Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Ethanol

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Emissions study suggests E10 + renewable hydrocarbons a high bioenergy alternative for conventional cars

August 14, 2014

Researchers from VTT Technical Research Center of Finland and Neste Oil analyzed the exhaust emissions from three different spark ignition engine technologies—multipoint fuel injection (MPFI); direct-injection spark-ignition (DISI); and flex-fuel (FFV)—using different biofuels—low- and high-concentration ethanol blends; isobutanol; and biohydrocarbons. They report their findings in a paper in the ACS journal Environmental Science & Technology.

Among their conclusions was that the combination of ethanol or isobutanol with renewable hydrocarbon components (i.e., drop-in biohydrocarbons) could offer an option to achieve a high-bioenergy-content gasoline that is compatible with conventional gasoline-fueled cars (i.e., those limited to a 10% ethanol blend) without a significant change in emissions.

More... | Comments (1) | TrackBack (0)

NIST study suggests severe corrosion in underground gasoline storage tanks may require component replacement sooner than expected; 500K USTs in US

July 30, 2014

Retrieve.cfm
Optical micrographs of severe corrosion on steel alloy samples exposed to ethanol and acetic acid vapors—conditions typical of underground gasoline storage tanks—after 355 hours, 643 hours, and 932 hours. Source: NIST. Click to enlarge.

In recent years, field inspectors in nine states have reported many rapidly corroding underground gasoline storage tank (UST) components such as sump pumps. These incidents are generally associated with use of gasoline-ethanol blends and the presence of bacteria, Acetobacter aceti, which convert ethanol to acetic acid, a component of vinegar. Corrosion can result in failures, leaks and contamination of groundwater, a source of drinking water.

Following up on the inspectors’ findings, a National Institute of Standards and Technology (NIST) laboratory study has demonstrated severe corrosion—rapidly eating through 1 millimeter of wall thickness per year—on steel alloy samples exposed to ethanol and acetic acid vapors. Based on this finding, NIST researchers suggest gasoline stations may need to replace submersible pump casings, typically made of steel or cast iron, sooner than expected.

More... | Comments (17) | TrackBack (0)

Ethanol producer to integrate renewable diesel production from corn distiller oil

July 25, 2014

Ethanol producer East Kansas Agri-Energy LLC (EKAE) intends to integrate renewable diesel production at its ethanol plant in Garnett, Kansas. Renewable diesel will be made from the corn distillers oil (CDO) already produced at the plant along with other feedstocks purchased on the market. WB Services is the technology provider for the catalytic renewable diesel process.

Construction on the new facility will begin soon and will be complete in about 12 to 14 months. The plant will be able to produce three million gallons of hydrocarbon fuel per year, with the ability to double that capacity in the future. The plant currently produces some 40 million gallons of ethanol; 200,000 tons of the livestock feed distillers grains; and 5 million pounds of corn oil each year from more than 16 million bushels of locally-sourced corn.

More... | Comments (2) | TrackBack (0)

Cummins ETHOS 2.8L optimized E-85 engine demonstrates 50-80% reduction in CO2 emissions in medium-duty truck

July 14, 2014

87d007a138801ec1_800x800ar
The ETHOS 2.8L demo truck. Click to enlarge.

Cummins has developed an E-85-specific engine and powertrain that reduce carbon dioxide emissions by as much as 80% compared with a baseline gasoline-powered medium-duty truck. The work was jointly funded by Cummins and partners ($3,790,027) in partnership with the California Energy Commission (CEC) ($2,712,140).

The Cummins ETHOS 2.8L is designed specifically to use E-85 (85% ethanol and 15% gasoline). To take full advantage of the favorable combustion attributes and potential of E-85, the engine operates at diesel-like cylinder pressures and incorporates advanced spark-ignition technology. It delivers the power (up to 250 hp / 186 kW) and peak torque (up to 450 lb-ft / 610 N·m) of gasoline and diesel engines nearly twice its 2.8-liter displacement.

More... | Comments (1) | TrackBack (0)

Joule first to gain US EPA clearance for commercial use of modified cyanobacteria for fuel production

July 01, 2014

The US Environmental Protection Agency (EPA) has favorably reviewed Joule’s Microbial Commercial Activity Notice (MCAN) for the company’s first commercial ethanol-producing catalyst (a modified Synechococcus cyanobacterium). This clears the catalyst for commercial use at the company’s demonstration plant in Hobbs, New Mexico.

This also marks the first time that EPA has allowed the commercial use of a modified cyanobacterium (although not of other modified microorganisms such as S. cerevisiae, E. coli, T. reesei, etc.). (The full list of EPA notifications under the Toxic Substances Control Act—TSCA—is available here.)

More... | Comments (2) | TrackBack (0)

LowCVP reports indicate pathways for meeting renewable energy targets in transportation, decarbonizing fuel to 2030 and beyond

June 18, 2014

Lowcvp
Illustrative impact of the fuel roadmap. Source: LowCVP, Element Energy. Click to enlarge.

The UK’s LowCVP has published twin reports which set out how the UK could meet its 2020 targets defined in the EU’s Renewable Energy Directive, and proceed on a pathway to decarbonize road transport fuel in the period to 2030 and beyond.

The LowCVP—the stakeholder body which brings government, industry and other stakeholders together to focus on the challenges of decarbonizing road transport—commissioned energy consultancy Element Energy to analyze the UK’s options for meeting the Renewable Energy Directive’s (RED) 2020 transport target which states that at least 10% of the final energy consumption in transport must come from renewable sources. This and the parallel Fuels Roadmap report benefitted from wide industry consultation and explicitly set out to align with existing powertrain roadmaps (including those published by the Automotive Council and the LowCVP).

More... | Comments (0) | TrackBack (0)

MIT study finds significant economic and environmental benefits from designing US LDVs to use higher octane gasoline (98 RON)

May 29, 2014

In a companion study to an SAE paper presented in April (earlier post), researchers at MIT have quantified the net economic and CO2 emissions benefit that could be obtained by utilizing 98 RON gasoline in light-duty vehicles, based on reasonable assumptions for possible refinery changes and the evolution of the LDV fleet. The paper, they note, is the first modern, peer-reviewed publication to address the costs and benefits of introducing higher octane gasoline.

According to the analysis, published in the ACS journal Environmental Science & Technology, greater use of 98 RON gasoline in appropriately tuned vehicles could further reduce annual gasoline consumption in the US by 3.0–4.4%. Even accounting for the increase in refinery emissions from production of additional high-RON gasoline, net CO2 emissions are reduced by 19–35 Mt/y in 2040 (2.5–4.7% of total direct LDV CO2 emissions). The MIT team estimated the annual direct economic benefit to be $0.4–6.4 billion in 2040, and the annual net societal benefit—including the social cost of carbon—to be $1.7–8.8 billion in 2040.

More... | Comments (0) | TrackBack (0)

MSU microbial electrolysis cell produces ethanol from glycerol, reduces wastewater in biodiesel production

May 22, 2014

Es-2014-00690a_0005
The MEC uses syntrophic cooperation within a bacterial consortium (red and green) in the anode chamber to ferment ethanol from glycerol and to remove inhibiting H2. Credit: ACS, Speers et al. Click to enlarge.

Researchers at Michigan State University have developed a microbial electrolysis cell (MEC) which will allow biodiesel plants to eliminate the creation of hazardous wastes while reducing their dependence on fossil fuel.

The platform, which uses microbes to produce ethanol from glycerol, has the added benefit of cleaning up the wastewater, will allow producers to reincorporate the ethanol and the water into the fuel-making process, said Gemma Reguera, MSU microbiologist and one of the co-authors. The ethanol replaces petrochemical methanol in the biodiesel production. A paper on their work is published in the ACS journal Environmental Science & Technology.

More... | Comments (1) | TrackBack (0)

Study finds alcohol mix from biomass-derived syngas could be suitable replacement for ethanol in fuel blending

May 12, 2014

Master.img-006
AlcoMix displays antiknock blending characteristics similar to those of ethanol when blended at various concentrations with non-oxygenated gasoline (RON = 82). Credit: ACS, Rapp et al. Click to enlarge.

Results of a study by a team from the US and Austria suggest that the primary alcohol mixture (“AlcoMix,” comprising 75% ethanol, 11% 1-propanol, 8% 1-butanol, and 6% 1-pentanol) produced from biomass-based syngas could be used as a substitute for ethanol as a primary fuel or as an antiknock blending component.

The purpose of the study, reported in the ACS journal Energy & Fuels, was to determine whether AlcoMix,the probable outcome of the thermochemical conversion of biomass using Fischer–Tropsch chemistry with synthesis gas, might be a suitable replacement for ethanol in fuel blending as an antiknock blending component for spark-ignited engines.

More... | Comments (3) | TrackBack (0)

Study finds São Paulo switch from ethanol to gasoline dropped local ozone levels by 20%, increased CO and nitric oxide concentrations

April 29, 2014

A study by a pair of researchers at Northwestern University found that when fuel prices drove residents of São Paulo, Brazil, to switch from ethanol to gasoline in their flexible-fuel vehicles, local ozone levels dropped 20%. At the same time, nitric oxide and carbon monoxide concentrations tended to go up.

The four-year study by chemist Franz M. Geiger and Alberto Salvo, formerly with Northwestern’s Kellogg School of Management and now an associate professor of economics at the National University of Singapore, is the first real-world trial looking at the effects of human behavior at the pump on urban air pollution. Their paper appears in the journal Nature Geoscience.

More... | Comments (0) | TrackBack (0)

Byogy and Avianca launch initiative to accelerate approval of Alcohol-to-Jet (ATJ) fuel

April 25, 2014

Byogy2
Byogy’s four-step process for the conversion of ethanol to renewable jet fuel. Click to enlarge.

Byogy Renewables and airline partner Avianca Brasil (earlier post) have launched an initiative to support advanced testing to accelerate the approval by ASTM of Byogy’s alcohol-to-jet (ATJ) fuel. (Earlier post.) The Avianca/Byogy Team will perform advanced Flight Testing using the CFM-56 powered A319 to acquire test data and support an Environmental Impact Study to drive ASTM adoption of Byogy’s ATJ fuel.

Byogy’s proprietary ATJ process converts ethanol to a full replacement renewable jet fuel that does not require blending, and also demonstrates performance characteristics better than jet fuel produced from oil. Byogy’s jet fuel is not an additive, but instead, a full replacement standalone fuel, and hence can be used at any blend ratio up to 100%, the company says.

More... | Comments (0) | TrackBack (0)

ARB posts 5 new LCFS pathways; two renewable diesel

April 15, 2014

California Air Resources Board (ARB) staff has posted five new and one revised Low Carbon Fuel Standard (LCFS) fuel pathway applications to the LCFS public comment website. The new pathways include two renewable diesel pathways; two biodiesel pathways, and one corn ethanol pathway. The revised package is for corn oil biodiesel.

The renewable diesel proposals both come from Diamond Green Diesel (DGD) in Louisiana, using used cooking oil (UCO) as a feedstock; the proposals differ in the mode of shipment to California: one by rail, one by ship.

More... | Comments (0) | TrackBack (0)

Stanford researchers develop copper-based catalyst that produces ethanol from CO at room temperature; potential for closed-loop CO2-to-fuel process

April 11, 2014

Researchers at Stanford University have developed a nanocrystalline copper material that produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (–0.25 volts to –0.5 volts versus the reversible hydrogen electrode) in CO-saturated alkaline water.

The material’s selectivity for oxygenates, with ethanol as the major product, demonstrates the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity, the team suggests in their paper published in the journal Nature. Ultimately, this might enable a closed-loop, emissions free CO2-to-fuel process.

More... | Comments (16) | TrackBack (0)

Worldwatch Institute: global biofuel production fell in 2012 for first time since 2000

April 10, 2014

Biofuels_figure_1
World ethanol and biodiesel production. Source: Worldwatch. Click to enlarge.

In 2012, the combined global production of ethanol and biodiesel fell for the first time since 2000, down 0.4% from the figure in 2011, according to the Worldwatch Institute’s latest Vital Signs Online report. Global ethanol production declined slightly for the second year in a row, to 83.1 billion liters (22 billion gallons US), while biodiesel output rose fractionally, from 22.4 billion liters in 2011 to 22.5 billion liters (5.9 billion gallons US) in 2012. Biodiesel now accounts for more than 20% of global biofuel production, according to the report.

Biofuels for transport—essentially ethanol and biodiesel—account for about 0.8% of global energy use, 8% of global primary energy derived from biomass, 3.4% of global road transport fuels, and 2.5% of all transport fuels.

More... | Comments (0) | TrackBack (0)

Gevo transitioning Luverne plant to produce both isobutanol and ethanol; “side-by-side” configuration

March 26, 2014

Bio-isobutanol company Gevo, Inc. is transitioning its Luverne plant to the production of both isobutanol and ethanol. Gevo said that its decision—announced during its 4Q 2013 earnings call—to transition to the simultaneous production of both products is a direct result of (1) the steady progress made in executing its flexible production technology strategy and (2) the current high ethanol margin environment.

Producing both ethanol and isobutanol allows Gevo to fully utilize the Luverne plant and increase cash flow as Gevo continues to commercialize its isobutanol production capabilities.

More... | Comments (0) | TrackBack (0)

Vertimass licenses ORNL ethanol-to-hydrocarbon conversion technology; overcoming the blend wall with drop-in fuels

March 07, 2014

Vertimass LLC, a California-based start-up company, has licensed an Oak Ridge National Laboratory (ORNL) technology that directly converts ethanol under moderate conditions at one atmosphere without the use of hydrogen into a hydrocarbon blend-stock for use in transportation fuels.

The technology developed by ORNL’s Chaitanya Narula, Brian Davison and Associate Laboratory Director Martin Keller uses an inexpensive zeolite catalyst to transform ethanol into a blend-stock consisting of a mixture of C3 – C16 hydrocarbons containing paraffin, iso-parrafins, olefins, and aromatic compounds with a calculated motor octane number of 95. Fractional collection of the fuel product allows for the different fractions to be used as blend-stock for gasoline, diesel, or jet fuel.

More... | Comments (8) | TrackBack (0)

Navigant Research forecasts 58% growth in global biofuels consumption by 2022; biodiesel and drop-in fuels gain market share

February 05, 2014

In a new report, “Biofuels for Transportation Markets”, Navigant Research forecasts that global demand for biofuels in the road transportation sector will grow from representing almost 6% of the liquid fuels market in 2013 to roughly 8% by 2022. Of that 8%, 8% will consist of advanced drop-in fuels, according to the research firm. Navigant forecasts that global biofuels consumption in the road transportation sector will grow from more than 32.4 billion gallons per year (BGPY) in 2013 to more than 51.1 BGPY in 2022—an increase of 58%.

Overall, Navigant forecasts that global retail sales of all liquid fuels for the road transportation sector will grow from more than $2.6 trillion in 2013 to more than $4.5 trillion in 2022 (73% growth).

More... | Comments (2) | TrackBack (0)

ICCT study concludes no technical barriers to use of higher blends of ethanol

ICCT
Two scenarios of US ethanol consumption and projections of original, revised, and repealed RFS2 requirements from the present to 2022. The consumption scenarios are technically achievable but do not reflect significant barriers such as cost, regulation, legality, and consumer acceptance. Source: ICCT. Click to enlarge.

A team at the International Council on Clean Transportation (ICCT) has released a paper assessing technical barriers to the use of higher blends of ethanol. Broadly, the study by Stephanie Searle, Francisco Posada Sanchez, Chris Malins, and John German concludes that (a) technical barriers do not prevent the use of higher blends of ethanol, and (b) slow uptake of blends such as E15 and E85 is due to other factors, including high cost, legal and warranty issues, and consumer awareness and acceptance.

The paper was commissioned by the Bipartisan Policy Center (BPC) as part of a yearlong effort aimed at fostering “constructive dialogue and action” on reforming the Renewable Fuel Standard (RFS2). BPC is convening a diverse RFS advisory group to discuss opportunities for reform, hosting public workshops to solicit broad input, and ultimately publishing viable policy options based, in part, on the advisory group’s deliberations. The ICCT paper is one of five background papers to be released on different aspects of the problem. The others are:

More... | Comments (0) | TrackBack (0)

Audi testing finds e-ethanol and e-diesel produced by Joule often perform better than conventional counterparts

February 03, 2014

AT140076_medium
Audi investigating its e-fuels in an optical research engine using laser-induced fluorescence. Click to enlarge.

Audi testing of synthetic ethanol (Audi e-ethanol = Joule Sunflow-E) and synthetic diesel (Audi e-diesel = Joule Sunflow-D), produced in partnership with Joule (earlier post) in a pressure chamber and optical research engine has shown that the Audi e-fuels often perform better than their conventional counterparts.

Joule’s Helioculture platform uses engineered microorganisms directly and continuously to convert sunlight and waste CO2 into infrastructure-ready fuels, including ethanol and hydrocarbons (n-alkanes) that serve as the essential chemical building blocks for diesel.

More... | Comments (1) | TrackBack (0)

LCA study finds carbon intensity of corn ethanol decreasing, gasoline rising; ethanol estimated 43-60% lower than oil by 2022

January 30, 2014

Lca
Top: Weighted CI (g CO2 e/MJ) of petroleum fuels and corn ethanol consumed in the US over time. Bottom: Weighted CI of petroleum fuels consumed in the US and California over time. Click to enlarge.

The carbon intensity (CI) of corn ethanol—i.e., the greenhouse gas emissions produced via the production of a volume of the fuel—is declining, while the average CI of gasoline produced from petroleum sources is gradually increasing, according to a recent report prepared by Life Cycle Associates, LLC for the Renewable Fuels Association (RFA). Life Cycle Associates has completed numerous life cycle analysis studies, including those to establish fuel pathway carbon intensities (CI) for the California Low Carbon Fuel Standard (LCFS).

According to the study, the average corn ethanol reduced GHG emissions by 32% compared to average petroleum gasoline in 2012—including prospective emissions from indirect land use change (ILUC) for corn ethanol. When compared to fuel produced from unconventional petroleum sources such tight oil from fracking and oil sands, average corn ethanol reduces GHG emissions by 37% compared to the former and 40% to the latter.

More... | Comments (1) | TrackBack (0)

Oak Ridge Lab study finds E30 blend and EGR can deliver significant efficiency improvements in optimized SI engines

January 17, 2014


Estimated gasoline equivalent MPG of each fuel and combustion strategy in a midsize sedan at a 65 mph steady cruise condition, referenced to chassis dyno data of the production GM Ecotec SI engine and vehicle. CDC = conventional diesel combustion. Credit: ACS, Splitter and Szybist (2014a). Click to enlarge.

Researchers at Oak Ridge National Laboratory’s National Transportation Research Center (NTRC) report that an E30 (30% ethanol) mid-level ethanol blend shows promise as a means for significant improvement in vehicle efficiency in optimized spark-ignited (SI) engines. Results of the study by Derek Splitter and Jim Szybist suggest that it could be possible to implement a 40% downsize + downspeed configuration (1.2 L engine) into a representative midsize sedan using this combination of optimized engine and mid-level alcohol blend.

As an example, for a midsize sedan at a 65 mph (105 km/h) cruise, estimated fuel efficiency of 43.9 mpg (5.4 l/100 km) with engine-out CO2 of 102 g/km could be achieved with similar reserve power to a 2.0 L engine fueled with regular gasoline (38.6 mpg/6.1 l/100km, engine out CO2 of 135 g/km). The data suggest that, with midlevel alcohol–gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol–gasoline blends and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

More... | Comments (4) | TrackBack (0)

Sandia study finds meeting RFS2 requirements unlikely without stronger enforcement mechanism; the importance of drop-in biofuels

January 06, 2014

Even if well-known technology, infrastructure, economic and political challenges in meeting the biofuel requirements of the RFS2 mandate are overcome, it is “highly unlikely” that the light-duty vehicle parc will be capable of consuming the RFS2 (Renewable Fuel Standard) mandated volumes of biofuels, according to a new analysis by a team from Sandia National Laboratory.

The Sandia researchers showed that the key to meeting the RFS2 targets is the fuel price differential between E85 fuel and conventional gasoline (low ethanol blends), so that E85 owners refuel with E85 whenever possible. In other words, RFS2 will be satisfied if gasoline becomes significantly more expensive than E85 on a per energy basis. This is, however, the opposite of historic pricing trends, and suggests that policy intervention of a stronger enforcement mechanism will be required to meet RFS2 targets by creating market conditions necessary for greater biofuel consumption.

More... | Comments (2) | TrackBack (0)

Ford researchers report detailed study of the effect of different ethanol blend levels on emissions from FFVs

December 23, 2013

Master.img-005
FTP cycle-weighted tailpipe emissions of N2O, NOx, and the sum of NMOG and NOx. The minimum in NOx and NMOG emissions for midlevel ethanol blends points to future opportunities for emission reductions from FFVs. Credit: ACS, Hubbard et al. Click to enlarge.

A team at Ford Motor Company’s Research and Innovation Center in Dearborn conducted a detailed study of the effect of ethanol blend level in emissions, using a 2006 model Mercury Grand Marquis flexible fuel vehicle (FFV) operating on E0, E10, E20, E30, E40, E55, and E80 on a chassis dynamometer. The study thus included the current predominant market fuel (E10); a range of possible future midlevel ethanol blends (E20−E40); and the new range for high-level ethanol blends (E55, E80).

The number of blends they studied is about twice that of previous studies, and delivers a more detailed picture of the effect of ethanol blend level on emissions. Further, they reported data for engine-out emissions and tailpipe emissions; operating temperatures (engine-out and catalyst); and ethanol concentrations used in the engine control strategy. Comparing these data allows for differentiation between fuel chemistry and engine calibration effects—the two general mechanisms by which increased ethanol content in fuel affects the emissions.

More... | Comments (2) | TrackBack (0)

ARB posts six new LCFS pathway applications for comment; new PFAD biodiesel approach

December 18, 2013

The California Air Resources Board (ARB) staff has posted six new Low Carbon Fuel Standard (LCFS) pathway applications to the LCFS public comment web site: corn ethanol; molasses ethanol (from Brazil); palm fatty acid distillates (PFAD) to biodiesel; and landfill gas to LNG, L-CNG, and CNG.

The LCFS requires oil producers, importers and other fuel providers gradually to reduce, on a full-fuel lifecycle basis, the carbon intensity (CI) of their transportation fuel mix (measured in gCO2e/MJ) by from 0.25% in 2011 to 10% by 2020. (Earlier post.) The current batch of new applications covers quite a range of carbon intensity in the fuels: from 88.69 gCO2e/MJ for the corn ethanol, down to 10.64 gCO2e/MJ for biodiesel produced from PFAD—the first such pathway considered for the LCFS program. The baseline carbon intensity for gasoline in the LCFS lookup table is 99.18 gCO2e/MJ and 98.03 gCO2e/MJ for diesel.

More... | Comments (0) | TrackBack (0)

Rice study: higher ethanol blends require different approach to deal with vapor intrusion in buildings; extreme event, low probability

December 16, 2013

A study lead by researchers at Rice University suggests that current approaches to manage the vapor intrusion risk into buildings in the vicinity of conventional fuel spills might need to be modified when dealing with some higher ethanol blend fuel (i.e., E20 up to E95) releases. The study is published in the ACS journal Environmental Science & Technology.

The basis of the concern is that ethanol-blended fuel spills usually stimulate methanogenesis in the subsurface, which could pose an explosion risk if methane accumulates in a confined space above the ground where ignitable conditions exist. The ethanol-derived methane may also increase the vapor intrusion potential of toxic fuel hydrocarbons (e.g., benzene) by stimulating the depletion of oxygen by the methanotrophs, and thus inhibiting aerobic biodegradation of hydrocarbon vapors.

More... | Comments (1) | TrackBack (0)

Mascoma bioengineered yeasts have produced more than 1B gallons of ethanol

December 11, 2013

Mascoma Corporation, a leading provider of bioconversion technology, announced that its consolidated bioprocessing technology (CBP) has been used to produce more than 1 billion gallons of corn ethanol. The company said that this represented a key commercial milestone for its MGT yeast products including TransFerm and TransFerm Yield+. (Earlier post.)

Using its proprietary CBP technology platform, Mascoma has developed bioengineered yeasts to reduce costs and improve yields in the production of renewable fuels and chemicals. Mascoma’s first commercial application of its technology platform are its Mascoma Grain Technology (MGT) yeast products, which are drop-in substitutes for existing yeasts designed to improve the economics of corn-based ethanol production.

More... | Comments (0) | TrackBack (0)

BAL scientists engineer yeast to produce ethanol from brown seaweed; brown seaweed biorefinery

December 03, 2013

An international team of researchers from Bio Architecture Labs, a synthetic biology and enzyme design company focused on the production of biofuels and biochemicals from macroalgae (seaweed) (earlier post), reports the development of a synthetic yeast platform based on Saccharomyces cerevisiae that can efficiently produce ethanol from brown seaweed; the paper is published in the journal Nature.

In January 2012, BAL scientists reported the engineering a strain of Eschericia coli that could break down and then ferment alginate—one of the most abundant sugars in brown algae, but a sugar that industrial microbes can’t metabolize—into ethanol. That paper was featured on the cover of the journal Science. (Earlier post.)

More... | Comments (4) | TrackBack (0)

NREL study probes emissions impact of butanol-gasoline blends in light-duty vehicles

November 26, 2013

Master.img-000
Summary of significant emissions results from the fuel testing. Credit: ACS, Ratcliff et al. Click to enlarge.

Results of a study led by a team from the National Renewable Energy Laboratory on the impact of butanol-gasoline blends on light-duty vehicle emissions suggest that widespread deployment of n-butanol or i-butanol in the gasoline pool could result in changes to the estimated emissions of alcohols and carbonyls in the emissions inventory. Given equivalent deployment of butanols and ethanol, the results suggest emissions of unburned alcohols would decrease, but carbonyl emissions would increase; some of these compounds have poorly understood health effects, they note.

The carbonyls acetaldehyde and formaldehyde are classified as carcinogens or probable carcinogens by the National Institute for Occupational Safety and Health (NIOSH), International Agency for Research on Cancer, and the EPA. NIOSH considers butyraldehyde to have similar reactivity and mutagenicity to acetaldehyde.

More... | Comments (0) | TrackBack (0)

EPA proposes reduction in cellulosic biofuel and total renewable fuel standards for 2014

November 15, 2013

The US Environmental Protection Agency (EPA) is proposing a reduction in the cellulosic biofuel and total renewable fuel standards (RFS) for 2014. Once the proposal is published in the Federal Register, it will be open to a 60-day public comment period.

Specifically, EPA is proposing a total renewable fuel target of 15.21 billion gallons; the final 2013 overall volumes and standards require 16.55 billion gallons; the original target as specified in the Clean Air Act is 18.15 billion gallons. (Earlier post.) EPA is setting the troublesome cellulosic biofuel target at 17 million gallons—significantly lower than the Clean Air Act (CAA) target of 1.75 billion gallons—but an increase from the 6.0 million gallons specified for 2013. This reflects EPA’s current estimate of the amount of cellulosic biofuel that will actually be produced in 2014, but EPA will consider public comments before setting the final cellulosic standard.

More... | Comments (1) | TrackBack (0)

Researchers explore ethanol-diesel dual-fuel combustion for reduction in engine-out emissions

November 14, 2013

Normal.img-008
Effect of ethanol energy fraction and PFI position on CO, NOx, HC, and opacity emissions. Credit: ACS, Padala et al. Click to enlarge.

Researchers at the University of New South Wales (Australia) have demonstrated the potential for ethanol use in diesel engines with dual-fuel combustion, in which ethanol is injected into the intake manifold and diesel is directly injected into the engine cylinder. A paper on their work is published in the ACS journal Energy & Fuels.

The goal of such an approach is effectively to address some of the drawbacks of conventional diesel combustion, such as higher in-cylinder soot formation associated with locally rich mixtures and high flame temperatures and engine-out emissions of NOx.

More... | Comments (2) | TrackBack (0)

LanzaTech-Shougang joint venture in China earns RSB certification for waste steel mill gas to biofuel process

November 05, 2013

Beijing Shougang LanzaTech New Energy Science & Technology Co., Ltd. has earned the Roundtable on Sustainable Biomaterials Services Foundation’s (RSB’s) sustainability certification for the joint venture’s facility that converts waste steel mill gases to sustainable biofuels. LanzTech and the Shougang Group signed the joint venture agreement in September 2011.

The facility, which utilizes LanzaTech’s waste gas fermentation technology (earlier post), is the first RSB-certified biofuel plant in China, and the first of its kind anywhere to receive this key certification for industrial carbon capture and utilization. The RSB is a global sustainability standard and certification system for biofuels and biomaterials production.

More... | Comments (1) | TrackBack (0)

Univ. of Illinois team argues that renewable fuel standard needs to be modified, not repealed

October 16, 2013

A policy analysis by two University of Illinois researchers argues that Congress should minimally modify, not repeal, the Renewable Fuel Standard (RFS). In the study, law professor Jay P. Kesan and Timothy A. Slating, a regulatory associate with the Energy Biosciences Institute, argue that RFS mandates ought to be adjusted to reflect current and predicted biofuel commercialization realities; that its biofuel categories be expanded to encompass all emerging biofuel technologies; and that its biomass sourcing constraints be relaxed.

In the paper, to be published in the NYU Environmental Law Journal, Kesan and Slating contend that the RFS can serve as a “model policy instrument” for the federal support of all types of socially beneficial renewable energy technologies.

More... | Comments (9) | TrackBack (0)

NREL review of E15 effects on MY2001 and later cars finds no meaningful differences with E10

October 13, 2013

A review of 43 studies of the effects of E15 (15% ethanol blends) on Model Year 2001 and newer cars by the National Renewable Energy Laboratory (NREL) found that the studies reviewed showed no meaningful differences between E15 and E10 in any performance category.

The NREL study, commissioned by the Renewable Fuels Association, included 33 unique research studies, as well as 10 related reviews. The study does not address engines that EPA has not approved for use with E15, such as pre-2001 cars, marine, snowmobile, motorcycle, and small non-road engines.

More... | Comments (4) | TrackBack (0)

Butamax and Highwater Ethanol break ground on biobutanol retrofit project

October 04, 2013

Butamax
Converting a corn ethanol plant to produce biobutanol requires changes to the fermentation step (mainly a new microorganism) and to alcohol recovery from the fermentation. Source: Butamax. Click to enlarge.

Butamax Advanced Biofuels LLC, the biobutanol technology company formed as a joint venture between DuPont and BP, and Highwater Ethanol LLC, a producer of first-generation corn ethanol, have begun to retrofit Highwater’s ethanol plant in Lamberton, Minnesota for the production of bio-isobutanol.

Butamax’s technology package will include the installation of novel corn oil separation technology. Butamax and Highwater have entered into definitive agreements for license of Butamax’s patented corn oil separation technology, which is an integral part of a full retrofit to biobutanol production and can also be installed independently as a first phase of the conversion.

More... | Comments (2) | TrackBack (0)

Study finds HTL algal biofuels offer 50-70% lifecycle CO2 reduction compared to petroleum fuels; EROI and GHG comparable to or better than other biofuels

September 20, 2013

Liu
The EROI ratio and GHG emissions/MJ of (a) algae-derived diesel and (b) algae-derived gasoline produced using HTL. The results are benchmarked against commercialized biodiesel or bioethanol as well as petroleum-derived versions of the drop-in fuels. Credit: Liu et al. Click to enlarge.

A new life cycle analysis by a team led by researchers at the University of Virginia has concluded that biofuel produced from algae via hydrothermal liquefaction (HTL) can reduce life cycle CO2 emissions by 50 to 70% compared to petroleum fuels, and also has energy burdens and GHG (greenhouse gas) emission profiles that are comparable to or better than conventional biofuels, cellulosic ethanol and soybean biodiesel.

HTL algae-derived gasoline has a considerably lower GHG footprint and a better EROI relative to conventional ethanol made from corn on a per MJ basis, the team found. The data suggest that a shift to algae-derived gasoline could have immediate climate benefits even using existing technologies, the authors noted. In addition, given expected technological improvements, the benefits of algae-derived gasoline will likely improve.

More... | Comments (5) | TrackBack (0)

European Parliament backs 6% cap on land-based biofuels, switchover to advanced biofuels; no mandate

September 11, 2013

In a vote on draft legislation, the European Parliament has backed a cap on the use of biofuels produced from starch-rich crops, sugars, oil and other crops grown on land and a speedy switchover to new biofuels from alternative sources such as seaweed and waste. The measures aim to reduce greenhouse gas emissions that result from the turnover of agricultural land to biofuel production.

According to current legislation, member states must ensure that renewable energy accounts for at least 10% of energy consumption in transport by 2020. In the adopted text, MEPs (Members of the European Parliament) say land-based biofuels should not exceed 6% of the final energy consumption in transport by 2020. (The proposal by the European Commission on which the draft legislation was based had suggested an even lower 5% cap.)

More... | Comments (1) | TrackBack (0)

EPA grants Aemetis’ sorghum ethanol and biogas the D5 advanced biofuel RIN category

September 03, 2013

The US Environmental Protection Agency (EPA) has granted Aemetis, an advanced fuels and renewable chemicals company formerly known as AE Biofuels, approval to produce ethanol using grain sorghum and biogas at its converted corn ethanol plant to generate D5 Advanced Biofuels Renewable Identification Numbers (RINs).

Until now, the D5 Advanced Biofuels RIN portion of the RFS (Renewable Fuel Standard) has been mostly met by imported Brazilian sugarcane ethanol or by substituting D4 biodiesel RINs due to a lack of advanced ethanol production.

More... | Comments (4) | TrackBack (0)

DEMA consortium targeting direct production ethanol from algae at less than $2/gallon

The EU-funded project DEMA (Direct Ethanol from MicroAlgae) is working to produce bioethanol directly from cyanobacteria—a microalgae found in almost every terrestrial and aquatic habitat, including in oceans, lakes and damp soil, and on rocks—for less than €0.40/liter (US$2.00/gallon).

The conversion of solar energy, H2O and CO2 into ethanol will be carried out by a metabolically engineered strain of the cyanobacterium, Synechocystis sp. PCC 6803. The DEMA team will develop and demonstrate the technology.

More... | Comments (4) | TrackBack (0)

Viable exhaust-driven on-board ethanol reforming for improvements in fuel economy and emissions

August 20, 2013

Master.img-008
Schematic diagram of the successful “shoebox” reformer design and a picture of the core, after insertion of the catalyst. Credit: ACS, Sall et al. Click to enlarge.

A team at Monsanto and colleagues at AVL Powertrain have successfully designed and demonstrated an onboard low-temperature ethanol reformer that can be driven by exhaust heat. A paper on their work is published in the ACS journal Energy & Fuels.

The low-temperature ethanol-reforming pathway, catalyzed by copper-nickel powder catalysts, transforms ethanol into a mixture of H2, CO, and CH4 at temperatures between 300 and 350 °C. Blending 25-50% of this low-temperature ethanol reformate with ethanol or E85 fuels enables dilute engine operation, resulting in substantial improvements in fuel economy and emissions.

More... | Comments (8) | TrackBack (0)

Green Car Congress © 2013 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group