Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Cellulosic ethanol

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Clariant, Mercedes-Benz, Haltermann Carless report successful fleet test of E20 cellulosic ethanol blend

February 06, 2017

Clariant, a leading global specialty chemicals company, together with Mercedes-Benz and Haltermann Carless, a well-established HCS Group brand, tested the use of sustainable cellulosic ethanol from agricultural residues in a fleet test with Mercedes-Benz series vehicles over a period of 12 months for the first time in Germany. sunliquid 20 was used for the test—a fuel produced by Haltermann Carless with a cellulosic ethanol content of 20 vol% (E20) from Clariant’s sunliquid plant in Straubing.

The cellulosic ethanol allows greenhouse gas emission savings of up to 95% across the entire value chain without competing with food production or tying up agricultural land.

More... | Comments (4)

EPA approves Little Sioux Corn Processors for cellulosic ethanol using Edeniq’s Pathway technology

January 27, 2017

Edeniq, Inc., a leading cellulosic and biorefining technology company, and Archer Daniels Midland Company (ADM) announced that the US Environmental Protection Agency has approved Little Sioux Corn Processors’ registration of its 150 million gallon per year Marcus, Iowa, ethanol plant for cellulosic ethanol production.

Under the terms of its license agreements with ADM and Little Sioux, Edeniq uses its Pathway Technology to measure the amount of cellulosic ethanol produced, and provides the required information to register for D3 cellulosic RINs with the EPA.

More... | Comments (0)

GAO study concludes Renewable Fuel Standard will miss advanced biofuel program targets; EPA generally concurs

November 29, 2016

A new study from the US Government Accountability Office (GAO) concludes that the Renewable Fuel Standard program will miss its advanced biofuel targets due to the the high costs of creating advanced biofuel; the relatively low price of fossil fuel; the timing and cost to bring new tech to commercial-scale production; regulatory uncertainty; and other issues as challenges to increased production.

GAO was asked by Congress to review issues related to advanced biofuels R&D. The report describes (1) how the federal government has supported advanced biofuels R&D in recent years and where its efforts have been targeted; and (2) expert views on the extent to which advanced biofuels are technologically understood and the factors that will affect the speed and volume of production. GAO interviewed DOD, DOE, EPA, NSF, and USDA officials and worked with the National Academy of Sciences to convene a meeting of experts from industry, academia, and research organizations. EPA generally agreed with the conclusions of the report, the GAO said.

More... | Comments (3)

EPA finalizes increase in renewable fuel volumes for 2017; 6% total increase to 19.28B gallons

November 23, 2016

The US Environmental Protection Agency (EPA) finalized increases in renewable fuel volume requirements across all categories of biofuels under the Renewable Fuel Standard (RFS) program. In a required annual rulemaking, the action finalizes the volume requirements and associated percentage standards for cellulosic biofuel, advanced biofuel, and total renewable fuel for 2017, and for biomass-based diesel for 2018.

The final volumes represent continued growth over historic levels. The final standards meet or exceed the volume targets specified by Congress for total renewable fuel, biomass-based diesel, and advanced biofuel. Total renewable fuel volumes grow 6% (1.2 billion gallons) from 2016 to 2017 to 19.28 billion gallons.

More... | Comments (3)

EPA proposing updates to Renewable Fuel Standard

October 05, 2016

EPA is proposing updates to the Renewable Fuels Standard (RFS) regulations and related fuels regulations to better align the standards with the current state of the renewable fuels market and to promote the use of ethanol and non-ethanol biofuels.

Several of the proposed changes to the Renewable Fuel Standard program would align regulations with recent developments in the marketplace resulting in increased production of cellulosic, advanced and other biofuels, EPA said.

More... | Comments (1)

Argonne team finds significant albedo warming effect for switchgrass ethanol

August 11, 2016

One of the key points of contention over the climate benefit of biofuels is the impact of land use change (LUC) associated with biofuel feedstock production. LUC results in biogeochemical (e.g., soil organic carbon) and biogeophysical (e.g., surface albedo, evapotranspiration, and surface roughness) changes. Of the biogeophysical factors, surface albedo has been considered a dominant effect at the global scale.

A team at Argonne National Laboratory has now quantified land use change (LUC)-induced albedo effects for three major biofuels in the US, using satellite data products for albedo and vegetation observations. Published in the RSC journal Energy & Environmental Science, the analysis indicates that the land use change (LUC)-induced albedo effect is small for corn and miscanthus ethanol, but is significant for switchgrass ethanol, which is driven by the types, locations, and intensities of various land conversions to these biofuel feedstocks.

More... | Comments (3)

Researchers say fuel market rebound effect can result in increased GHG emissions under RFS2; suggest taxes over mandates

August 08, 2016

The US Renewable Fuel Standard (RFS2) is intended to reduce greenhouse gas emissions from transportation. However, argues a team from the University of Minnesota in an open-access paper published in the journal Energy Policy, once the “fuel market rebound effect” is factored in, RFS2 actually increases GHG emissions when all fuel GHG intensity targets specified under the act are met.

Increasing the supply of low-carbon alternative fuels is a basic strategy to reduce greenhouse gas emissions. However, the Minnesota team notes, increasing the supply of fuels tends to lower energy prices, which encourages in turn encourages additional fuel consumption. This “fuel market rebound effect” can undermine climate change mitigation strategies, even to the point where efforts to reduce GHG emissions by increasing the supply of low-carbon fuels may actually result in increased GHG emissions.

More... | Comments (11)

JBEI scientists use CO2 to control toxicity of ionic liquids in biomass pretreatment; lowering production costs

July 22, 2016

Researchers at the Department of Energy’s Lawrence Berkeley National Laboratory and Sandia National Laboratories working at the Joint BioEnergy Institute (JBEI) have demonstrated that adding CO2 during the deconstruction phase of biofuel production successfully neutralizes the toxicity of ionic liquids, the room-temperature molten salt solvent used at JBEI to break down cellulosic plant material.

The process is easily reversible, allowing the liquid to be recycled for use as a solvent again. Their study, published RSC journal Energy & Environmental Science, addresses a significant obstacle to expanding the market for biofuels: lowering the cost of production.

More... | Comments (1)

ICM advances pathway to cellulosic ethanol with Gen 1.5 technology; collaboration with DSM and Novozymes

June 20, 2016

ICM, a leading provider of products and services to the biofuel industry, is close to the marketintroduction of its patent-pending Generation 1.5 Grain Fiber to Cellulosic Ethanol Technology (Gen 1.5), which integrates a process for converting corn fiber to cellulosic ethanol with existing ethanol plants.

This pathway to cellulosic ethanol combines mechanical, chemical, and biological processes with ICM’s experience in integrating advanced technologies into existing corn ethanol plants. Critical elements of the Gen 1.5 process were developed through collaborations with two world-leading biotechnology companies, DSM and Novozymes.

More... | Comments (0)

Clariant to scale-up catalysts for Gevo’s Ethanol-to-Olefins (ETO) technology; renewable diesel and hydrogen

May 19, 2016

Gevo, Inc. has entered into an agreement with Clariant Corp., one of the world’s leading specialty chemical companies, to develop catalysts to enable Gevo’s Ethanol-to-Olefins (ETO) technology.

Gevo’s ETO technology, which uses ethanol as a feedstock, produces tailored mixes of propylene, isobutylene and hydrogen, which are valuable as standalone molecules, or as feedstocks to produce other products such as diesel fuel and commodity plastics, that would be drop-in replacements for their fossil-based equivalents. ETO is a chemical process, not a biological process as is Gevo’s conversion of biomass to isobutanol.

More... | Comments (0)

Aemetis acquires license from LanzaTech with California exclusive rights for advanced ethanol from biomass including forest and ag wastes

March 24, 2016

Aemetis, Inc. has acquired exclusive rights to LanzaTech’s patented technology for the conversion of agricultural waste, forest waste, dairy waste and construction and demolition waste (CDW) to ethanol in California. The LanzaTech gas-to-ethanol technology enables Aemetis to convert these local California biomass wastes to advanced ethanol.

Aemetis is the first licensee of the LanzaTech technology in North America. The agreement provides for 12 years of exclusive rights in California based upon achieving certain milestones.

More... | Comments (0)

NREL updates Survey of Advanced Biofuel Producers in the United States

March 17, 2016

The National Renewable Energy Laboratory (NREL) updated its annual survey of US non-starch ethanol and renewable hydrocarbon biofuels producers. The 2015 Survey of Non-Starch Ethanol and Renewable Hydrocarbon Biofuels Producers provides an inventory of the domestic advanced biofuels production industry as of the end of calendar year 2015, documenting important changes (e.g., biorefinery development, production capacity, feedstock use, and technology pathways) that have occurred since the publication of the original 2013 survey.

During 2015, NREL surveyed 114 companies that were reported to be pursuing commercial-scale biofuel production capacity. Companies were classified as either non-starch (cellulosic or algae-derived) ethanol producers or renewable hydrocarbon producers. The questionnaire included topics such as facility stage of development, facility scale, feedstock, and biofuel products. The NREL team supplemented missing survey data elements (when possible) with publicly available data obtained directly from company websites, press releases, and public filings.

More... | Comments (0)

New ammonia biomass pretreatment process improves yield with lower enzyme loading; improving cellulosic biofuel economics

February 23, 2016

A team from the US, China and India, led by researchers from Michigan State University, has developed a new liquid ammonia biomass pretreatment methodology called Extractive Ammonia (EA). EA-pretreated corn stover delivers a higher fermentable sugar yield compared to the older Ammonia Fiber Expansion (AFEX) process while using 60% lower enzyme loading.

As described in a paper in the RSC journal Energy & Environmental Science, the single-stage EA process achieves high biofuel yields (18.2 kg ethanol per 100 kg untreated corn stover, dry weight basis), comparable to those achieved using ionic liquid pretreatments. The EA process achieves these ethanol yields at industrially-relevant conditions using low enzyme loading (7.5 mg protein per g glucan) and high solids loading (8% glucan, w/v).

More... | Comments (1)

Newly identified enzymes from herbivore gut fungi may lead to cheaper cellulosic biofuels

February 19, 2016

A team of researchers led by Dr. Michelle O’Malley at UC Santa Barbara has identified several promising new enzyme candidates for breaking down lignocellulsoic biomass for biofuel production from relatively unexplored gut fungi in herbivores. To do so, they developed a systems-level approach that integrates transcriptomic sequencing (RNA-Seq); proteomics; phenotype; and biochemical studies.

The biomass-degrading enzymes from the anaerobic gut fungi are competitive with optimized commercial enzyme preparations from Aspergillus and Trichoderma. Further, compared to the model platforms, the gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. The findings suggest that industry could modify the gut fungi so that they produce improved enzymes that will outperform the best available ones, potentially leading to cheaper biofuels and bio-based products. A paper on their work is published in the journal Science.

More... | Comments (1)

UI, ExxonMobil study finds where bioenergy crops would grow best while minimizing detrimental effects on aquatic ecosystems

February 18, 2016

A team from the University of Illinois, Urbana and ExxonMobil Research and Engineering Company (EMRE) has identified regions in the United States where bioenergy crops would grow best while minimizing effects on water quantity and quality. Their paper is published in the ACS journal Environmental Science & Technology.

The researchers applied a land surface model to evaluate the interplay between potential bioenergy grass (Miscanthus, Cave-in-Rock, and Alamo) production, water quantity, and nitrogen leaching (NL) in the Central and Eastern USA. The detailed models explored the impacts on water quantity and quality in soils that would occur if existing vegetation was replaced by various bioenergy crops used for ethanol production.

More... | Comments (2)

Wisconsin, GLBRC researchers use chemical genomics to engineer IL-resistant yeast to improve biofuel production

February 14, 2016

Researchers at the University of Wisconsin-Madison and the Great Lakes Bioenergy Research Center (GLBRC) and colleagues have engineered a new strain of the yeast S. cerevisiae that is more resistant to the toxic effects of ionic liquids (ILs) used to generate sugars from lignocellulose.

As a result, their xylose-converting strain consumed glucose and xylose faster and produced more ethanol than the wild type strain. The development could improve the efficiency of making fuel from cellulosic biomass such as switchgrass. The work is reported in an open-access paper in the journal Microbial Cell Factories.

More... | Comments (0)

Green Car Congress © 2017 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group