Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Carbon Capture and Conversion (CCC)

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Berkeley Lab copper catalyst yields high-efficiency CO2-to-fuels conversion

September 19, 2017

Scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new electrocatalyst that can directly convert carbon dioxide into multicarbon fuels and alcohols using record-low inputs of energy. The work is the latest in a round of studies coming out of Berkeley Lab tackling the challenge of creating a clean chemical manufacturing system that can put carbon dioxide to good use.

In the new study, being published this week in the Proceedings of the National Academy of Sciences, a team led by Berkeley Lab scientist Peidong Yang discovered that an electrocatalyst made up of copper nanoparticles provided the conditions necessary to break down carbon dioxide to form ethylene, ethanol, and propanol.

More... | Comments (0)

BASF and bse Engineering sign development agreement to transform CO2 and renewable electricity into methanol; power-to-methanol

August 24, 2017

BASF and bse Engineering have signed an exclusive joint development agreement for BASF to provide custom-made catalysts for a new chemical energy storage process. This process will enable the economically viable transformation of excess power and off-gas carbon dioxide into methanol in small-scale, decentralized production units.

In addition to being used as a fuel or chemical feedstock, methanol, the simplest alcohol, can serve as long-term chemical energy storage. It offers energy densities of 4.4 kWh/l—almost six times that of hydrogen—and 5.5 kWh/kg—about 20 times the specific energy of advanced Li-ion batteries with silicon anodes. Put another way, 1 cubic meter (264 gallons) of methanol offers equivalent energy storage to 222 BMW i3 EVs, each with a 21.6 kWh battery.

More... | Comments (7)

Audi A4 and A5 now available to order as g-tron in Europe; Audi e-gas for 3 years as standard

August 18, 2017

Audi’s two latest natural-gas alternatives in the midsize category—the new A4 Avant g-tron (earlier post) and the new A5 Sportback g-tron—are now available for order in Europe. Both models are powered by a bivalent 2.0 TFSI engine developing 170 hp. Like the A3 Sportback g-tron that is already on the market (earlier post), they can run on a choice of the climate-friendly fuel Audi e-gas, conventional CNG (compressed natural gas) or gasoline.

A 2.0 TFSI engine powers both the A4 Avant g-tron and the A5 Sportback g-tron. It develops 125 kW (170 hp) and achieves torque of 270 N·m (199.1 lb-ft). The newly developed engine is based on the new gasoline-powered 2.0 TFSI with innovative combustion principle based on the Miller cycle (earlier post).

More... | Comments (2)

SOLETAIR project produces first 200 liters of synthetic fuel from solar power and atmospheric CO2

August 08, 2017

The SOLETAIR project (earlier post) has produced its first 200 liters of synthetic fuel from solar energy and the air’s carbon dioxide via Fischer-Tropsch synthesis. Project partners include INERATEC, a spinoff of Karlsruhe Institute of Technology (KIT), VTT Technical Research Center of Finland and Lappeenranta University of Technology (LUT).

The mobile chemical pilot plant produces gasoline, diesel, and kerosene from regenerative hydrogen and carbon dioxide. The compact plant is designed for decentralized production, fits into a shipping container, and can be extended modularly.

More... | Comments (10)

LanzaTech collaborating with Swayana to convert waste gases from ferroalloy production to ethanol

July 31, 2017

South African engineering company Swayana has signed a Memorandum of Understanding (MoU) with LanzaTech to collaborate on developing projects for the production of ethanol and higher value products from waste gases in the ferroalloy and titania smelting sectors.

LanzaTech’s first commercial facility will be online at the end of 2017 in China, producing fuel-grade ethanol from captured steelmaking off-gas. The successful application of LanzaTech’s innovative platform in steel making has led to commercial engagement with companies in the ferroalloy sector.

More... | Comments (1)

Photo-activated catalyst converts CO2 to CO for clean fuel technology; no unwanted byproducts

An international research team led by scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Nanyang Technological University (NTU) in Singapore have developed a light-activated material that can chemically convert carbon dioxide into carbon monoxide without generating unwanted byproducts.

When exposed to visible light, the material, a “spongy” nickel organic crystalline structure, converted the CO2 in a reaction chamber exclusively into carbon monoxide (CO) gas, which can be further turned into liquid fuels, solvents, and other useful products. An open-access paper on the work is published in the journal Science Advances.

More... | Comments (0)

GWU team demonstrates highly scalable, low-cost process for making carbon nanotube wools directly from CO2

July 19, 2017

Researchers at George Washington University led by Dr. Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO2 using molten carbonate electrolysis (earlier post).

The resulting CNT wool is of length suitable for weaving into carbon composites and textiles and is highly conductive; the calculated cost to produce the CNTs is approximately $660 per ton, compared to the current $100,000+ per ton price range of CNTs. A paper on the work is published in the journal Materials Today Energy.

More... | Comments (9)

Jülich evaluation of power-to-fuels recommends DME, OME3-5 and n-alkanes as diesel substitutes

July 13, 2017

An evaluation of the implementation possibilities of power-to-fuel (PTF) technologies by a team from Forschungszentrum Jülich GmbH in Germany recommends the PTF products DME, OME3-5 and n-alkanes as suitable diesel alternatives for the transportation sector. PTF processes essentially use renewable energy, CO2 and water to produce fuel, as in Audi’s targeted e-fuels projects. (Earlier post.) A paper on the Jülich study is published in the journal Fuel.

The simplest implementation strategy for such electrofuels would be a gradual market penetration by means of blending with conventional diesel, the authors suggested. Potential blending combinations highlighted in the paper include: fossil diesel + n-alkane cut; fossil diesel + OME3–5; Fossil diesel + n-alkane cut + 3-5; and n-alkane cut + OME3–5. The last blend—a suitable n-alkane cut mixed with OME3-5—has the greatest potential for increasing engine efficiency and reducing pollutant emissions. In addition, fossil diesel would no longer be required.

More... | Comments (3)

IndianOil and LanzaTech to construct first refinery Offgas-to-Bioethanol production facility

July 11, 2017

Indian Oil Corporation Limited (IndianOil), India’s flagship national oil company and LanzaTech signed a Statement of Intent to construct the world’s first refinery offgas-to-bioethanol production facility in India.

The basic engineering for the 40-million liter per year (10.6 million gallons US/year) demonstration facility will begin later this year for installation at IndianOil’s Panipat Refinery in Hayrana, India, at an estimated cost of 350 crore rupees (US$55 million). It will be integrated into the existing site infrastructure and will be LanzaTech’s first project capturing refinery off-gases. LanzaTech’s first commercial facility converting waste emissions from steel production to ethanol will come online in China in late 2017.

More... | Comments (2)

Stanford team develops copper catalyst for increased selectivity of production of ethanol via electroreduction of CO2

June 21, 2017

Researchers at Standford University have designed large-format, thin-film copper catalysts for the electroreduction of CO2 to ethanol. The results are published in Proceedings of the National Academy of Sciences.

“One of our long-range goals is to produce renewable ethanol in a way that doesn’t impact the global food supply. Copper is one of the few catalysts that can produce ethanol at room temperature,” he said. “You just feed it electricity, water and carbon dioxide, and it makes ethanol. The problem is that it also makes 15 other compounds simultaneously, including lower-value products like methane and carbon monoxide. Separating those products would be an expensive process and require a lot of energy,” said study principal investigator Thomas Jaramillo, an associate professor of chemical engineering at Stanford and of photon science at the SLAC National Accelerator Laboratory.

More... | Comments (1)

Climeworks launches world’s first commercial plant to capture CO2 from air; potential for CO2-neutral fuels

June 09, 2017

Switzerland-based Climeworks, a spin-off from the Swiss Federal Institute of Technology in Zurich (ETH), recently launched the world’s first commercial plant that captures atmospheric CO2 for supply and sale to a customer. The Swiss direct air capture company—which has also partnered with Audi in that company’s e-fuels initiative (earlier post)—launched the commercial-scale Direct Air Capture (DAC) plant, featuring its patented technology that filters carbon dioxide from ambient air.

The plant is now supplying 900 tonnes of CO2 annually to a nearby greenhouse to help grow vegetables. The plant is a historic step for negative emissions technology—earmarked by the Paris climate agreement as being vital in the quest to limit a global temperature rise of 2 °C. Climeworks aims to capture 1% of global CO2 emissions by 2025.

More... | Comments (15)

Soletair demo plant produces renewable hydrocarbon fuel from CO2 captured from the air

VTT Technical Research Centre of Finland and Lappeenranta University of Technology (LUT) are beginning testing of the Soletair demo plant, which uses air-captured carbon dioxide to produce renewable fuels and chemicals. The pilot plant is coupled to LUT’s solar power plant in Lappeenranta.

The aim of the project is to demonstrate the technical performance of the overall process and produce 200 liters of fuels and other hydrocarbons for research purposes. The demo plant incorporates the entire process chain, and comprises four separate units: a solar power plant; equipment for separating carbon dioxide and water from the air; a section that uses electrolysis to produce hydrogen; and synthesis equipment for producing a crude-oil substitute from carbon dioxide and hydrogen.

More... | Comments (6)

EPFL team develops low-cost catalyst for splitting CO2

June 07, 2017

EPFL scientists have developed an Earth-abundant and low-cost catalytic system for splitting CO2 into CO and oxygen—an important step towards achieving the conversion of renewable energy into hydrocarbon fuels. A solar-driven system set up using this catalyst was able to split CO2 with an efficiency of 13.4%. A paper on the work appears in the journal Nature Energy.

The research was carried out by the lab of Michael Grätzel at EPFL. Grätzel is known worldwide for the invention of dye-sensitized solar cells (“Grätzel cells”). The new catalyst, developed by PhD student Marcel Schreier, postdoc Jingshan Luo, and several co-workers, is made by the atomic layer deposition (ALD) of tin oxide (SnO2) on copper oxide (CuO) nanowires. Tin oxide suppresses the generation of side-products, which are commonly observed from copper oxide catalysts, leading to the sole production of CO in the electroreduction of CO2.

More... | Comments (2)

Brookhaven team identifies active sites on catalysts for converting CO2 to methanol

May 10, 2017

Chemists from the US Department of Energy’s Brookhaven National Laboratory and their collaborators have definitively identified the active sites of a catalyst commonly used for making methanol from CO2. The results, published in the journal Science, resolve a longstanding debate about exactly which catalytic components take part in the chemical reactions—and thus which should be the focus of efforts to boost performance.

The hydrogenation of carbon dioxide is a key step in the production of methanol; catalysts made from copper (Cu) and zinc oxide (ZnO) on alumina supports are often used.

More... | Comments (2)

China team develops efficient multifunctional catalyst for conversion of CO2 to gasoline-range hydrocarbons

May 02, 2017

A research team led by Dr. Jian Sun and Prof. Qingjie Ge at the Dalian Institute of Chemical Physics in China has developed an efficient, stable, and multifunctional Na-Fe3O4/HZSM-5 catalyst for the direct production of gasoline-range hydrocarbons from CO2 hydrogenation. This catalyst exhibited 78% selectivity to C5-C11 as well as low (4%) CH4 at a CO2 conversion of 22% under industrial relevant conditions.

The gasoline fractions are mainly isoparaffins and aromatics, thus favoring the octane number. Moreover, the multifunctional catalyst exhibited a remarkable stability for 1,000 h on stream, showing potential to be a promising industrial catalyst for CO2 conversion to liquid fuels. An open-access paper on their work is published in the journal Nature Communications.

More... | Comments (4)

Elemental boron effective photothermocatalyst for the conversion of CO2 for fuels and chemicals

April 11, 2017

Researchers in Japan and China developed an efficient method for CO2 reduction over elemental boron catalysts in the presence of only water and light irradiation through a photothermocatalytic process. This could form the basis of a new, more efficient process for converting the greenhouse gas CO2 into a useful carbon source for the production of fuels and chemical products.

The “self-heating” boron catalyst makes particularly efficient use of sunlight to reduce CO2, serving as a light harvester, photothermal converter, hydrogen generator, and catalyst in one. A paper on their work is published in the journal Angewandte Chemie.

More... | Comments (5)

GWU team demonstrates one-pot process for optimized synthesis of controlled CNTs from CO2; coupling cement and C2CNT

March 27, 2017

Researchers at George Washington University led by Dr. Stuart Licht (earlier post) have developed a new process that transforms CO2 into a controlled selection of nanotubes (CNTs) via molten electrolysis; they call the process C2CNT (CO2 into carbon nanotubes). This synthesis consumes only CO2 and electricity, and is constrained only by the cost of electricity.

Controlling the electrolysis parameters opens up a wide portfolio of CNT morphologies, including hollow or solid, thick- or thin-walled and doped CNTs. Molten carbonate electrosynthesized boron-doped CNTs exhibit high electrical conductivity. The process is described in a paper published in the Journal of CO2 Utilization. In a second paper in that journal, the team reports on the uses of C2CNT to retrofit cement plants. Per ton CO2 avoided, the C2CNT cement plant consumes $50 electricity, emits no CO2, and produces $100 cement and ∼$60,000 of CNTs.

More... | Comments (4)

IU team creates efficient nanographene-Re electro- and photo-catalyst for efficient reduction of CO2 to CO

March 09, 2017

Researchers at Indiana University Bloomington have synthesized a nanographene–Re (Rhenium) complex that functions as an efficient electrocatalyst and photocatalyst for the selective reduction of CO2 to CO for subsequent conversion to fuels.

The complex can selectively electrocatalyze CO2 reduction to CO in tetrahydrofuran at −0.48 V vs NHE—the least negative potential reported for a molecular catalyst. In addition, the complex can absorb a significant spectrum of visible light to photo-catalyze the chemical transformation without the need for a photo-sensitizer. A report on their work is published in the Journal of the American Chemical Society.

More... | Comments (1)

CalTech, Berkeley Lab team uses new high-throughput method to identify promising photoanodes for solar fuels

March 07, 2017

Using high-throughput ab initio theory in conjunction with experiments in an integrated workflow, researchers at Caltech and Lawrence Berkeley National Laboratory (Berkeley Lab) have identified eight low-band-gap ternary vanadate oxide photoanodes which have potential for generating chemical fuels from sunlight, water and CO2. A report on their methodology and the new materials is published in the Proceedings of the National Academy of Sciences (PNAS).

Researchers globally are exploring a range of target solar fuels fuels, from hydrogen gas to liquid hydrocarbons; producing any of these fuels involves splitting water. Each water molecule consists of an oxygen atom and two hydrogen atoms. The hydrogen atoms are extracted, and then can be reunited to create highly flammable hydrogen gas or combined with CO2 to create hydrocarbon fuels, creating a plentiful and renewable energy source.

More... | Comments (3)

Texas A&M team developing photocatalyst to turn CO2 into renewable hydrocarbon fuels

March 06, 2017

Researchers with the Department of Mechanical Engineering at Texas A&M University, led by Dr. Ying Li, associate professor of mechanical engineering, are developing a photocatalyst to convert CO2 into renewable hydrocarbon fuels. The photocatalyst material acts as a semiconductor, absorbing the sunlight which excites the electrons in the semiconductor and gives them the electric potential to reduce water and CO2 into carbon monoxide and hydrogen, which together can be converted to liquid hydrocarbon fuels, said Li.

The first step of the process involves capturing CO2 from emissions sources. The material, which is a hybrid of titanium oxide and magnesium oxide, uses the magnesium oxide to absorb the CO2 and the titanium oxide to act as the photocatalyst.

More... | Comments (0)

Light over heat: UV-driven rhodium nanoparticles catalyze conversion of CO2 to methane

February 27, 2017

Duke University researchers have engineered rhodium nanoparticles that can harness the energy in ultraviolet light and use it to catalyze the conversion of carbon dioxide to methane, a key building block for many types of fuels. An open-access paper on the work is published in Nature Communications.

Industrial-scale catalysis for fuels and materials generally relies upon heated catalysts for heterogeneous catalytic reactions with large activation energies. Such catalytic processes demand high energy inputs, shorten catalyst lifetimes through sintering deterioration and require product selectivity to mitigate unfavorable side reactions. Researchers have recently discovered that plasmonic metal nanoparticles are photocatalytically active, and that product selectivity may be achieved by tuning photon and LSPR (localized surface plasmon resonances) energies.

More... | Comments (3)

TU Bergakademie Freiberg launches OTTO-R project with VW Group, Shell, OMV as partners; P2X for green gasoline

January 24, 2017

Researchers at the Technische Universität Bergakademie Freiberg, with partners from the automotive industry (Audi, VW) and the petroleum industry (Shell, OMV) have launched the €1.46-million OTTO-R project for the production of gasoline from “green” methanol produced from CO2, water and renewable electricity.

The new OTTO-R synthesis process is based on the Syngas-To-Fuel-Process (STF) developed by Chemieanlagenbau Chemnitz GmbH (CAC) at the Institute for Energy Process Engineering and Chemical Engineering (IEC). STF first converts natural gas-based synthesis gas to methanol in an isothermal reactor; the methanol is then transformed into high-octane gasoline via the intermediate methanol. Residual methanol and light hydrocarbons are separated downstream and recycled into the process.

More... | Comments (5)

DOE awards LanzaTech $4M for low-carbon jet & diesel demo plant; 3M gpy; Audi evaluating fuel properties

December 30, 2016

LanzaTech has been selected by the Department of Energy’s Bioenergy Technologies Office (BETO) to receive a $4-million award to design and plan a demonstration-scale facility using industrial off gases to produce 3 million gallons/year of low-carbon jet and diesel fuels. The LanzaTech award was one of six totaling $12.9 million. (Earlier post.)

The LanzaTech facility will recycle industrial waste gases from steel manufacturing to produce a low cost ethanol intermediate: “Lanzanol.” Both Lanzanol and cellulosic ethanol will then be converted to jet fuel via the Alcohol-to-Jet" (ATJ) process developed by LanzaTech and the Pacific Northwest National Laboratory (PNNL). (Earlier post.)

More... | Comments (0)

UC Irvine team discovers nitrogenase Fe protein can reduce CO2 to CO; implications for biofuel production

December 28, 2016

A team at the University of California, Irvine has discovered that the iron protein (the reductase component) of the natural enzyme nitrogenase can, independent of its natural catalytic partner, convert CO2 to carbon monoxide (CO)—a syngas used to produce useful biofuels and other chemical products.

The team, led by Professor Yilin Hu (Molecular Biology and Biochemistry), also found that they could express the reductase component alone in the soil bacterium Azotobacter vinelandii to convert CO2 in a manner more applicable to large-scale production of CO. This whole-cell system could be explored further for new ways of recycling atmospheric CO2 into biofuels and other commercial chemical products. A paper on their work is published in the journal Nature Chemical Biology.

More... | Comments (12)

On the road to solar fuels and chemicals

December 27, 2016

In a new paper in the journal Nature Materials (in an edition focused on materials for sustainable energy), a team from Stanford University and SLAC National Accelerator Laboratory has reviewed milestones in the progress of solid-state photoelectrocatalytic technologies toward delivering solar fuels and chemistry.

Noting the “important advances” in solar fuels research, the review team also noted that the largest scientific and technical milestones are still ahead. Following their review, they listed some of the scientific challenges they see as the most important for the coming years.

More... | Comments (13)

Global Bioenergies plans to acquire Dutch start-up Syngip; gaseous carbon feedstocks for renewable isobutene process

December 21, 2016

Global Bioenergies, the developer of a process to convert renewable resources into light olefin hydrocarbons via fermentation (with an initial focus on isobutene) (earlier post), signed a contribution agreement with the shareholders of Syngip B.V. to transfer all Syngip shares to Global Bioenergies S.A. Syngip is a third-generation industrial biotech start-up created in 2014 in the Netherlands that has developed a process to convert gaseous carbon sources such as CO2, CO, and industrial emissions such as syngas, into various valuable chemical compounds.

Syngip has identified a specific micro-organism capable of growing using these gaseous carbon sources as its sole feedstock, and has developed genetic tools to allow the implementation of artificial metabolic pathways into it. Its recent work has been directed to the implementation of metabolic pathways leading to light olefins: major petrochemical molecules, which include isobutene.

More... | Comments (0)

S. Korean researchers develop new catalytic pathway for direct conversion of CO2 to liquid hydrocarbon fuels

November 21, 2016

A team led by Professor Jae Sung Lee at Ulsan National Institute of Science and Technology (UNIST), with colleagues at Pohang University of Science and Technology (POSTECH), have developed a new pathway for the direct conversion of CO2 to liquid transportation fuels by reaction with renewable hydrogen produced by solar water splitting.

The new carbon capture and utilization (CCU) system is enabled by their discovery of a new catalyst that produces liquid hydrocarbon (C5+) selectivity of ∼65% and greatly suppresses CH4 formation to 2–3%. This selectivity is unprecedented for direct catalytic CO2 hydrogenation and is very similar to that of conventional CO-based Fischer-Tropsch (FT) synthesis, the team reports in a paper published in Applied Catalysis B: Environmental.

More... | Comments (1)

27 teams advancing in $20M NRG COSIA Carbon XPRIZE; converting CO2 to products

October 18, 2016

XPRIZE announced the 27 teams representing six countries advancing in the $20-million NRG COSIA Carbon XPRIZE, a global competition to develop technologies that convert the most carbon dioxide emissions from natural gas and power plant facilities into products with the highest net value. The semi-finalist teams propose converting CO2 into products as varied as enhanced concrete, fuels, toothpaste, nanotubes, fish food and fertilizer.

Launched in September 2015, the 4.5-year competition includes the demonstrations by finalist technologies at either a coal or a natural gas power plant. Six of the teams are competing in both the coal and natural gas competition tracks. About half of the 27 teams are producing fuels of one sort or another, with several more producing liquid chemicals that could serve as intermediates to fuel production. Those teams producing fuels or potential intermediates include:

More... | Comments (0)

DOE awarding up to $80M for supercritical CO2 pilot plant

The US Department of Energy (DOE) is awarding up to $80 million for a six-year project to design, build, and operate a 10-MWe (megawatts electrical) supercritical carbon dioxide (sCO2) pilot plant test facility in San Antonio, TX. The project will be managed by a team led by the Gas Technology Institute (GTI), Southwest Research Institute (SwRI), and General Electric Global Research (GE-GR).

The new facility will support the future commercialization of sCO2 Brayton cycle energy conversion systems by testing and demonstrating the potential energy efficiency and cost benefits of this technology. Today the average efficiency of the US fleet of steam Rankine cycle power plants is in the lower 30% range. This new facility has the potential to demonstrate greater than 50% cycle efficiency. If successfully developed, the supercritical CO2 power cycles could provide significant efficiency gains in geothermal, coal, nuclear, and solar thermal power production.

More... | Comments (2)

ORNL team devises electrocatalyst for direct conversion of CO2 into ethanol with high selectivity; pushing the combustion reaction in reverse

October 13, 2016

Researchers at the Department of Energy’s Oak Ridge National Laboratory (ORNL) have developed an electrocatalyst which operates at room temperature and in water for the electroreduction of dissolved CO2 with high selectivity for ethanol. Their finding was serendipitous. An open-access paper on their work appears in the journal ChemistrySelect.

The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which contains multiple reaction sites, the solution of carbon dioxide dissolved in water turned into ethanol with a yield of 63%. Typically, this type of electrochemical reaction results in a mix of several different products in small amounts.

More... | Comments (6)

Green Car Congress © 2017 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group