Researchers at Linköping University and Umeå University in Sweden have developed a new and efficient way to use electrocatalysis to produce hydrogen gas from water using electrodes with nanotruss structures of iron oxide. A paper on their work is published in the ACS journal Nano Letters. The Plasma and Coatings... Read more →

Chemical engineers at Rice University and Pennsylvania State University have shown that combining machine learning and quantum chemistry can save time and expense in designing new catalysts. Their study is published in the journal Nature Catalysis. Single-atom catalysts offer high reactivity and selectivity while maximizing utilization of the expensive active... Read more →

Scientists in Japan have shown that an oxyfluoride is capable of visible light-driven photocatalysis—i.e., converting solar energy to fuel energy using visible-light-absorbing semiconductor materials. The finding opens new doors for designing materials for artificial photosynthesis and solar energy research. Pb2Ti2O5.4F1.2. The inset (on the right) shows a photograph of Pb2Ti2O5.4F1.2,... Read more →

Velocys partners with PQ for FT catalyst manufacturing; secures funding for UK waste-to-jet project

Velocys plc has partnered with PQ Corporation (PQ) for the supply of commercial quantities of Velocys’ proprietary microchannel Fischer-Tropsch catalyst to be used in multiple biorefineries incorporating its technology. PQ is a leading global provider of specialty catalysts, services, materials and chemicals for the refinery, emissions control and petrochemical industries.... Read more →

DOE awards $1M+ to pH Matter for continued development of COR-Cat high activity catalyst for fuel cells

pH Matter, a developer of new materials for electrochemical applications, with particular expertise in synthetic carbon materials for fuel cells, batteries, and electrolysis, has been awarded more than $1 million in funding from the US Department of Energy (DOE) for the continued development of its COR-Cat high-activity catalyst materials for... Read more →

Researchers at Universidade Federal de Minas Gerais in Brazil have produced biohydrocarbons in the distillation ranges of gasoline, diesel and aviation kerosene from palm kernel oil and palm olein using beta zeolite (HBeta) under relatively mild process conditions. Deoxygenation, cracking and isomerization over HBeta were conducted in single step, without... Read more →

DOE awards U of Houston-led team $2M to develop new “four-way catalyst” to eliminate unreacted methane in natural gas vehicles; leveraging CDTi Spinel

The US Department of Energy has chosen a team led by a chemical engineer from the University of Houston for a $2-million project to develop and optimize a lower-cost, more efficient catalyst to eliminate unreacted methane in natural gas fuel. Primarily made up of methane, natural gas is a cleaner... Read more →

A team led by researchers at the University of Tsukuba in Japan has fabricated non-noble-metal electrodes for the hydrogen evolution reaction (HER) for electrochemical water splitting using a bicontinuous and open porous NiMo alloy covered by nitrogen-doped (N-doped) graphene with nanometer-sized holes. This noble-metal-free HER catalyst exhibits performance almost identical... Read more →

Brown team develops new model for effect on strain on catalyst performance; potential to optimize catalysts for different reactions

Research in recent years has shown that applying a strain to metal catalysts—either compression or tension—can in some cases change the way they perform. Now, Brown University researchers have developed a new model to explain why stretching or compressing metal catalysts can make them perform better. The theory, described in... Read more →

New catalyst for chemocatalytic production of ethanol from cellulose enhances selectivity

Researchers from the Dalian Institute of Chemical Physics in China have developed a new catalyst with enhanced selectivity for a chemocatalytic approach they developed earlier for the production of cellulosic ethanol. In the original process, cellulose is first converted into methyl glycolate (MG) in methanol with the promotion of a... Read more →

Researchers at Northwestern University have developed a new approach for creating new catalysts to aid in clean energy conversion and storage. The design method, reported in a paper in the Proceedings of the National Academy of Sciences, (PNAS) also has the potential to impact the discovery of new optical and... Read more →

Notre Dame team develops plasma-enabled catalysis for ammonia production at milder conditions at smaller scale

The Haber-Bosch process developed in the early 1900s relies on non-renewable fossil fuels and large, centralized chemical plants for the large-scale synthesis of ammonia at elevated temperatures (~700 K) and pressures (~100atm). Researchers at the University of Notre Dame have now developed a sustainable low-temperature and -pressure ammonia synthesis process... Read more →

New photocatalyst for the hydrogenation of CO2 to methanol with high selectivity at atmospheric pressure

Researchers from Soochow University in China and the University of Toronto have developed a new photocatalyst for the hydrogenation of CO2 to methanol with 50% selectivity under simulated solar irradiation. A paper on their work appears in the journal Joule. The solar methanol production of the defect-laden indium oxide, In2O3-x(OH)y,... Read more →

Catalytic converters for cleaning exhaust emissions are more efficient when they use nanoparticles with many edges, according to a study carried out at the the Deutsches Elektronen-Synchrotron (DESY), a research center of the Helmholtz Association, X-ray source PETRA III. A team of scientists from the DESY NanoLab watched live as... Read more →

Researchers at Georgia Tech, with colleagues in China and Saudi Arabia, have developed a rationally designed, multi-phase catalyst that significantly enhances the kinetics of oxygen reduction of the state-of-the-art solid oxide fuel cell cathode. The catalyst is also readily applicable to other energy storage and conversion systems, including metal-air batteries,... Read more →

Researchers show that single Pt atoms can perform CO oxidation at low temperatures; implications for catalytic converters

Researchers from Washington State University and Tufts University have “unambiguously” shown for the first time that individual Pt atoms on a well-defined Cu2O film are able to perform CO oxidation (i.e., converting CO to CO2)—a chemical reaction that is commonly used in catalytic converters to remove CO from car exhaust—at... Read more →

Researchers develop efficient single-atom Ni catalyst for conversion of CO2 to CO

An international research team has developed a new single-atom electrocatalyst that efficiently converts CO2 to carbon monoxide (CO). Their findings were published in the RSC journal Energy & Environmental Science. They used Ni single atoms dispersed into graphene nanosheets, without Ni nanoparticles involved, as active sites for the electrocatalytic CO2... Read more →

DGIST, PNNL team develops efficient, low-cost anode material for water electrolysis

Researchers at S. Korea’s DGIST (Daegu Gyeongbuk Institute of Science and Technology), with colleagues at Pacific Northwest National Laboratory (PNNL), have developed a low-cost, highly efficient and ultra-durable core-shell nanostructured electrocatalyst that exhibits an improved oxygen evolution activity and stability compared to that of the commercial noble metal electrodes. They... Read more →

Researchers at Washington State University, with colleagues at Argonne National Laboratory and Pacific Northwest National Laboratory, have combined inexpensive nickel and iron in a very simple, five-minute process to create large amounts of a high-quality catalyst required for water splitting. By in situ reduction of the metal precursors, the researchers... Read more →

Researchers at the University of Twente’s MESA+ research institute have made significant efficiency improvements to the technology used to generate solar fuels. They fabricated a highly efficient photocathode by spatially and functionally decoupling light absorption and catalytic activity. As reported in a paper in the journal Nature Energy, their silicon... Read more →

Researchers at the University of California, Riverside, with colleagues at Stanford have developed a general approach for the production of inexpensive, efficient and durable catalysts for PEM fuel cells: 1D porous nitrogen-doped graphitic carbon fibers embedded with active oxygen reduction reaction (ORR) catalyst components (M/MOx, i.e., metal or metal oxide... Read more →

A low-cost, nanostructured composite material developed by researchers at UC Santa Cruz has shown performance comparable to Pt/C as a catalyst for the electrochemical splitting of water to produce hydrogen. An efficient, low-cost catalyst is essential for realizing the promise of hydrogen as a clean, environmentally friendly fuel. Researchers led... Read more →

Researchers at Johns Hopkins University, with colleagues at Purdue and Oak Ridge National Laboratory (ORNL), have plated a one nanometer thick coating of platinum on a core of cobalt to create a cost-effective and highly efficient fuel cell catalyst. A paper on their work was published last year in the... Read more →

Rice researchers show how to optimize nanomaterials as replacements for platinum in fuel-cell cathodes

Nitrogen-doped carbon nanotubes or modified graphene nanoribbons may be suitable replacements for platinum for fast oxygen reduction, the key reaction in fuel cells that transform chemical energy into electricity, according to Rice University researchers. The findings are from computer simulations by Rice scientists who set out to see how carbon... Read more →

Researchers develop effective exhaust catalyst for lower temperature exhaust

To improve fuel efficiency, advanced combustion engines are being designed to minimize the amount of waste heat in the exhaust. As a result, future generations of exhaust after-treatment catalysts must perform at temperatures that are 100 °C lower than current catalysts. Researchers at Washington State University, Pacific Northwest National Laboratory... Read more →

Scientists develop method for direct conversion of methane to methanol or acetic acid under mild conditions

Researchers at Argonne National Laboratory, Tufts University and Oak Ridge National Laboratory have shown that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, can catalyze the direct conversion of methane to methanol and acetic acid using oxygen and carbon monoxide under mild conditions.... Read more →

A team led by researchers from Sandia National Laboratories and the University of California, Merced has developed an efficient molybdenum disulfide (MoS2) catalyst for driving the hydrogen evolution reaction (HER). In a study published in the journal Advanced Materials, the team reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2)... Read more →

WVU, NETL partner with Pitt, Shell to develop process to transform stranded natural gas into marketable products

Researchers at West Virginia University will lead a team that will investigate ways to convert stranded gas resources into value-added liquid products that could reduce the United States’ demand for crude oil by up to 20%. The WVU-led team will combine the capabilities of the National Energy Technology Laboratory (NETL)... Read more →

New nanostructured earth abundant metal catalysts rival platinum on a weight basis; diesel emissions treatment

A development in catalysis research by academics at the Universities of St Andrews and Newcastle could lead to new systems to treat diesel emissions. Catalysts are typically metallic nanoparticles—often platinum group metals—that are finely deposited upon a substrate. The activity and durability of the catalyst critically depends upon the interaction... Read more →

DOE proposes $99M for Energy Frontier Research Centers in FY 2018

US Secretary of Energy Rick Perry announced a proposed $99 million in Fiscal Year 2018 funding for Energy Frontier Research Centers (EFRCs) to accelerate transformative scientific advances for the most challenging topics in materials sciences, chemical sciences, geosciences, and biosciences. (DE-FOA-0001810) Since their establishment by DOE’s Office of Science in... Read more →

Gevo, Los Alamos to collaborate to develop high-energy-density renewable missle fuel

Gevo, Inc. will be partnering with Los Alamos National Laboratory (LANL) on a project to improve the energy density of certain Gevo hydrocarbon products, such as its alcohol-to-jet-fuel (ATJ) (earlier post), to meet product specifications for tactical fuels for specialized military applications such as RJ-4 (exo-dime- thyltetrahydrodicylopentadienes), RJ-6 (a blend... Read more →

New hybrid photocatalyst for highly efficient hydrogen production from water

Researchers at the University of Central Florida, with colleagues at Pacific Northwest National Laboratory (PNNL) and Tsinghua University, developed a new hybrid nanomaterial—a nonmetal plasmonic MoS2@TiO2 heterostructure—for highly efficient photocatalytic H2 generation from water. As reported in an open access paper in the RSC journal Energy & Environmental Science, the... Read more →

Tulane, SACHEM collaborate on SSZ-39 zeolite for improved SCR systems

Members of Tulane University’s Shantz Lab will collaborate with scientists from chemical science company SACHEM to develop next-generation materials to reduce automotive emissions. SACHEM is funding the effort. Under the direction of Daniel Shantz, a professor of chemical and biomolecular engineering and the Entergy Chair of Clean Energy Engineering, the... Read more →

U. Houston-led project looking for new exhaust treatment catalysts for low-temperature lean-burn combustion engines

A chemical engineer from the University of Houston is leading a $2.1-million project to find new catalytic materials that work at lower exhaust temperatures, allowing automakers to build vehicles that operate more efficiently while retaining the ability to clean emissions before they leave the tailpipe. Michael Harold, chairman of the... Read more →

Scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new electrocatalyst that can directly convert carbon dioxide into multicarbon fuels and alcohols using record-low inputs of energy. The work is the latest in a round of studies coming out of Berkeley Lab tackling the... Read more →

Ballard Power Systems has collaborated with Nisshinbo Holdings to develop a Non-Precious-Metal Catalyst (NPMC) for use in the world’s first commercialized NPMC-based proton exchange membrane (PEM) fuel cell product. Nisshinbo and Ballard have jointly collaborated on the development of NPMC since 2013. (Earlier post.) Ballard has successfully incorporated the Non... Read more →

Researchers at the Tokyo Institute of Technology have developed a highly selective catalyst consisting of ruthenium nanoparticles supported on niobium pentoxide (Ru/Nb2O5). In a study published in the Journal of the American Chemical Society, the team demonstrated that Ru/Nb2O5 is capable of producing primary amines from carbonyl compounds with ammonia... Read more →

Researchers led by a team from KAUST have found a more sustainable route to hydrogen fuel production using chaotic, light-trapping materials that mimic natural photosynthetic water splitting. In a paper in the journal Advanced Materials, the researchers report a new photocatalyst for hydrogen evolution based on metal epsilon-near-zero (ENZ) metamaterials.... Read more →

Researchers develop cheaper, greener biofuels processing catalyst using waste metals and bacteria

A team from the Prairie Research Institute at the University of Illinois, with colleagues from the University of Birmingham and Aarhus University, have developed a nanosized bio-Pd/C catalyst for upgrading algal bio-oil. Published in an open-access paper in the journal Fuel, their findings point to a cheaper, more environmentally friendly... Read more →

Purdue, Notre Dame, Cummins discovery could lead to new SCR catalyst design for improved NOx control

Researchers at Purdue University, the University of Notre Dame and Cummins have discovered a new reaction mechanism that could be used to improve SCR catalyst designs for pollution-control systems to further reduce emissions of smog-causing nitrogen oxides in diesel exhaust. The research focuses on zeolites—workhorses in petroleum and chemical refineries... Read more →

A team at the University of Delaware has synthesized renewable jet-fuel-range alkanes by hydrodeoxygenation of lignocellulose-derived high-carbon furylmethanes over ReOx-modified Ir/SiO2 catalysts under mild reaction conditions (170 ˚C, 5 MPa). Their paper is featured on the cover of the journal ChemSusChem. In their work, they found that Ir−ReOx/SiO2 with a... Read more →

ORNL, LANL study provides insights into performance of non-precious metal fuel-cell catalysts; atomic-level observations

In order to reduce the cost of next-generation polymer electrolyte fuel cells for vehicles, researchers have been developing alternatives to the prohibitively expensive platinum and platinum-group metal (PGM) catalysts currently used in fuel cell electrodes. New work at Los Alamos (LANL) and Oak Ridge national laboratories (ORNL) is now resolving... Read more →

Researchers in the Rice University lab of chemist James Tour have produced dual-surface laser-induced graphene (LIG) electrodes on opposing faces of a plastic sheet that split water into hydrogen on one side and oxygen on the other side. The high porosity and electrical conductivity of LIG facilitates the efficient contact... Read more →

Scientists at Rice University and the Lawrence Livermore National Laboratory have predicted and created new two-dimensional electrocatalysts—low-cost, layered transition-metal dichalcogenides (MX2) based on molybdenum and tungsten—to extract hydrogen from water with high performance and low cost. In the process, they also created a simple model to screen materials for catalytic... Read more →

An international research team led by scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Nanyang Technological University (NTU) in Singapore have developed a light-activated material that can chemically convert carbon dioxide into carbon monoxide without generating unwanted byproducts. When exposed to visible light, the material,... Read more →

Japan team reports pathway to green ammonia: photocatalytic conversion of nitrogen with water

Researchers in Japan report that a commercially available TiO2 with a large number of surface oxygen vacancies, when photo-irradiated by UV light in pure water with nitrogen—successfully produces ammonia (NH3). The solar-to-chemical energy conversion efficiency is 0.02%, which is the highest efficiency among the early reported photocatalytic systems. This is,... Read more →

A new robust and highly active bifunctional catalyst developed by Rice University and the University of Houston splits water into hydrogen and oxygen without the need for expensive metals such as platinum. The work, the team suggests, provides a facile strategy for fabricating highly efficient electrocatalysts from earth-abundant materials for... Read more →

QUB team converts aluminum foil waste to highly active alumina; biofuel catalyst, other applications

Researchers at Queen’s University Belfast have developed a novel green route to convert aluminium foil waste into highly active nano-mesoporous alumina (γ-Al2O3) (designated as ACFL550). The material shows higher surface area, larger pore volume, and stronger acidity compared to γ-Al2O3 that is produced from the commercial AlCl3 precursor, AC550. An... Read more →

German team clarifies key catalytic step in enzymatic production of hydrogen

Enzymes, called [FeFe]-hydrogenases, efficiently turn electrons and protons into hydrogen; they are thus a candidate for the biotechnological production of the potential energy source. For years, researchers had assumed that a highly unstable intermediate state had to exist in the reaction. No one was able to verify this. Until now.... Read more →

New catalyst supports ultra-low-temperature water-gas-shift reaction for hydrogen production

Researchers from China and the US have synthesized gold layered clusters on an α-MoC substrate to create an interfacial catalyst system for the ultra-low-temperature water-gas shift (WGS) reaction for the production of high-purity hydrogen and concomitant utilization of carbon monoxide (CO). The discovery, described in a paper in the journal... Read more →