Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Cellulosic ethanol

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Study casting doubt on GHG benefits of corn stover ethanol draws sharp criticism by other researchers; Liska responds

October 30, 2014

A study published earlier this year in the journal Nature Climate Change that cast doubt on whether biofuels produced from corn residue could meet federal mandates for cellulosic biofuels to reduce greenhouse gas emissions by 60% compared to gasoline (earlier post) has drawn critical response published as correspondence in the same journal.

The study led by University of Nebraska-Lincoln assistant professor Adam Liska, funded through a three-year, $500,000-grant from the US Department of Energy, used carbon dioxide measurements taken from 2001 to 2010 to validate a soil carbon model that was built using data from 36 field studies across North America. Among their findings were that using corn crop residue to make ethanol and other biofuels reduces soil carbon and under some conditions can generate more greenhouse gases than gasoline.

More... | Comments (3) | TrackBack (0)

California Energy Commission to award up to $3M for advanced biofuel projects

October 28, 2014

The California Energy Commission’s Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP) announced (PON-14-602) the availability of up to $3 million in grant funds for biofuels projects that are in the early/pre-commercial technology development stage. This solicitation is emphasizing transformative technology solutions to significant biofuels industry problems that increase yields, productivity, or cost effectiveness of biofuel production; and/or that target a significant unmet need in California’s biofuels industry.

The ARFVTP has an annual budget of approximately $100 million and provides financial support for projects that increase the use of alternative and renewable fuels and advanced vehicle technologies.

More... | Comments (1) | TrackBack (0)

Abengoa opens cellulosic ethanol plant in Hugoton; 1st commercial deployment of Abengoa enzymatic hydrolysis

October 17, 2014

The Hugoton cellulosic ethanol plant covers 400 acres, more than 380 of which will be used to store biomass from local farmers. Click to enlarge.

Abengoa held the grand opening of its cellulosic ethanol plant in Hugoton, Kansas, located about 90 miles (145 km) southwest of Dodge City. Abengoa’s new biorefinery finished construction in mid-August and began producing cellulosic ethanol at the end of September with the capacity to produce up to 25 million gallons (94.6 million liters) per year. Abengoa received a $132.4-million loan guarantee and a $97-million grant through the Department of Energy to support construction of the Hugoton facility.

The plant utilizes only “second generation” (2G) biomass feedstocks for ethanol production—i.e.non-edible agricultural crop residues (such as stalks and leaves) that do not compete with food or feed grain. The facility also features an electricity cogeneration component allowing it to operate as a self-sufficient renewable energy producer. By utilizing residual biomass solids from the ethanol conversion process, the plant generates 21 megawatts (MW) of electricity—enough to power itself and provide excess clean renewable power to the local Stevens County community.

More... | Comments (5) | TrackBack (0)

DEINOVE and MBI partner on cellulosic biofuels using DEINOL and AFEX

October 16, 2014

France-based DEINOVE and US-based MBI have formed a technological partnership to demonstrate the effectiveness of the DEINOVE’s DEINOL technology for producing biofuels based on lignocellulosic biomass (2G biofuels) using MBI’s AFEX (ammonia fiber expansion) pretreatment system.

DEINOL uses Deinococcus bacteria to break down the complex sugars contained in pre-treated lignocellulosic biomass and then to convert them into ethanol in a single operation, replacing the microorganisms that are traditionally used and a large part of the enzyme treatment that precedes fermentation. (Earlier post.) MBI, in close collaboration with Michigan State University (MSU), has developed and is scaling up its AFEX pretreatment technology. (Earlier post.)

More... | Comments (0) | TrackBack (0)

GranBio begins producing cellulosic ethanol in Brazil; very low carbon intensity of 6.98 gCO2e/MJ for California LCFS

September 26, 2014

GranBio, a 100% Brazilian industrial biotech company, has begun production at the first commercial-scale plant for second-generation (cellulosic) ethanol in the Southern Hemisphere. The Bioflex 1 unit, built in São Miguel dos Campos, Alagoas, has an initial production capacity of 82 million liters (21.6 million gallons US) of ethanol per year with sugarcane straw and bagasse residues as the feedstocks.

GranBio’s facility uses the PROESA pre-treatment technology from the Italian company BetaRenewables (a company in the M&G Group); enzymes from Novozymes in Denmark; and yeast from DSM in Holland.

More... | Comments (2) | TrackBack (0)

BIO says EPA inaction on RFS rule causing an increase in GHG emissions

September 23, 2014

Increased greenhouse gas emissions equal to 4.4 million additional cars on US roads are likely as a result of EPA inaction on finalizing the 2014 Renewable Fuel Standard (RFS) rules, according to a new white paper issued by The Biotechnology Industry Organization (BIO). The white paper updates earlier BIO’s March 2014 study, “Estimating Greenhouse Gas Emissions from Proposed Changes to the Renewable Fuel Standard Through 2022.”

That study demonstrated that if EPA reduced biofuel use under the RFS, as the agency proposed in November 2013, the United States would experience an increase in greenhouse gas emissions and forego an achievable decrease in emissions.

More... | Comments (1) | TrackBack (0)

Promising results from Mercedes-Benz fleet test of Clariant high-octane cellulosic E20

Clariant, Haltermann and Mercedes-Benz have fleet-tested high-octane sunliquid 20 fuel—containing 20% cellulosic ethanol produced from straw—since January. (Earlier post.) The test found that the use of sunliquid 20 improves engine efficiency—more than compensating for its 4% lower energy content compared to E10. For drivers, this means with sunliquid 20, CO2emissions are reduced while consumption remains the same.

Use of sunliquid 20 also resulted in a 50% improvement in particle emissions count in contrast to the EU 5 reference fuel. The cellulosic ethanol in sunliquid 20 demonstrates greenhouse gas emission savings of up to 95% across the entire value chain (well-to-wheel perspective) without competing with food production or agricultural acreage.

More... | Comments (1) | TrackBack (0)

California Energy Commission awards $5M grant to AltAir Fuels to expand renewable diesel production; $3M to GFP Ethanol for sorghum feedstock

September 11, 2014

The California Energy Commission approved $8 million in grants to two biofuel companies stemming from a solicitation issued earlier this year (PON-13-609: Pilot-Scale and Commercial-Scale Advanced Biofuels Production Facilities).

AltAir Fuels LLC (earlier post) will receive $5 million to expand production of renewable diesel fuels at its Paramount facility in Los Angeles County from 30 million gallons per year to 40 million gallons per year, and allow for processing of additional feedstocks. This facility will also co-produce renewable jet at commercial scale and a byproduct chemical and gasoline component. GFP Ethanol is receiving $3 million to support the development of sorghum as a feedstock for lower carbon intensity ethanol.

More... | Comments (1) | TrackBack (0)

UGA-led team engineers bacterium for the direct conversion of unpretreated biomass to ethanol

June 03, 2014

A team led by Dr. Janet Westpheling at the University of Georgia has engineered the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which in the wild efficiently uses un-pretreated biomass—to produce ethanol from biomass without pre-treatment of the feedstock. A paper on the work is published in Proceedings of the National Academy of Sciences (PNAS).

In January, Dr. Westpheling and her colleagues reported in the journal Science their discovery that an enzyme (the cellulase CelA) from C. besciia can digest cellulose almost twice as fast as Cel7A, the current leading component cellulase enzyme on the market. (Earlier post.)

More... | Comments (2) | TrackBack (0)

Study finds removing corn residue for biofuel production can decrease soil organic carbon and increase CO2 emissions; may miss mandated 60% GHG reduction

April 21, 2014

Contribution of modeled CO2 emissions from SOC to the life cycle of biofuel from corn residue. Error bars are ± one standard deviation. Liska et al. Click to enlarge.

Using corn crop residue to make ethanol and other biofuels reduces soil carbon and under some conditions can generate more greenhouse gases than gasoline, according to a major, multi-year study by a University of Nebraska-Lincoln team of researchers published in the journal Nature Climate Change. The findings cast doubt on whether biofuels produced from corn residue can be used to meet federal mandates for cellulosic biofuels to reduce greenhouse gas emissions 60% compared to gasoline.

The study, led by assistant professor Adam Liska, was funded through a three-year, $500,000-grant from the US Department of Energy, and used carbon dioxide measurements taken from 2001 to 2010 to validate a soil carbon model that was built using data from 36 field studies across North America, Europe, Africa and Asia. Using USDA soil maps and crop yields, they extrapolated potential carbon dioxide emissions across 580 million 30-meter by 30-meter geospatial cells in Corn Belt states.

More... | Comments (16) | TrackBack (0)

Navigant Research forecasts 58% growth in global biofuels consumption by 2022; biodiesel and drop-in fuels gain market share

February 05, 2014

In a new report, “Biofuels for Transportation Markets”, Navigant Research forecasts that global demand for biofuels in the road transportation sector will grow from representing almost 6% of the liquid fuels market in 2013 to roughly 8% by 2022. Of that 8%, 8% will consist of advanced drop-in fuels, according to the research firm. Navigant forecasts that global biofuels consumption in the road transportation sector will grow from more than 32.4 billion gallons per year (BGPY) in 2013 to more than 51.1 BGPY in 2022—an increase of 58%.

Overall, Navigant forecasts that global retail sales of all liquid fuels for the road transportation sector will grow from more than $2.6 trillion in 2013 to more than $4.5 trillion in 2022 (73% growth).

More... | Comments (2) | TrackBack (0)

DEINOVE produces ethanol at 9% titer with its optimized Deinococcus bacteria

January 16, 2014

DEINOVE, a technology company that designs, develops and markets a new generation of industrial processes based on optimized Deinococci bacteria, has produced ethanol at a titer of 9% via its fermentation of biomass sugars in 20L pre-industrial fermentors. In September 2012, the company had reported that its optimized strain of Deinococcus generated ethanol from wheat-based biomass with a titer of 3%. (Earlier post.)

The 9% content v/v (volume/volume)—equal to 7.2% wt/v (weight/volume)—exceeds the 5% alcohol content wt/v considered to be the threshold for industrial exploitation of a process for 2nd generation biofuels, the company said. The obtained performance is gradually approaching the maximum theoretical yield, the company added. The use of Deinoccoccus offers several benefits:

More... | Comments (5) | TrackBack (0)

Sandia study finds meeting RFS2 requirements unlikely without stronger enforcement mechanism; the importance of drop-in biofuels

January 06, 2014

Even if well-known technology, infrastructure, economic and political challenges in meeting the biofuel requirements of the RFS2 mandate are overcome, it is “highly unlikely” that the light-duty vehicle parc will be capable of consuming the RFS2 (Renewable Fuel Standard) mandated volumes of biofuels, according to a new analysis by a team from Sandia National Laboratory.

The Sandia researchers showed that the key to meeting the RFS2 targets is the fuel price differential between E85 fuel and conventional gasoline (low ethanol blends), so that E85 owners refuel with E85 whenever possible. In other words, RFS2 will be satisfied if gasoline becomes significantly more expensive than E85 on a per energy basis. This is, however, the opposite of historic pricing trends, and suggests that policy intervention of a stronger enforcement mechanism will be required to meet RFS2 targets by creating market conditions necessary for greater biofuel consumption.

More... | Comments (2) | TrackBack (0)

NREL/UGA study finds microbial enzyme digests cellulose ~2x fast as current leading commercial cellulase; implications for biofuels cost

January 04, 2014

Researchers at the Energy Department’s National Renewable Energy Laboratory (NREL) and the University of Georgia have discovered that an enzyme from a microorganism first found in the Valley of Geysers on the Kamchatka Peninsula in Russia in 1990 can digest cellulose almost twice as fast as Cel7A, the current leading component cellulase enzyme on the market.

The high-performance enzyme CelA was discovered 15 years ago, but until this recent work, all that was known about this complex protein was its general architecture and that it had the ability to degrade cellulose. If it continues to perform well in larger tests, it could help drive down the price of making lignocellulosic fuels, from ethanol to other biofuels that can be dropped into existing infrastructure. A paper reporting this finding appears in the journal Science.

More... | Comments (0) | TrackBack (0)

Field trials with genetically modified poplars shows potential for efficient conversion to sugars but with impact on biomass yield

December 31, 2013

Ethanol yield (g/L) for the Belgian and French field trials. Van Acker et al. Click to enlarge.

The results of field trials with genetically modified poplar trees in Belgium and France shows that the wood of the modified poplar trees—down-regulated for cinnamoyl-CoA reductase (CCR), an enzyme in the lignin biosynthetic pathway—improved saccharification yield—i.e., it can be more efficiently converted into sugars for producing bio-based products such as bio-plastics and bio-ethanol.

However, the study, published as an open access paper in Proceedings of the National Academy of Sciences (PNAS), also found that strong down-regulation of CCR also affected biomass yield. The team, from Belgium, France and the US, led by researchers from VIB and Ghent University, concluded that CCR down-regulation may become a successful strategy to improve biomass processing if the yield penalty can be overcome.

More... | Comments (1) | TrackBack (0)

ICCT suggests minor changes to Fed tax policy to cut higher investment risk of 2nd-gen biofuels and advance the industry

December 22, 2013

Minor changes to an existing Federal tax incentive for second-generation biofuels (i.e., biofuel made from cellulose, algae, duckweed, or cyanobacteria) could mitigate the current elevated risk of investing in the industry that is retarding its advance, according to a new paper by a team from the International Council on Clean Transportation (ICCT) and Johns Hopkins University. Some of the ICCT recommendations are mirrored in the recently released Baucus draft proposal for tax reform (earlier post), notes Dr. Chris Malins of the ICCT, one of the study’s co-authors.

Previous studies have attempted to explain the slow commercialization of cellulosic and algal biofuels qualitatively, however few have presented financial analysis across the sector, the authors observe. Using publicly available financial data, they applied investment analysis tools (the capital assets pricing model, CAPM) that are generally not applied to this space in order to develop a more rigorous understanding of the investment risk in the industry.

More... | Comments (0) | TrackBack (0)

DSM and DONG Inbicon show cellulosic bio-ethanol fermentation on industrial scale with 40% higher yield

December 09, 2013

Royal DSM, together with DONG Energy (Denmark), has demonstrated the combined fermentation of C6 and C5 sugars from wheat straw on an industrial scale. The combined fermentation results in a 40% increase in ethanol yield per ton of straw, which can result in significant cost cuts in the production of bio-ethanol from cellulosic feedstock.

The demonstration took place in DONG Energy’s Inbicon demonstration plant in Kalundborg (Denmark), the longest running demonstration facility for cellulosic bio-ethanol production in the world. (Earlier post.) The facility was reconstructed in 2013 in order to be able to conduct mixed fermentation of C6 and C5 sugars. In a two-month fermentation test mixed C6 and C5 fermentation using DSM’s advanced yeast was found to yield 40% more ethanol per ton of straw than traditional C6 fermentation.

More... | Comments (3) | TrackBack (0)

Study shows bamboo ethanol in China technically and economically feasible, cost-competitive with gasoline

December 01, 2013

Bamboo, the composition of which is highly similar to energy grasses used for biofuel production such as switchgrass, is an interesting potential feedstock for advanced bioethanol production in China due to its natural abundance, rapid growth, perennial nature and low management requirements.

Now, researchers at Imperial College London have shown that bioethanol production from bamboo in China is both technically and economically feasible, as well as cost-competitive with gasoline. An open access paper on their study is published in Biotechnology for Biofuels.

More... | Comments (15) | TrackBack (0)

Raízen breaks ground on Iogen cellulosic ethanol facility in Brazil

November 29, 2013

Iogen Corporation announced that Brazilian ethanol giant Raízen Energia Participações S/A has started construction of a commercial biomass-to-ethanol facility using Iogen Energy’s advanced cellulosic biofuel technology. (Iogen Energy is a joint venture between Raízen and Iogen Corporation. Earlier post.)

The $100-million plant, to be located adjacent to Raízen’s Costa Pinto sugar cane mill in Piracicaba, São Paulo, will produce 40 million liters (10.6 million gallons US) of cellulosic ethanol a year from sugarcane bagasse and straw. Plant start-up is anticipated in the fourth quarter of 2014.

More... | Comments (3) | TrackBack (0)

EPA proposes reduction in cellulosic biofuel and total renewable fuel standards for 2014

November 15, 2013

The US Environmental Protection Agency (EPA) is proposing a reduction in the cellulosic biofuel and total renewable fuel standards (RFS) for 2014. Once the proposal is published in the Federal Register, it will be open to a 60-day public comment period.

Specifically, EPA is proposing a total renewable fuel target of 15.21 billion gallons; the final 2013 overall volumes and standards require 16.55 billion gallons; the original target as specified in the Clean Air Act is 18.15 billion gallons. (Earlier post.) EPA is setting the troublesome cellulosic biofuel target at 17 million gallons—significantly lower than the Clean Air Act (CAA) target of 1.75 billion gallons—but an increase from the 6.0 million gallons specified for 2013. This reflects EPA’s current estimate of the amount of cellulosic biofuel that will actually be produced in 2014, but EPA will consider public comments before setting the final cellulosic standard.

More... | Comments (1) | TrackBack (0)

Green Car Congress © 2014 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group