a similar degree of lignin removal, and neither generated the inhibitor furfural, while it was detected in dilute acid (DA)-pretreated biomass.

In a paper published in the ACS journal Industrial & Engineering Chemistry Research, the Tohoku team sugested that the HD-SP system could be easily scaled up for a high-throughput system. Because compared to an US cavitation reactor it requires much lower energy input, it is promising for the industrial-scale pretreatment of lignocellulosic biomass, they said.

More... | Comments (0)

New ammonia biomass pretreatment process improves yield with lower enzyme loading; improving cellulosic biofuel economics

February 23, 2016

A team from the US, China and India, led by researchers from Michigan State University, has developed a new liquid ammonia biomass pretreatment methodology called Extractive Ammonia (EA). EA-pretreated corn stover delivers a higher fermentable sugar yield compared to the older Ammonia Fiber Expansion (AFEX) process while using 60% lower enzyme loading.

As described in a paper in the RSC journal Energy & Environmental Science, the single-stage EA process achieves high biofuel yields (18.2 kg ethanol per 100 kg untreated corn stover, dry weight basis), comparable to those achieved using ionic liquid pretreatments. The EA process achieves these ethanol yields at industrially-relevant conditions using low enzyme loading (7.5 mg protein per g glucan) and high solids loading (8% glucan, w/v).

More... | Comments (1)

China’s Kaidi to build €1B BTL biofuel refinery in Finland

February 13, 2016

China-based Kaidi plans to build a €1-billion (US$1.1-billion) biofuel refinery in Kemi. The planned refinery will produce 200,000 tons of biofuels per year, of which 75% will be biodiesel and 25% biogasoline.

The second-generation biomass plant will use energy wood as the main feedstock and it will be the first of its kind, not only in Finland but globally. Kaidi will make the final investment decision by the end of the year. The plant could be operational in 2019.

More... | Comments (1)

Chempolis partners with Avantha Group on cellulosic ethanol in India

December 29, 2015

Chempolis Limited, a Finland-based biorefining technology corporation, has entered into partnership with India-based Avantha Group’s research wing—Avantha Centre for Industrial Research & Development (ACIRD)—on technology to produce ethanol from various agricultural residues for fuel blending.

India’s agricultural sector produces large amounts of bagasse, cane trash, rice and wheat straw the disposal of which is an environmental problem. The partnership will help to deliver biorefining technology to India to convert biomass waste to clean sugars to be further converted to cellulosic ethanol and other bio-based chemicals.

More... | Comments (1)

DOE to issue MEGA-BIO funding opportunity for drop-in renewable hydrocarbon fuels from biomass with a focus on byproducts

December 23, 2015

The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Bioenergy Technologies Office (BETO), a Funding Opportunity Announcement (FOA) entitled “MEGA-BIO: Bioproducts to Enable Biofuels” (DE-FOA-0001434). This FOA supports BETO’s goal of meeting its 2022 cost target of $3/gallon gasoline equivalent (gge) for the production of hydrocarbon fuels from lignocellulosic biomass.

Previously, BETO has focused on conversion pathways that produce biofuels, with little or no emphasis on coproducing bioproducts. As BETO increasingly focuses on hydrocarbon fuels, it is examining strategies that capitalize on revenue from bioproducts as part of cost-competitive biofuel production.

More... | Comments (3)

USDA announces conditional commitment for $70M loan guarantee for Ensyn cellulosic biofuel refinery

December 11, 2015

The US Department of Agriculture (USDA) announced a conditional commitment for a $70-million loan guarantee to help build a cellulosic biorefinery in central Georgia. USDA is providing the loan guarantee conditional commitment through its Biorefinery Assistance Program.

Ensyn Georgia Biorefinery I, LLC (Ensyn) will construct and operate a cellulosic biofuel refinery in Dooly County, Georgia. The company will produce 20 million gallons of renewable fuel per year employing its Rapid Thermal Processing (RTP) technology. RTP uses a fast thermal process to convert non-food-based feedstocks into biobased fuels.

More... | Comments (4)

New catalytic process to convert lignin into jet-range hydrocarbons

Researchers at Washington State University (WSU) Tri-Cities have developed a catalytic process to convert corn stover lignin into hydrocarbons (C7–C18)—primarily C12–C18 cyclic structure hydrocarbons in the jet fuel range. The work is featured on the cover of the December issue of the RSC journal Green Chemistry.

The developer of the process, Bin Yang, an associate professor of biological systems engineering at WSU and his team are working with Boeing Co. to develop and test the hydrocarbons targeted to be jet fuel. Yang has filed for a patent on the process, with WSU as the assignee.

More... | Comments (1)

UCLA–UC Berkeley paper outlines how CA can boost biofuel production to cut pollution and help the economy

December 07, 2015

California has not taken full advantage of opportunities to increase its in-state production of biofuel, despite state policies that encourage biofuel consumption, according to a policy paper by the Climate Change and Business Research Initiative at the UCLA and UC Berkeley law schools. The paper is the sixteenth in a series of reports on how climate change will create opportunities for specific sectors of the business community and how policy-makers can facilitate those opportunities.

The report—titled Planting Fuels: How California Can Boost Local, Low-Carbon Biofuel Production—underscores the importance of local production of low-carbon biofuel, suggesting that the state could reduce emissions by not shipping feedstocks from out-of-state or overseas; spurring development of carbon-reducing byproducts such as biochar compost; and reducing the risk of wildfire.

More... | Comments (2)

Ensyn granted EPA Part 79 approval for renewable gasoline

November 25, 2015

Ensyn (earlier post) has been granted a key regulatory approval from the US Environmental Protection Agency (EPA) for its renewable gasoline product, RFGasoline. This approval, pursuant to Title 40 CFR Part 79 promulgated under the Clean Air Act, is required for the sale of RFGasoline into US commerce.

This approval follows the recently announced Part 79 approval of Ensyn’s renewable diesel product, RFDiesel. (Earlier post.)

More... | Comments (3)

Joule and Red Rock Biofuels intend to merge; solar fuels plus biomass F-T

November 12, 2015

Joule, a pioneer in producing liquid fuels from recycled CO2, and Red Rock Biofuels, a leading developer of renewable jet and diesel fuel bio-refineries using the Fischer-Tropsch process, announced that they intend to merge. Red Rock adds a proven technology pathway to Joule’s own Helioculture technology and strengthens Joule’s platform for global supply of carbon neutral fuels, the two said. The transaction is expected to close during the coming 30 days.

In association with this merger, Joule also announced that President and CEO Serge Tchuruk, will return to his previous board role. Dr. Brian Baynes, a current board member of both Joule and Red Rock and partner at Flagship Ventures, will succeed Tchuruk and will lead Joule as it enters a commercial deployment phase.

More... | Comments (1)

Aemetis harvests demo crop of optimized biomass sorghum in California for advanced biofuels; ~90 days from planting to harvest

October 05, 2015

Aemetis, Inc., an advanced renewable fuels and biochemicals company, has harvested 12- to 15-foot tall biomass sorghum grown in Central California that was produced using proprietary seed genetics from Nexsteppe, a provider of optimized sorghum feedstock solutions. Biomass Sorghum is a feedstock for low-carbon advanced biofuels.

The 20-acre demonstration crop of biomass sorghum was planted, grown, and harvested by Aemetis in approximately 90 days, validating the potential use of biomass crops for the production of lower-carbon, advanced biofuels or as a rotational crop in California.

More... | Comments (18)

Testing shows UPM BioVerno renewable diesel reduces harmful tailpipe emissions

September 24, 2015

Testing, which is still ongoing, is showing that Finnish wood-based UPM BioVerno diesel (earlier post) significantly reduces harmful tailpipe emissions. A number of engine and vehicle tests have been carried out across a number of research institutes such as VTT Technical Research Center of Finland Lt;, University of Vaasa in Finland; and at FEV.

UPM BioVerno renewable diesel has already been shown to function just like conventional diesel in all diesel engines, while generating up to 80% fewer greenhouse gas emissions during its lifecycle compared to conventional fossil diesel fuels. The latest test results show that UPM BioVerno also reduces harmful tailpipe emissions.

More... | Comments (21)

Lux: Despite softness in utilization, global biofuels capacity to grow to 61.4 BGY in 2018; driven by novel fuels and feedstocks

August 31, 2015

The global biofuels industry averaged 68% in utilization rate from 2005 to 2014, reached a high of 80.9% in 2007, dropped to a low of 56.9% in 2012, and climbed slightly back to 60.4% in 2014. Despite the still apparent softness in capacity utilization, and the on-going softness in fossil fuel prices, global biofuels capacity will continue to grow from 55.1 billion gallons per year (BGY) to 61.4 BGY in 2018, according to a forecast by Lux Research. However, Lux predicts, growth between now and 2018 will not be a continuation of current course.

While ethanol and biodiesel will continue to dominate in absolute terms, these will grow at only a 1.5% CAGR through 2018. Novel fuels and feedstocks will drive the biofuels industry forward at a much more rapid 17% and 22% CAGRs through 2018, respectively.

More... | Comments (1)

Researchers propose 2nd law of thermodynamics-based process to select and develop microorganisms for optimal biofuel production

August 17, 2015

Researchers at the University of Maryland are proposing a new process to isolate and to direct the evolution of microorganisms that convert cellulosic biomass or gaseous CO2 and H2 to biofuels such as ethanol, 1-butanol, butane, or hexane (among others).

The approach is based on the theory that fermentation systems drive toward thermodynamic equilibrium. Physical chemists, observe Richard Kohn and Seon-Woo Kim, both of the Department of Animal and Avian Sciences, in their paper published in the Journal of Theoretical Biology, have understood that all chemical reactions are controlled by either thermodynamic or kinetic mechanisms. With thermodynamic control, the feasibility of reactions and the availability of pathway branches depend on the second law of thermodynamics. This law governs whether or not a reaction can proceed spontaneously in the forward direction based on the concentrations of reactants and products.

More... | Comments (0)

U Georgia team discovers tungsten in novel bacterial enzyme; potential for cellulosic biofuels

August 16, 2015

A team at the University of Georgia, Athens led by Distinguished Research Professor Michael Adams has discovered tungsten in what appears to be a novel enzyme in the biomass-degrading thermophilic bacterium Caldicellulosiruptor bescii. Tungsten is exceptionally rare in biological systems.

The researchers hypothesized that this new tungstoenzyme plays a key role in C. bescii’s primary metabolism, and its ability to convert plant biomass to simple fermentable sugars. This discovery could ultimately lead to commercially viable conversion of cellulosic biomass to fuels and chemical feedstocks. The research is published in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.

More... | Comments (2)

UPS announces renewable diesel agreements with Neste, REG and Solazyme; up to 46M gallons over next 3 years

July 29, 2015

UPS announced agreements for up to 46 million gallons of renewable diesel over the next three years, constituting a 15-fold increase over prior contracts and making UPS one of the largest users of renewable diesel in the world.

Neste, Renewable Energy Group (REG) and Solazyme will supply renewable diesel to UPS to help facilitate the company’s shift to move more than 12% of its purchased ground fuel from conventional diesel and gasoline fuel to alternative fuels by the end of 2017. UPS has previously announced a goal of driving one billion miles with our alternative fuel and advanced technology vehicles by the end of 2017.

More... | Comments (0)

RedRock Biofuels to supply 3M gallons/year of renewable jet fuel to FedEx through 2024

July 21, 2015

Red Rock Biofuels LLC will produce approximately three million gallons of low-carbon, renewable jet fuel per year for FedEx Express, a subsidiary of FedEx Corporation. The agreement runs through 2024, with first delivery expected in 2017. FedEx joins Southwest Airlines, which signed a purchase agreement with RedRock in November 2014 for about 3 million gallons per year, in purchasing Red Rock’s total planned available volume of jet fuel. (Earlier post.)

Red Rock’s first refinery, funded in part by a $70-million Title III DPA grant from the U.S. Departments of Agriculture, Energy and Navy, is scheduled to break ground this fall in Lakeview, Ore. and will convert approximately 140,000 dry tons of woody biomass into 15 million gallons per year of renewable jet, diesel and naphtha fuels.

More... | Comments (0)

Argonne researchers developing multifunctional farm landscapes balancing economy, bioenergy and environment

July 08, 2015

In collaboration with the farming community of the Indian Creek Watershed in central Illinois, researchers from Argonne National Laboratory (ANL) are finding ways to meet three agrarian land management objectives simultaneously: maximizing a farmer’s production; growing feedstock for bioenergy; and protecting the environment.

Through careful data collection and modeling at a cornfield in Fairbury, the Argonne team found that achieving these goals—which might under some conditions be mutually exclusive—requires a multifunctional landscape. Such a landscape is one where resources are allocated efficiently and crops are situated in their ideal soil and landscape position. As an example, planting bioenergy crops such as willows or switchgrass in rows where commodity crops are having difficulty growing could both provide biomass feedstock and also limit the runoff of nitrogen fertilizer into waterways—all without hurting a farmer’s profits.

More... | Comments (1)

BioMim project seeks to mimic chemistry of brown rot fungus to improve biorefining

July 07, 2015

BioMim, a newly-launched $4 million, four-year project funded by the Research Council of Norway with industrial partners Borregaard and Kebony, is seeking to mimic the chemistry of the brown rot fungus to improve biorefining processes. Specifically, the international team of researchers will seek to utilize the brown-rot fungi’s unique mechanisms to remove biomass components in cell walls, creating much improved access for an optimized enzyme system.

The BioMim project is combining two processes. The first is a technology developed by Virginia Tech Professor Barry Goodell that borrows from the processes used by brown rot fungi that are commonly found breaking down woody debris on the forest floor. The resulting catalytic process for freeing cellulose from lignin has now been demonstrated at pilot scale. The BioMim team will expand on this technology and explore how it can be used efficiently in large-scale biorefineries.

More... | Comments (0)

Etihad Airways and partners launch roadmap for sustainable aviation biofuels in UAE

June 18, 2015

Etihad Airways, together with Boeing, Total, Takreer and the Masdar Institute of Science and Technology, launched a joint industry roadmap for the sustainable production of aviation biofuels in the United Arab Emirates (UAE). The BIOjet Abu Dhabi: Flight Path to Sustainability report outlines a set of recommended industry actions to create a commercially viable domestic aviation biofuel industry—a first for the Middle East. (Earlier post, earlier post.)

The BIOjet Abu Dhabi roadmap is the culmination of a year-long dialogue between Etihad Airways, its four BIOjet Abu Dhabi partners, and UAE and global stakeholders. It explains Abu Dhabi’s potential to produce aviation biofuel locally, in a sustainable way, taking account of all elements of the supply chain from feedstock supplies to biorefining and distribution.

More... | Comments (0)

EBI ketone condensation process for drop-in jet fuel or lubricant base oil from biomass; up to 80% lifecycle GHG savings

June 16, 2015

Researchers at the Energy Biosciences Institute (EBI), a partnership led by the University of California (UC) Berkeley that includes Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of Illinois at Urbana-Champaign, and BP, have developed a new method for producing drop-in aviation fuel as well as automotive lubricant base oils from sugarcane biomass. The strategy behind the process could also be applied to biomass from other non-food plants and agricultural waste that are fermented by genetically engineered microbes, the researchers said.

The catalytic process, described in an open-access paper in the Proceedings of the National Academy of Sciences (PNAS), selectively upgrades alkyl methyl ketones derived from sugarcane biomass into trimer condensates with better than 95% yields. These condensates are then hydro-deoxygenated into a new class of cycloalkane compounds that contain a cyclohexane ring and a quaternary carbon atom. These cycloalkane compounds can be tailored for the production of either jet fuel, or automotive lubricant base oils, resulting in products with superior cold-flow properties, density and viscosity that could achieve net life-cycle greenhouse gas savings of up to 80%, depending upon the optimization conditions.

More... | Comments (0)

Green Car Congress © 2016 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group