Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Carbon Capture and Storage (CCS)

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

DOE to award $9M to promote consensus on future fossil energy technologies

July 20, 2014

The US Department of Energy’s (DOE) Office of Fossil Energy will award $9 million over five years to organizations to assist it in building domestic and international consensus on future fossil energy technologies (DE-FOA-0001111). The Funding Opportunity Announcement (FOA) anticipates two awards being made: the first for $7 million in the area of Carbon Capture and Storage (CCS) and fossil-fuel-based Clean Energy Systems (CES); the second for $2 million in the area of international oil and natural gas.

One of the key missions of the Office of Fossil Energy is to “ensure the nation can continue to rely on traditional resources for clean, secure and affordable energy while enhancing environmental protection.” In pursuit of this, the Office provides outreach and education to many stakeholders, including the general public, in order to allow them to make educated choices about energy.

More... | Comments (4) | TrackBack (0)

DOE awards $100M in 2nd funding round for 32 Energy Frontier Research Centers

June 24, 2014

The US Department of Energy (DOE) is awarding $100 million in the second round of funding for Energy Frontier Research Centers (EFRCs); research supported by this initiative will enable fundamental advances in energy production, storage, and use.

The 32 projects receiving funding were competitively selected from more than 200 proposals. Ten of these projects are new while the rest received renewed funding based both on their achievements to date and the quality of their proposals for future research.

More... | Comments (1) | TrackBack (0)

Study suggests energy and GHG impacts of synthetic hydrocarbon fuels from CO2 are greater than impacts of existing hydrocarbon fuels

June 06, 2014

Master.img-001
Synthetic fuel production from fuel-combustion-based energy and CO2 (top) and from atmospheric CO2 using solar electricity (bottom). Credit: ACS, van der Giesen et al. Click to enlarge.

Researchers at the Institute of Environmental Sciences at Leiden University, The Netherlands) have concluded that the energy demand and climate impacts of using CO2 to produce synthetic hydrocarbon fuels by using existing technologies can be greater than the impacts of existing hydrocarbon fuels. Their quantitative lifecycle assessment of the environmental merits of liquid hydrocarbon fuels produced from CO2, water and energy compared to alternative fuel production routes is published in the ACS journal Environmental Science & Technology.

In their study, the researchers evaluated five hypothetical production routes using different sources of CO2 and energy. The team undertook the work specifically to investigate four general arguments that have been proposed in support of such fuels:

More... | Comments (22) | TrackBack (0)

Porous material polymerizes carbon dioxide at natural gas wellheads; less costly and energy-intensive approach

June 03, 2014

0527_CARBON-2-RN
Particles of nitrogen-containing porous carbon polymerize CO2 from natural gas under pressure at a wellhead. When the pressure is released, the CO2 returns to gaseous form. Courtesy of the Tour Group. Click to enlarge.

Scientists in the Rice University lab of chemist James Tour have developed materials that offer a lower cost, less energy-intensive way to separate carbon dioxide from natural gas at wellheads. The nucleophilic porous carbons, synthesized from simple and inexpensive carbon–sulphur and carbon–nitrogen precursors, pull only carbon dioxide molecules from flowing natural gas and polymerize them while under pressure naturally provided by the well.

When the pressure is released, the carbon dioxide spontaneously depolymerizes and frees the sorbent material to collect more. All of this works in ambient temperatures, unlike current high-temperature capture technologies that use up a portion of the energy being produced.

More... | Comments (4) | TrackBack (0)

DOE issues request for information for Grand Challenges in Subsurface Engineering

May 11, 2014

The US Department of Energy (DOE) has issued a request for information for Grand Challenges in Subsurface Engineering (DE-FOA-0001135). The purpose of the RFI is to gather information from industry, academia, national laboratories, and other federal agency stakeholders on critical subsurface knowledge and/or technology gaps that, if filled, will enable significant improvements in the understanding of the character and behavior of the subsurface environment and improve the ability to access, predict, manipulate and monitor the subsurface. Responses to this RFI are due no later than 8:00 PM ET on 23 May 2014.

Background. Subsurface reservoirs account for more than 80% of US primary energy, and also offer potential for the storage of energy, CO2, and nuclear waste. Despite decades of development, DOE notes, current technologies do not allow full utilization of subsurface energy resources; for example, only ~10 to 40% of the oil and gas is recovered from shale and conventional reservoirs, respectively.

More... | Comments (0) | TrackBack (0)

MIT researchers devise simple catalytic system for fixation and conversion of CO2

March 05, 2014

Researchers at MIT have devised a simple, soluble metal oxide system to capture and transform CO2 into useful organic compounds. More work is needed to understand and to optimize the reaction, but this approach could offer an easy and inexpensive way to recapture some of the carbon dioxide emitted by vehicles and power plants, says Christopher Cummins, an MIT professor of chemistry and leader of the research team.

The new reaction, described in an open access paper in the RSC journal Chemical Science, transforms carbon dioxide into a negatively charged carbonate ion, which can then react with a silicon compound to produce formate, a common starting material for manufacturing useful organic compounds. This process relies on the simple molecular ion molybdate: an atom of the metal molybdenum bound to four atoms of oxygen.

More... | Comments (7) | TrackBack (0)

DOE soliciting projects in advanced coal gasification for high carbon-capture power production and/or liquid fuels

February 26, 2014

The US DOE is soliciting (DE-FOA-0001051) projects for up to $10 million in awards to target technological advancements to lower the cost of producing hydrogen and/or high-hydrogen syngas from coal for use in 90% carbon capture power generation and/or gasification-based liquid (transportation) fuel production: methanol or diesel. Liquid fuel production must be GHG equivalent to conventional petroleum-based processes.

The work is also designed to assure significant reduction in the cost of coal conversion and environmental impacts, enabling coal resources to both improve US economic competitiveness and provide environmental benefits over the globe, according to the DOE.

More... | Comments (3) | TrackBack (0)

DOE proposing $100M in FY2014 for 2nd round of funding for Energy Frontier Research Centers

October 01, 2013

US Energy Secretary Ernest Moniz announced a proposed $100 million in FY2014 funding for Energy Frontier Research Centers; research supported by this initiative will enable fundamental advances in energy production and use.

The Department of Energy (DOE) currently funds 46 Energy Frontier Research Centers (EFRCs), which were selected for five-year funding in 2009. (Earlier post.) With support for those centers set to expire in July 2014, DOE has announced a “re-competition” for a second round of funding (DE-FOA-0001010).

More... | Comments (1) | TrackBack (0)

Kawasaki Heavy to build first ocean-going liquid hydrogen tanker with demo in 2017; H2 for transport, industry, power in Japan

September 28, 2013

Khi
KHI’s view of a “CO2-free hydrogen chain”. Source: KHI. Click to enlarge.

The Nikkei reports that Kawasaki Heavy Industries Ltd. (KHI) will build the first ocean-going ships to carry liquefied hydrogen (LH2), with plans for a demonstration test by 2017 in which liquefied hydrogen will be shipped from the state of Victoria in Australia to Japan. The project will cost ¥60 billion (US$610 million), according to the report.

As part of Japan’s WE-NET (World Energy Network) research program of the New Sunshine Project begun in 1993, Kawasaki and its other industrial colleagues in Japan have been considering the large-scale marine transportation of liquid hydrogen for some time (e.g., Abe et al., 1998). KHI has previously discussed the concept of such a hydrogen-carrying vessel as part of its Business Vision 2020.

More... | Comments (56) | TrackBack (0)

UMTRI survey explores receptivity of drivers to on-board carbon capture technology

September 17, 2013

Researchers at the University of Michigan Transportation Research Institute (UMTRI) recently conducted an online survey of driver option to determine how receptive drivers would be to adopting—and how much they might pay for—in-vehicle technology that reduce carbon emissions.

The driver survey is the team’s second study on this topic; the first, published in 2012, provided a general review of the area, with a primary focus on post-combustion technologies for light vehicles: absorption; membrane separation; and adsorption. The first study concluded that factors that might affect driver acceptance of in-vehicle carbon capture included the added initial cost of the technology; the probable on-board storage required; possible impact on fuel economy; and changes in the routine tasks involved in vehicle upkeep. The researchers—John M. Sullivan, Michael Sivak, and Brandon Schoettle—developed the second study, the driver survey, directly to probe drivers on these issues.

More... | Comments (0) | TrackBack (0)

Green Car Congress © 2013 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group