Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Carbon Capture and Conversion (CCC)

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

GWU team demonstrates one-pot process for optimized synthesis of controlled CNTs from CO2; coupling cement and C2CNT

March 27, 2017

Researchers at George Washington University led by Dr. Stuart Licht (earlier post) have developed a new process that transforms CO2 into a controlled selection of nanotubes (CNTs) via molten electrolysis; they call the process C2CNT (CO2 into carbon nanotubes). This synthesis consumes only CO2 and electricity, and is constrained only by the cost of electricity.

Controlling the electrolysis parameters opens up a wide portfolio of CNT morphologies, including hollow or solid, thick- or thin-walled and doped CNTs. Molten carbonate electrosynthesized boron-doped CNTs exhibit high electrical conductivity. The process is described in a paper published in the Journal of CO2 Utilization. In a second paper in that journal, the team reports on the uses of C2CNT to retrofit cement plants. Per ton CO2 avoided, the C2CNT cement plant consumes $50 electricity, emits no CO2, and produces $100 cement and ∼$60,000 of CNTs.

More... | Comments (2)

IU team creates efficient nanographene-Re electro- and photo-catalyst for efficient reduction of CO2 to CO

March 09, 2017

Researchers at Indiana University Bloomington have synthesized a nanographene–Re (Rhenium) complex that functions as an efficient electrocatalyst and photocatalyst for the selective reduction of CO2 to CO for subsequent conversion to fuels.

The complex can selectively electrocatalyze CO2 reduction to CO in tetrahydrofuran at −0.48 V vs NHE—the least negative potential reported for a molecular catalyst. In addition, the complex can absorb a significant spectrum of visible light to photo-catalyze the chemical transformation without the need for a photo-sensitizer. A report on their work is published in the Journal of the American Chemical Society.

More... | Comments (1)

CalTech, Berkeley Lab team uses new high-throughput method to identify promising photoanodes for solar fuels

March 07, 2017

Using high-throughput ab initio theory in conjunction with experiments in an integrated workflow, researchers at Caltech and Lawrence Berkeley National Laboratory (Berkeley Lab) have identified eight low-band-gap ternary vanadate oxide photoanodes which have potential for generating chemical fuels from sunlight, water and CO2. A report on their methodology and the new materials is published in the Proceedings of the National Academy of Sciences (PNAS).

Researchers globally are exploring a range of target solar fuels fuels, from hydrogen gas to liquid hydrocarbons; producing any of these fuels involves splitting water. Each water molecule consists of an oxygen atom and two hydrogen atoms. The hydrogen atoms are extracted, and then can be reunited to create highly flammable hydrogen gas or combined with CO2 to create hydrocarbon fuels, creating a plentiful and renewable energy source.

More... | Comments (3)

Texas A&M team developing photocatalyst to turn CO2 into renewable hydrocarbon fuels

March 06, 2017

Researchers with the Department of Mechanical Engineering at Texas A&M University, led by Dr. Ying Li, associate professor of mechanical engineering, are developing a photocatalyst to convert CO2 into renewable hydrocarbon fuels. The photocatalyst material acts as a semiconductor, absorbing the sunlight which excites the electrons in the semiconductor and gives them the electric potential to reduce water and CO2 into carbon monoxide and hydrogen, which together can be converted to liquid hydrocarbon fuels, said Li.

The first step of the process involves capturing CO2 from emissions sources. The material, which is a hybrid of titanium oxide and magnesium oxide, uses the magnesium oxide to absorb the CO2 and the titanium oxide to act as the photocatalyst.

More... | Comments (0)

Light over heat: UV-driven rhodium nanoparticles catalyze conversion of CO2 to methane

February 27, 2017

Duke University researchers have engineered rhodium nanoparticles that can harness the energy in ultraviolet light and use it to catalyze the conversion of carbon dioxide to methane, a key building block for many types of fuels. An open-access paper on the work is published in Nature Communications.

Industrial-scale catalysis for fuels and materials generally relies upon heated catalysts for heterogeneous catalytic reactions with large activation energies. Such catalytic processes demand high energy inputs, shorten catalyst lifetimes through sintering deterioration and require product selectivity to mitigate unfavorable side reactions. Researchers have recently discovered that plasmonic metal nanoparticles are photocatalytically active, and that product selectivity may be achieved by tuning photon and LSPR (localized surface plasmon resonances) energies.

More... | Comments (3)

TU Bergakademie Freiberg launches OTTO-R project with VW Group, Shell, OMV as partners; P2X for green gasoline

January 24, 2017

Researchers at the Technische Universität Bergakademie Freiberg, with partners from the automotive industry (Audi, VW) and the petroleum industry (Shell, OMV) have launched the €1.46-million OTTO-R project for the production of gasoline from “green” methanol produced from CO2, water and renewable electricity.

The new OTTO-R synthesis process is based on the Syngas-To-Fuel-Process (STF) developed by Chemieanlagenbau Chemnitz GmbH (CAC) at the Institute for Energy Process Engineering and Chemical Engineering (IEC). STF first converts natural gas-based synthesis gas to methanol in an isothermal reactor; the methanol is then transformed into high-octane gasoline via the intermediate methanol. Residual methanol and light hydrocarbons are separated downstream and recycled into the process.

More... | Comments (5)

DOE awards LanzaTech $4M for low-carbon jet & diesel demo plant; 3M gpy; Audi evaluating fuel properties

December 30, 2016

LanzaTech has been selected by the Department of Energy’s Bioenergy Technologies Office (BETO) to receive a $4-million award to design and plan a demonstration-scale facility using industrial off gases to produce 3 million gallons/year of low-carbon jet and diesel fuels. The LanzaTech award was one of six totaling $12.9 million. (Earlier post.)

The LanzaTech facility will recycle industrial waste gases from steel manufacturing to produce a low cost ethanol intermediate: “Lanzanol.” Both Lanzanol and cellulosic ethanol will then be converted to jet fuel via the Alcohol-to-Jet" (ATJ) process developed by LanzaTech and the Pacific Northwest National Laboratory (PNNL). (Earlier post.)

More... | Comments (0)

UC Irvine team discovers nitrogenase Fe protein can reduce CO2 to CO; implications for biofuel production

December 28, 2016

A team at the University of California, Irvine has discovered that the iron protein (the reductase component) of the natural enzyme nitrogenase can, independent of its natural catalytic partner, convert CO2 to carbon monoxide (CO)—a syngas used to produce useful biofuels and other chemical products.

The team, led by Professor Yilin Hu (Molecular Biology and Biochemistry), also found that they could express the reductase component alone in the soil bacterium Azotobacter vinelandii to convert CO2 in a manner more applicable to large-scale production of CO. This whole-cell system could be explored further for new ways of recycling atmospheric CO2 into biofuels and other commercial chemical products. A paper on their work is published in the journal Nature Chemical Biology.

More... | Comments (12)

On the road to solar fuels and chemicals

December 27, 2016

In a new paper in the journal Nature Materials (in an edition focused on materials for sustainable energy), a team from Stanford University and SLAC National Accelerator Laboratory has reviewed milestones in the progress of solid-state photoelectrocatalytic technologies toward delivering solar fuels and chemistry.

Noting the “important advances” in solar fuels research, the review team also noted that the largest scientific and technical milestones are still ahead. Following their review, they listed some of the scientific challenges they see as the most important for the coming years.

More... | Comments (13)

Global Bioenergies plans to acquire Dutch start-up Syngip; gaseous carbon feedstocks for renewable isobutene process

December 21, 2016

Global Bioenergies, the developer of a process to convert renewable resources into light olefin hydrocarbons via fermentation (with an initial focus on isobutene) (earlier post), signed a contribution agreement with the shareholders of Syngip B.V. to transfer all Syngip shares to Global Bioenergies S.A. Syngip is a third-generation industrial biotech start-up created in 2014 in the Netherlands that has developed a process to convert gaseous carbon sources such as CO2, CO, and industrial emissions such as syngas, into various valuable chemical compounds.

Syngip has identified a specific micro-organism capable of growing using these gaseous carbon sources as its sole feedstock, and has developed genetic tools to allow the implementation of artificial metabolic pathways into it. Its recent work has been directed to the implementation of metabolic pathways leading to light olefins: major petrochemical molecules, which include isobutene.

More... | Comments (0)

S. Korean researchers develop new catalytic pathway for direct conversion of CO2 to liquid hydrocarbon fuels

November 21, 2016

A team led by Professor Jae Sung Lee at Ulsan National Institute of Science and Technology (UNIST), with colleagues at Pohang University of Science and Technology (POSTECH), have developed a new pathway for the direct conversion of CO2 to liquid transportation fuels by reaction with renewable hydrogen produced by solar water splitting.

The new carbon capture and utilization (CCU) system is enabled by their discovery of a new catalyst that produces liquid hydrocarbon (C5+) selectivity of ∼65% and greatly suppresses CH4 formation to 2–3%. This selectivity is unprecedented for direct catalytic CO2 hydrogenation and is very similar to that of conventional CO-based Fischer-Tropsch (FT) synthesis, the team reports in a paper published in Applied Catalysis B: Environmental.

More... | Comments (1)

27 teams advancing in $20M NRG COSIA Carbon XPRIZE; converting CO2 to products

October 18, 2016

XPRIZE announced the 27 teams representing six countries advancing in the $20-million NRG COSIA Carbon XPRIZE, a global competition to develop technologies that convert the most carbon dioxide emissions from natural gas and power plant facilities into products with the highest net value. The semi-finalist teams propose converting CO2 into products as varied as enhanced concrete, fuels, toothpaste, nanotubes, fish food and fertilizer.

Launched in September 2015, the 4.5-year competition includes the demonstrations by finalist technologies at either a coal or a natural gas power plant. Six of the teams are competing in both the coal and natural gas competition tracks. About half of the 27 teams are producing fuels of one sort or another, with several more producing liquid chemicals that could serve as intermediates to fuel production. Those teams producing fuels or potential intermediates include:

More... | Comments (0)

DOE awarding up to $80M for supercritical CO2 pilot plant

The US Department of Energy (DOE) is awarding up to $80 million for a six-year project to design, build, and operate a 10-MWe (megawatts electrical) supercritical carbon dioxide (sCO2) pilot plant test facility in San Antonio, TX. The project will be managed by a team led by the Gas Technology Institute (GTI), Southwest Research Institute (SwRI), and General Electric Global Research (GE-GR).

The new facility will support the future commercialization of sCO2 Brayton cycle energy conversion systems by testing and demonstrating the potential energy efficiency and cost benefits of this technology. Today the average efficiency of the US fleet of steam Rankine cycle power plants is in the lower 30% range. This new facility has the potential to demonstrate greater than 50% cycle efficiency. If successfully developed, the supercritical CO2 power cycles could provide significant efficiency gains in geothermal, coal, nuclear, and solar thermal power production.

More... | Comments (2)

ORNL team devises electrocatalyst for direct conversion of CO2 into ethanol with high selectivity; pushing the combustion reaction in reverse

October 13, 2016

Researchers at the Department of Energy’s Oak Ridge National Laboratory (ORNL) have developed an electrocatalyst which operates at room temperature and in water for the electroreduction of dissolved CO2 with high selectivity for ethanol. Their finding was serendipitous. An open-access paper on their work appears in the journal ChemistrySelect.

The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which contains multiple reaction sites, the solution of carbon dioxide dissolved in water turned into ethanol with a yield of 63%. Typically, this type of electrochemical reaction results in a mix of several different products in small amounts.

More... | Comments (6)

DOE to award up to $6.7M to projects to convert captured CO2 to useful products, including fuels

August 26, 2016

The US Department of Energy (DOE) will award approximately $6.7 million in federal funding for cost-shared projects that will develop technologies that utilize CO2 from coal-fired power plants to produce useful products. DOE’s Office of Fossil Energy is seeking these projects as part of the Department’s Carbon Storage program, which has the goal of developing and advancing technologies to improve the effectiveness of carbon storage, reduce the cost of implementation, and be ready for widespread commercial deployment in the 2025–2035 timeframe.

After carbon dioxide is captured from large point sources, such as coal-fired power plants, it can be injected into underground geological formations from which it cannot escape (geologic sequestration). Another option is to use the CO2 as a reagent to create useful products, such as cement, plastics, or liquid fuels. The new DOE funding opportunity announcement (DE-FOA-0001622) focuses on the second of these pathways which is focused on securing applications for projects that will develop CO2-utilization technologies that produce useful products at lower cost than currently available technologies, without generating additional greenhouse gas emissions.

More... | Comments (3)

UI, Argonne develop catalyst for more efficient solar-powered reduction of CO2 to CO for conversion to fuel

August 01, 2016

In a new study from the US Department of Energy’s Argonne National Laboratory and the University of Illinois at Chicago, researchers report devising a new transition metal dichalcogenide (TMDC) nanoarchitecture for catalytic electrochemical reduction of CO2 to carbon monoxide (CO) in an ionic liquid.

In their paper published in the journal Science, the researchers found that tungsten diselenide nanoflakes show a current density of 18.95 milliamperes per square centimeter, CO faradaic efficiency of 24%, and CO formation turnover frequency of 0.28 per second at a low overpotential of 54 millivolts. They also applied this catalyst in a light-harvesting artificial leaf platform that concurrently oxidized water in the absence of any external potential.

More... | Comments (2)

U of I study: synthetic fuels via CO2 conversion and FT not currently economically & environmentally competitive

July 03, 2016

A study by a team at University of Illinois at Urbana−Champaign has found that, with currently achievable performance levels, synthetic fuels produced via the electrochemical reduction of CO2 and the Fischer-Tropsch (FT) process system are not economically and environmentally competitive with using petroleum-based fuel. A paper detailing the study is published in the ACS journal Energy & Fuels.

In their paper, the team investigated an integrated system that converts CO2 released from fossil fuel-burning power plants to synthetic diesel fuel via a combination of the electrochemical reduction of CO2 to CO and the FT process, which uses CO and H2 from electrolysis) as feedstocks.

More... | Comments (15)

Ford first automaker to use captured CO2 to develop foam and plastic for vehicles

May 16, 2016

Ford Motor Company is the first automaker to formulate and test new foam and plastic components using carbon dioxide as feedstock. Researchers expect to see the new biomaterials in Ford production vehicles within five years.

Formulated with up to 50% CO2-based polyols, the foam is showing promise as it meets rigorous automotive test standards. It could be employed in seating and underhood applications, potentially reducing petroleum use by more than 600 million pounds annually. CO2-derived foam will further reduce the use of fossil fuels in Ford vehicles and increase the presence of sustainable foam in the automaker’s global lineup.

More... | Comments (0)

New $30M ARPA-E program to produce renewable liquid fuels from renewable energy, air and water

April 26, 2016

The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) announced up to $30 million in funding for a new program for technologies that use renewable energy to convert air and water into cost-competitive liquid fuels. (DE-FOA-0001562)

ARPA-E’s Renewable Energy to Fuels through Utilization of Energy-dense Liquids (REFUEL) program seeks to develop technologies that use renewable energy to convert air and water into Carbon Neutral Liquid Fuels (CNLF). The program is focused in two areas: (1) the synthesis of CNLFs using intermittent renewable energy sources and water and air (N2 and CO2) as the only chemical input streams; and (2) the conversion of CNLFs delivered to the end point to another form of energy (e.g. hydrogen or electricity).

More... | Comments (2)

Green Car Congress © 2017 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group