Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search


Carbon Capture and Conversion (CCC)

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Linde pilot testing dry reforming process to generate syngas from CO2 and methane for production of fuels and chemicals

October 16, 2015

As part of its R&D strategy, Linde has built a pilot reformer facility at Pullach near Munich—Linde’s largest location worldwide—to test dry-reforming technology. The dry reforming process catalytically combines CH4, the principal component of natural gas, and CO2 to produce syngas (CO and H2). Syngas is then used to produce valuable downstream products such as base chemicals or fuels.

The dry reforming process differs from steam reforming, which combines CH4 and water (H2O) in the form of steam to produce the syngas. Producing the steam is energy-intensive; dry reforming requires far less water, and hence avoids the energy burden of steam production. In addition to reducing energy consumption, the dry reforming process also consumes recycled carbon dioxide.

More... | Comments (7)

GWU team develops low-cost, high-yield one-pot synthesis of carbon nanofibers from atmospheric CO2

August 21, 2015

A team led by Dr. Stuart Licht at The George Washington University in Washington, DC has developed a low-cost, high-yield and scalable process for the electrolytic conversion of atmospheric CO2 dissolved in molten carbonates into carbon nanofibers (CNFs.) The conversion of CO2 → CCNF + O2 can be driven by efficient solar, as well as conventional, energy at inexpensive steel or nickel electrodes.

The structure is tuned by controlling the electrolysis conditions, such as the addition of trace transition metals to act as CNF nucleation sites; the addition of zinc as an initiator; and the control of current density. An open access paper on their work is published in the ACS journal Nano Letters; the work was also presented at ACS’ 250th National Meeting & Exposition this week in Boston.

More... | Comments (9)

Argonne team finds copper cluster catalyst effective for low-pressure conversion of CO2 to methanol with high activity

August 07, 2015

Researchers at Argonne National Laboratory have identified a new material to catalyze the conversion of CO2 via hydrogenation to methanol (CH3OH): size-selected Cu4 clusters—clusters of four copper atoms each, called tetramers—supported on Al2O3 thin films.

In a study published in the Journal of the American Chemical Society, the team measured catalytic activity under near-atmospheric reaction conditions with a low CO2 partial pressure, and investigated the oxidation state of the clusters using in situ grazing incidence X-ray absorption spectroscopy. Results indicated that size-selected Cu4 clusters are the most active low-pressure catalyst for catalytic conversion of CO2to methanol; Density functional theory calculations revealed that Cu4 clusters have a low activation barrier for the conversion. The results suggest, they concluded, that small copper clusters may be excellent and efficient catalysts for the recycling of released CO2.

More... | Comments (0)

EPA opens door to consider Carbon Capture and Utilization as part of new Clean Power Plan; algae industry locks on

August 04, 2015

EPA’s newly released voluminous final Clean Power Plan rule (earlier post) has established the first national standards to limit CO2 emissions from fossil-fuel-fired power plants (Electric Generating Units, EGUs), with a target of a 32% reduction against a 2005 baseline by 2030.

The plan calls for each US state to establish a plan to meet the targeted reductions. Within the text of the final CPP rules, EPA opened up the possibility of allowing “affected EGU (Electric Generating Units) to use qualifying CCU [Carbon Capture and Utilization] technologies to reduce CO2 emissions that are subject to an emission standard, or those that are counted when demonstrating achievement of the CO2 emission performance rates or a state rate-based or mass-based CO2 emission.

More... | Comments (0)

Geely invests in Carbon Recycling Intl.; vehicles fueled by methanol from CO2, water and renewable energy

July 08, 2015

Zhejiang Geely Holding Group (Geely Group) will invest a total of US$45.5 million in Carbon Recycling International (CRI). The investment consists of an initial investment and additional purchases of CRI equity over a 3-year period. Geely Group will become a major shareholder of CRI and will gain representation on the company’s Board of Directors.

CRI, founded in 2006 in Reykjavik, Iceland, is developing technology to produce renewable methanol from clean energy and recycled CO2 emissions. Geely Group and CRI intend to collaborate on the deployment of renewable methanol fuel production technology in China and explore the development and deployment of 100% methanol-fueled vehicles in China, Iceland and other countries. The companies say they a vision for a larger role for methanol as a clean and sustainable fuel worldwide.

More... | Comments (0)

New black silicon-supported catalyst for photoreduction of CO2 to methane

February 16, 2015

Researchers at the University of Toronto have developed a catalyst comprising of black silicon nanowire supported ruthenium ( Ru/SiNW) for the photochemical and thermochemical reduction of gaseous CO2 to methane (methanation) in the presence of hydrogen under solar-simulated light. An open access paper on their work is published in the new journal Advanced Science.

The Ru/SiNW catalysts activated the Sabatier reaction at a rate of 0.74 mmol g−1 h−1 under 14.5 suns intensity of solar-simulated irradiation in a hydrogen atmosphere at 15 psi and a H2:CO2 ratio of 4:1. The team suggested that much higher reaction rates could be achieved by optimizing the dispersion of the Ru over the SiNW support.

More... | Comments (1) | TrackBack (0)

Hydrogenics to supply 1MW electrolyzer to project converting CO2 to methanol; Power-to-Gas

January 26, 2015

Hydrogenics Corporation will supply a 1MW electrolyzer and provide engineering expertise to a consortium of companies working on the European project MefCO2 (methanol fuel from CO2) in Germany. The application will take excess electricity from intermittent renewable energy sources, generate green hydrogen, and then create methanol using a low-carbon footprint production plant and carbon dioxide emissions from an existing coal-fired power plant in Essen, Germany owned by STEAG Gmbh, which operates a number of regional power plants and distributed energy facilities.

CO2 will be captured from the flue gases in a special downstream flue gas scrubber (Post-Combustion Capture, PCC). The Hydrogenics electrolyzer will produce 200 cubic meters of hydrogen per hour. The hydrogen and captured carbon dioxide will then be catalytically converted into methanol, with a daily yield of approximately one ton of methanol using approximately 1.4 tonnes of CO2.

More... | Comments (37) | TrackBack (0)

GWU team uses one-pot process to co-generate H2 and solid carbon from water and CO2; solar fuels

December 30, 2014

One-pot electrolytic process produces H2 and solid carbon from water and CO2. Li et al. Click to enlarge.

A team at George Washington University led by Professor Stuart Licht has simultaneously co-generated hydrogen and solid carbon fuels from water and CO2 using a mixed hydroxide/carbonate electrolyte in a “single-pot” electrolytic synthesis at temperatures below 650 ˚C. The work is a further development of their work with STEP (solar thermal electrochemical process)—an efficient solar chemical process, based on a synergy of solar thermal and endothermic electrolyses, introduced by Licht and his colleagues in 2009. (Earlier post, earlier post.) (In short, STEP uses solar thermal energy to increase the system temperature to decrease electrolysis potentials.)

Licht and his colleagues over the past few years have delineated the solar, optical, and electronic components of STEP. In this study, they focused on the electrolysis component for STEP fuel, producing hydrogen and graphitic carbon from water and carbon dioxide. A paper on the new work is published in the journal Advanced Energy Materials.

More... | Comments (9) | TrackBack (0)

New efficient catalytic system for the photocatalytic reduction of CO2 to hydrocarbons

December 04, 2014

Photocatalytic reduction products formed on various catalysts. The Au3Cu@STO/TiO2 array (red arrow) was the most reactive photocatalyst in this family to generate hydrocarbons from diluted CO2. Kang et al. Click to enlarge.

Researchers from Japan’s National Institute for Materials Science (NIMS) and TU-NIMS Joint Research Center, Tianjin University, China have developed a new, particularly efficient photocatalytic system for the conversion of CO2 into CO and hydrocarbons. The system, reported in a paper in the journal Angewandte Chemie, may be a step closer to CO2-neutral hydrocarbon fuels.

More than 130 kinds of photocatalysts have been investigated to catalyze CO2 reduction; of those, strontium titanate (SrTiO3, STO) and titania (TiO2) are two of the most investigated materials. The research team headed by Dr. Jinhua Ye decided to use both, and devised a heteromaterial consisting of arrays of coaxially aligned STO/TiO2 nanotubes.

More... | Comments (1) | TrackBack (0)

Audi in new e-fuels project: synthetic diesel from water, air-captured CO2 and green electricity; “Blue Crude”

November 14, 2014

Audi is active in the development of CO2-neutral, synthetic fuels; the company already has projects underway with Joule in the US for the development and testing of synthetic ethanol and synthetic diesel (earlier post); has an e-gas project underway in Werlte, Germany (earlier post); and has a new partnership with Global Bioenergies on bio-isooctane (bio-gasoline) (earlier post).

Audi’s latest e-fuels project is participation in a a pilot plant project in Dresden that produces diesel fuel from water, CO2 and green electricity. Audi and project partners including Climeworks and sunfire (earlier post) opened the plant today. The project combines two innovative technologies in this project, which is funded in part by the German Federal Ministry for Education and Research and was preceded by a two-year research and preparation phase: direct capture of CO2 from ambient air and a power‑to‑liquid process for the production of synthetic fuel. Audi is the exclusive partner in the automotive industry.

More... | Comments (32)

Green Car Congress © 2015 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group