Novozymes has unveiled its new yeast platform for starch-based ethanol, while also introducing the first product, Innova Drive. A completely new yeast strain, the product can reduce fermentation time by up to two hours compared to current yeasts. The new yeast is also tougher, continuing to ferment in adverse conditions... Read more →

Lawrence Livermore partners with GALT on $1.5M project to improve biofuel algae

Lawrence Livermore National Laboratory has been awarded a 3-year, $1.5-million grant by the US Department of Energy to improve the growth and efficiency of biofuel-producing algae through the alteration of their microbiomes. LLNL will partner with San Francisco-based General Automation Lab Technologies (GALT) in the use of a novel high-throughput... Read more →

Global Bioenergies starts scale-up of its second process: renewable acetone and isopropanol

Global Bioenergies has started the scale-up phase of a process converting renewable resources into acetone and isopropanol. The markets for both these 3-carbon compounds are well established and worth billions of dollars. In a further process, these two compounds can be converted to propylene, a key petrochemical building block with... Read more →

NREL-led research could lead to improved enzyme performance to break down biomass for renewable fuels

A team led by researchers from the US Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) have gained new insights into how glycosylation—the natural attachment of sugars to proteins—affects a key cellulase enzyme. This work could be used to improve enzyme performance to better break down biomass and convert... Read more →

Sekisui, a multibillion dollar Japanese diversified chemicals company and LanzaTech report making significant progress on a waste-to-chemicals platform converting municipal solid waste (MSW) to ethanol or other new products. Today, many MSW streams are incinerated or super-heated to produce a synthesis gas made up of carbon monoxide and hydrogen, which... Read more →

Lygos partners with Agile BioFoundry and DOE to accelerate bioproduct R&D and commercialization; two-year, $5M pilot collaboration

Lygos announced that the US Department of Energy is providing multi-year funding for Lygos’ collaboration with the Agile BioFoundry (ABF) to automate research technology. Lygos’ pilot collaboration is part of a multi-company two-year, $5-million effort coordinated by the ABF. Lygos produces high-value specialty chemical traditionally produced in oil-based petrochemical processes... Read more →

J. Craig Venter Institute-led team awarded $10.7M by DOE to boost lipid production in diatoms for next-gen biofuels and bioproducts

Scientists led by the J. Craig Venter Institute (JCVI), a not-for-profit genomic research organization, were recently awarded a 5-year, $10.7-million grant by the United States Department of Energy, Office of Science, Biological and Environmental Research (BER), BER Genomic Science Program to optimize metabolic networks in model photosynthetic microalgae, called diatoms.... Read more →

Researchers from Boyce Thompson Institute and Texas A&M University have developed algal droplet bioreactors on a chip that can accelerate the search for optimized algal strains for the production of biofuels. The new high-throughput droplet microfluidics-based screening platform can analyze growth and lipid content in populations derived from single cells... Read more →

DOE selects 4 more algae technology projects for up to $8.8M in funding; > $16M total

The US Department of Energy (DOE) has selected four additional projects from the Productivity Enhanced Algae and ToolKits funding opportunity (earlier post) to receive up to $8.8 million. These projects are intended to deliver high-impact tools and techniques for increasing the productivity of algae organisms in order to reduce the... Read more →

Michigan State University researchers are experimenting with harvesting seed oil to make biofuels. In a recent study published in the journal The Plant Cell, the researchers show that the chloroplast, where plant photosynthesis occurs, also participates in new ways to provide seed oil precursors. Seed oil is made out of... Read more →

LanzaTech collaborating with Swayana to convert waste gases from ferroalloy production to ethanol

South African engineering company Swayana has signed a Memorandum of Understanding (MoU) with LanzaTech to collaborate on developing projects for the production of ethanol and higher value products from waste gases in the ferroalloy and titania smelting sectors. LanzaTech’s first commercial facility will be online at the end of 2017... Read more →

ExxonMobil and Synthetic Genomics double lipid production in algae species without inhibiting growth

ExxonMobil and Synthetic Genomics Inc. reported a breakthrough in their joint research (earlier post) into advanced biofuels involving the modification of an algae strain that more than doubled its oil content without significantly inhibiting the strain’s growth. Using advanced cell engineering technologies at Synthetic Genomics, the ExxonMobil-Synthetic Genomics research team... Read more →

Researchers at Pacific Northwest National Laboratory, with colleagues from Los Alamos, Sandia and NREL, are working to lower the cost of producing biofuels from algae. The project, called the Development of Integrated Screening, Cultivar Optimization, and Validation Research (DISCOVR), is funded by the Bioenergy Technologies Office (BETO) and has created... Read more →

U of Illinois researchers develop new capabilities for genome-wide engineering of yeast

In a new open-access paper in Nature Communications, University of Illinois at Urbana-Champaign researchers describe how their successful integration of several cutting-edge technologies—creation of standardized genetic components, implementation of customizable genome editing tools, and large-scale automation of molecular biology laboratory tasks—will enhance the ability to work with yeast. The results... Read more →

Researchers uncover mechanism behind oil synthesis in algae

Researchers led by a team from Kobe University in Japan have revealed the mechanism behind oil synthesis within microalgae cells. Many species of algae are capable of producing large amounts of oil (lipids), but this is the first time that researchers have captured the metabolic changes occurring on a molecular... Read more →

US-based biotech startup Amfora and CSIRO (Commonwealth Scientific and Industrial Research Organisation, the federal government agency for scientific research in Australia) signed an agreement to advance development and commercialization of technology to produce oil in the leaves and stems of plants as well as the seeds. Innovation Leader with CSIRO... Read more →

Scientists engineer sugarcane to produce lipids for biodiesel, more sugar for ethanol; ARPA-E project PETROSS

A multi-institutional team led by the University of Illinois has genetically engineered sugarcane to produce lipids in its leaves and stems for biodiesel production (lipid-cane). Surprisingly, the modified sugarcane plants also produced more sugar, which could be used for ethanol production. The dual-purpose bioenergy crops are predicted to be more... Read more →

Researchers at Chalmers University and their colleagues have engineered synthetic fatty acid synthases (FASs) that enable yeast to produce short/medium-chain fatty acids and methyl ketones for use in fuels and chemicals. A paper on their work is published in the journal Nature Chemical Biology. FASs normally synthesize long chain fatty... Read more →

Sumitomo using Amyris/Kuraray liquid farnesene rubber in Dunlop tires

Amyris, Inc. announced that Sumitomo Rubber Industries, Ltd. has adopted Amyris’ liquid farnesene rubber (LFR) as a performance-enhancing additive for use in the production of its latest Dunlop-branded Winter Maxx 02 tires. LFR is a liquid rubber developed by Kuraray Co. using Amyris’s biologically derived Biofene-branded β-farnesene. (Earlier post.) The... Read more →

Researchers find shade from stand density can cost farmers about 10% of potential crop yield

A team from the University of Illinois has found that compared to top leaves, the shaded lower level leaves of C4 crops planted in dense stands such as corn and Miscanthus underperform, costing farmers about 10% of potential yield. These findings, published in an open-access paper in the Journal of... Read more →

DuPont Industrial Biosciences awarded grant for high-efficiency biogas enzyme production

DuPont Industrial Biosciences has been awarded a grant from the European Commission to demonstrate high-efficiency enzyme production to increase biogas yields as part of the DEMETER project, funded from the Bio Based Industries Joint Undertaking under the European Union’s Horizon 2020 Research and Innovation program. Enzyme technology has been proven... Read more →

MIT team engineers yeast to boost lipid production for biofuels

MIT engineers have genetically engineered strains of the oleaginous yeast Yarrowia lipolytica to boost the production of lipids by about 25% compared to previously engineered yeast strains. Their approach could enable commercialization of microbial carbohydrate-based lipid production, supporting the renewable production of high-energy fuels such as diesel. A paper on... Read more →

UC Irvine team discovers nitrogenase Fe protein can reduce CO2 to CO; implications for biofuel production

A team at the University of California, Irvine has discovered that the iron protein (the reductase component) of the natural enzyme nitrogenase can, independent of its natural catalytic partner, convert CO2 to carbon monoxide (CO)—a syngas used to produce useful biofuels and other chemical products. The team, led by Professor... Read more →

UW-Madison and GLBRC team engineers S. cerevisiae to ferment xylose, nearly doubling efficiency of converting biomass sugars to biofuel

Scientists at the University of Wisconsin­-Madison and the Great Lakes Bioenergy Research Center (GLBRC) have used directed evolution to nearly double the efficiency with which the commonly used industrial yeast Saccharomyces cerevisiae converts plant sugars to biofuel. The resulting improved yeast could boost the economics of making ethanol, specialty biofuels... Read more →

A team from White Dog Labs, a startup commercializing a mixotrophy-based fermentation process, and the University of Delaware have shown that anaerobic, non-photosynthetic mixotrophy—the concurrent utilization of organic (for example, sugars) and inorganic (CO2) substrates in a single organism—can overcome the loss of carbon to CO2 during fermentation to increase... Read more →

Toyota develops new DNA analysis technology to accelerate plant improvement; boosting biofuel crop yield

Toyota Motor Corporation (TMC) has developed a DNA analysis technology it calls Genotyping by Random Amplicon Sequencing (GRAS). This technology is capable of significantly improving the efficiency of identifying and selecting useful genetic information for agricultural plant improvement. This newly developed technology could thus lead to substantial time and cost... Read more →

Using an engineered strain of the phototropic bacterium Rhodopseudomonas palustris as a biocatalyst, a team from the University of Washington, Utah State University and Virginia Polytechnic Institute and State University have reduced carbon dioxide to methane in one enzymatic step. The work demonstrates the feasibility of using microbes to generate... Read more →

U Florida team using fungi to extract cobalt and lithium from waste batteries

A team of researchers University of South Florida is using naturally occurring fungi to drive an environmentally friendly recycling process to extract cobalt and lithium from tons of waste batteries. The researchers presented their work at the 252nd National Meeting & Exposition of the American Chemical Society (ACS) in Philadelphia.... Read more →

New genome sequences target next generation of yeasts with improved biotech uses

Metabolically, genetically and biochemically, yeasts (unicellular fungi) are highly diverse; more than 1,500 yeast species have been identified. Characteristics such as thick cell walls and tolerance of pressure changes that could rupture other cells mean yeasts are easily scaled up for industrial processes. In addition, they are easy to grow... Read more →

Researchers at MIT and startup Novogy have engineered bacteria and yeast (Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica) used as producer microbes in biofuel production to use rare compounds as sources of nutrients. The technique, described in a paper in the journal Science, provides the producer microbes with competitive advantage... Read more →

New hybrid sweetgum trees could boost paper, bioenergy production

Researchers at the University of Georgia (UGA) have crossed American sweetgums with their Chinese cousins, creating hybrid sweetgum trees that have a better growth rate and denser wood than natives, and can produce fiber year-round. The hybrid sweetgum trees have enormous potential for the production of bioenergy and paper, said... Read more →

Bochum team engineers artificial hydrogenase for hydrogen production; targeting foundation for industrial manufacturing

Researchers at Ruhr-Universität Bochum (RUB) have engineered a hydrogen-producing enzyme in the test tube that works as efficiently as the original. The protein—a hydrogenase from green algae ( [FeFe]-hydrogenase HYDA1 from Chlamydomonas reinhardtii)—is made up of a protein scaffold and a cofactor. The researchers have been investigating mechanisms of hydrogen... Read more →

Researchers at the US Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI), in collaboration with researchers at the University of California, San Diego, have developed a workflow that integrates various “omics” data and genome-scale models to study the effects of biofuel production in a microbial host. The development of omics... Read more →

Researchers at Nanjing Tech University in China have developed a new pathway for the production of liquid hydrocarbon fuels from lignocellulose. The new Nanjing Tech process uses acetoin—a novel C4 platform molecule derived from new ABE (acetoin–butanol–ethanol)-type fermentation via metabolic engineering—as a bio-based building block for the production of the... Read more →

A techno-economic analysis by a team from the University of Illinois at Urbana Champaign and Virginia Polytechnic Institute and State University has determined that biodiesel produced from oil from genetically modified lipid-producing sugarcane (lipid-cane) is much more economical than biodiesel produced from soybean oil. In their open-access paper, published in... Read more →

Scientists from the US Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Joint BioEnergy Institute have devised a new strategy for reducing lignin in plants by modifying a key metabolic entrypoint for the synthesis of the most important lignin monomers. The new technique, reported in an open-access paper... Read more →

Newly identified enzymes from herbivore gut fungi may lead to cheaper cellulosic biofuels

A team of researchers led by Dr. Michelle O’Malley at UC Santa Barbara has identified several promising new enzyme candidates for breaking down lignocellulsoic biomass for biofuel production from relatively unexplored gut fungi in herbivores. To do so, they developed a systems-level approach that integrates transcriptomic sequencing (RNA-Seq); proteomics; phenotype;... Read more →

Wisconsin, GLBRC researchers use chemical genomics to engineer IL-resistant yeast to improve biofuel production

Researchers at the University of Wisconsin-Madison and the Great Lakes Bioenergy Research Center (GLBRC) and colleagues have engineered a new strain of the yeast S. cerevisiae that is more resistant to the toxic effects of ionic liquids (ILs) used to generate sugars from lignocellulose. As a result, their xylose-converting strain... Read more →

Researchers at the Energy Department’s National Renewable Energy Laboratory (NREL) and the BioEnergy Science Center (BESC) have discovered a new cell-free cellulosomal system in Clostridium thermocellum—the most efficient single biomass degrader characterized to date —that is not tethered to the bacterial cell wall and is independent of the primary (tethered)... Read more →

UCR team advances direct production of chemical and fuel precursors in yeast

A team led by a researcher at the University of California, Riverside has adapted the CRISPR-Cas9 gene editing system for use in a yeast strain that can produce useful lipids and polymers. The development will lead to new precursors for biofuels, specialty polymers, adhesives and fragrances. Published recently in an... Read more →

BESC study finds unconventional bacteria could boost efficiency of cellulosic biofuel production

A new comparative study by researchers at the Department of Energy’s BioEnergy Science Center (BESC), based at Oak Ridge National Laboratory, finds the natural abilities of unconventional bacteria could help boost the efficiency of cellulosic biofuel production. A team of researchers from five institutions analyzed the ability of six microorganisms... Read more →

Researchers at Berkeley Lab have induced the self-photosensitization of a nonphotosynthetic bacterium—Moorella thermoacetica—with cadmium sulfide nanoparticles (M. thermoacetica–CdS), enabling the photosynthesis of acetic acid from carbon dioxide. Their hybrid approach combines the highly efficient light harvesting of inorganic semiconductors with the high specificity, low cost, and self-replication and -repair of... Read more →

IU scientists create self-assembling biocatalyst for the production of hydrogen; modified hydrogenase in a virus shell

Scientists at Indiana University have created a highly efficient self-assembling biomaterial that catalyzes the formation of hydrogen. A modified hydrogenase enzyme that gains strength from being protected within the protein shell (capsid) of a bacterial virus, this new material is 150 times more efficient than the unaltered form of the... Read more →

NREL team identifies major metabolic pathway in cyanobacteria for efficient conversion of CO2; better biofuels and bioproducts

Scientists from the National Renewable Energy Laboratory (NREL) have discovered that a metabolic pathway previously only suggested to be functional in photosynthetic organisms is actually a major pathway and can enable efficient conversion of carbon dioxide to organic compounds. The discovery provides new insight into the complex metabolic network for... Read more →

New method for creating interspecies yeast hybrids could boost biofuels production

Researchers at the University of Wisconsin-Madison have developed a simple, robust, and efficient method for generating interspecies yeast hybrids. As reported in the journal Fungal Genetics and Biology, this method provides an efficient means for producing novel synthetic hybrids for beverage and biofuel production, as well as for constructing tetraploids... Read more →

Aemetis harvests demo crop of optimized biomass sorghum in California for advanced biofuels; ~90 days from planting to harvest

Aemetis, Inc., an advanced renewable fuels and biochemicals company, has harvested 12- to 15-foot tall biomass sorghum grown in Central California that was produced using proprietary seed genetics from Nexsteppe, a provider of optimized sorghum feedstock solutions. Biomass Sorghum is a feedstock for low-carbon advanced biofuels. The 20-acre demonstration crop... Read more →

University of Nebraska-Lincoln leading $13.5M effort to improve sorghum for biofuel

The University of Nebraska-Lincoln will lead a $13.5-million, multi-institutional research effort to improve sorghum as a sustainable source for biofuel production. Funded by the US Department of Energy, this five-year grant takes a comprehensive approach to better understand how plants and microbes interact, and to learn which sorghum germplasm grows... Read more →

Gevo begins selling renewable isooctene to BCD Chemie; fuel applications

Gevo has begun selling renewable isooctene to BCD Chemie, a subsidiary of Brenntag. Initial orders in 2015 are expected to result in revenues to Gevo of more than $1 million. The isooctene will be produced at Gevo’s biorefinery in Silsbee, Texas, derived from isobutanol produced at Gevo’s plant in Luverne,... Read more →

Amyris in multi-year technology investment agreement with DARPA worth up to $35M

Amyris, Inc. announced a multi-year Technology Investment Agreement (TIA) worth up to $35 million with the Defense Advanced Research Projects Agency’s (DARPA) Biological Technologies Office to create new research and development tools and technologies that will significantly reduce the time and cost of bringing new molecules to market. Amyris has... Read more →

MSU researchers fabricate synthetic protein that streamlines carbon fixing machinery of cyanobacteria; potential boost for biofuels

Researchers at the MSU-DOE Plant Research Laboratory, Michigan State University, have fabricated a synthetic protein that not only improves the assembly of the carbon-fixing factory of cyanobacteria (also known as blue-green algae), but also provides a proof of concept for a device that could potentially improve plant photosynthesis or be... Read more →