Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Fuel Cells

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

FTA announces $55M for FY 2017 Low-No funding

April 28, 2017

The Federal Transit Administration (FTA) announced the availability of $55 million of Fiscal Year 2017 funds (FTA-2017-003-TPM-LowNo) for the purchase or lease of low- or no-emission vehicles as well as related equipment or facilities (Low-No). Only $31.5 million is available under the Continuing Resolution that expires on 28 April 28 2017.

The main purpose of the Low-No Program is to support the transition of the US transit fleet to the lowest polluting and most energy efficient transit vehicles. The Low-No Program provides funding to State and local governmental authorities for the purchase or lease of zero-emission and low-emission transit buses, including acquisition, construction, and leasing of required supporting facilities.

More... | Comments (0)

DOE SBV Pilot selects 38 small business for labs partnerships; 2 fuel cell and 4 vehicle projects

April 24, 2017

The US Department of Energy’s (DOE) Small Business Vouchers (SBV) Pilot has selected eight DOE national labs for collaborations with 38 small businesses in the third round of funding. Among these are two projects in the fuel cells area and four projects in the vehicle area. Other projects address advanced manufacturing, bioenergy, buildings, geothermal, solar, water and wind technologies.

In the first two rounds of the program, 12 DOE national labs received funding to partner with 76 small businesses. With the latest announcement, SBV will have awarded approximately $22 million to support partnerships between 114 US small businesses and the national labs.

More... | Comments (1)

SunLine Transit receives $12.5M for five H2-powered buses, H2 generating station in Coachella Valley

April 21, 2017

California Climate Investments is awarding a $12.5-million grant to SunLine Transit Agency for five new zero-emission New Flyer hydrogen fuel cell buses. The grant also supports the development of the largest hydrogen fueling station in the US of its kind, from Hydrogenics, using electricity and renewable energy to generate clean hydrogen.

The grant is part of the state’s effort to use proceeds from the climate change cap-and-trade program to reduce greenhouse gases, including a widespread effort to promote low carbon transit such as hydrogen-powered or electric buses throughout California, with a special focus on serving disadvantaged communities.

More... | Comments (13)

Toyota North America unveils hydrogen-fuel-cell heavy-duty truck proof-of-concept; twin Mirai fuel cell stacks

April 19, 2017

Toyota Motor North America, Inc. (TMNA) revealed “Project Portal”—a hydrogen fuel cell system designed for heavy-duty trucks applied in a Class 8 truck for use at the Port of Los Angeles (POLA).

Announced at a press conference with Port officials and representatives from California Air Resources Board (CARB) and the California Energy Commission (CEC), the zero-emission truck proof-of-concept will take part in a feasibility study examining the potential of fuel cell technology in heavy duty applications. The study will begin this summer and contribute to the Port’s Clean Air Action Plan, which has significantly reduced harmful emissions from operations at the Ports of Long Beach and Los Angeles since 2005.

More... | Comments (21)

MIT teams receiving $10M from TRI for next-gen battery materials

April 04, 2017

Three MIT-affiliated research teams will receive about $10M in funding as part of a $35M materials science discovery program launched by the Toyota Research Institute (TRI). (Earlier post.) Provided over four years, the support to MIT researchers will be primarily directed at scientific discoveries and advancing energy storage.

MIT’s Martin Bazant, joined by colleagues at Stanford University and Purdue University, will lead an effort to develop a novel, data-driven design of lithium-ion (Li-ion) batteries. Leveraging a nanoscale visualization technique that revealed, for the first time, how Li-ion particles charge and discharge in real time, in good agreement with his theoretical predictions, Bazant, the E. G. Roos (1944) Professor of Chemical Engineering and a professor of mathematics, will use machine learning to develop a scalable predictive modeling framework for rechargeable batteries.

More... | Comments (1)

Toyota Research Institute launches $35M effort to use AI to accelerate design & discovery of advanced materials; focus on batteries and fuel cells

March 30, 2017

The Toyota Research Institute (TRI) will collaborate with research entities, universities and companies on materials science research, investing approximately $35 million over the next four years in research that uses artificial intelligence to help accelerate the design and discovery of advanced materials. Initially, the program will aim to identify new advanced battery materials and fuel cell catalysts that can power future zero-emissions and carbon-neutral vehicles.

Initial research projects include collaborations with Stanford University; the Massachusetts Institute of Technology; the University of Michigan; the University at Buffalo; the University of Connecticut; and the UK-based materials science company Ilika. TRI is also in ongoing discussions with additional research partners.

More... | Comments (1)

Ascend Energy and Atrex Energy demo tubular SOFC electric ATV, fueled by natural gas

March 29, 2017

Ascend Energy, in collaboration with solid oxide fuel cell manufacturer Atrex Energy, released the results of a joint project to demonstrate a newly developed tubular solid oxide fuel cell (SOFC) in an electric all-terrain vehicle (ATV). The project was supported by a $146,283 Energy Innovations Small Grant (EISG) from the California Energy Commission.

Ascend worked with Tructronics Inc., idea Solutions Design, and JB Mechanical to integrate and install a commercial 1000 Watt Atrex Energy fuel cell power generator fueled with compressed natural gas in an all-electric Polaris Ranger ATV. ATVs are in common use in California farms, ranches and orchards as a utility vehicle but the gasoline-fueled versions make a significant contribution to poor air quality in the farm regions of the state.

More... | Comments (1)

Aalto University team develops promising new electrocatalyst for hydrogen evolution reaction; one-hundredth the amount of Pt

March 26, 2017

A group of Aalto University (Finland) researchers led by professors Tanja Kallio and Kari Laasonen has developed a manufacturing method for hydrogen evolution reaction (HER) electrocatalysts that use only one-hundredth of the amount of platinum generally used in commercial products.

They achieved pseudo atomic-scale dispersion of Pt—i.e. individual atoms or sub-nanometer clusters—on the sidewalls of single-walled carbon nanotubes (SWNTs) with a simple and readily up-scalable electroplating deposition method. These SWNTs activated with an ultra-low amount of Pt exhibit a similar activity to that of a commercial Pt/C with a notable higher (~66-333 fold) Pt loading for catalyzing hydrogen evolution reaction (HER) under the acidic conditions required in proton exchange membrane technology. A paper on their work is published in the journal ACS Catalysis.

More... | Comments (5)

California ARB votes to move forward with light-duty vehicle GHG and ZEV programs through 2025; cranking it up post-2025

March 25, 2017

After considering the Advanced Clean Cars Midterm Review (earlier post), the California Air Resources Board voted unanimously on Friday to continue with the vehicle greenhouse gas emission standards and ZEV program for cars and light trucks sold in California through 2025. The action ensures that California and 12 other states that follow its vehicle regulations—one third of the US auto market—will move forward the greenhouse gas emission standards adopted in the 2012 process involving the federal government, California and the automakers.

The Board also voted to support the expansion of the ZEV marketplace before 2025, calling for redoubling current efforts underway to support market growth and paving the way for new regulations to increase rapidly the number of zero-emission vehicles required to be sold in California after 2025.

More... | Comments (19)

California ARB moves forward with climate and air quality actions

March 24, 2017

On the first day of a two-day board meeting—the second day of which (Friday 24 March) will consider the Advanced Clean Cars Midterm Review—the California Air Resources Board (ARB) took a number of climate and air quality actions. CARB approved the State Strategy for the State Implementation Plan (State SIP Strategy), which describes CARB’s commitment for further reducing vehicle emissions needed to meet federal air quality standards over the next 15 years. The Board also approved the South Coast Air Quality Management District’s comprehensive air quality plan.

CARB also adopted a new plan to curb destructive “super pollutants” including black carbon, fluorinated gases and methane. The plan, California’s Short-lived Climate Pollutant Reduction Strategy, maps out the route to more rapid greenhouse gas reductions by clamping down on these super pollutants.

More... | Comments (0)

Successful first test run of Alstom Coradia iLint fuel cell train; signed letters of intent for 60 trains

March 15, 2017

Alstom successfully performed the first test run at 80 km/h (50 mph) of the fuel cell passenger train Coradia iLint (earlier post) on its own test track in Salzgitter, Lower Saxony (Germany). An extensive test campaign will be conducted in Germany and Czech Republic in the coming months before the Coradia iLint performs its first passenger test runs on the Buxtehude–Bremervörde–Bremerhaven–Cuxhaven (Germany) route beginning of 2018.

The four-week test runs currently underway in Salzgitter aim at confirming the stability of the energy supply system based on coordinated interaction between the drive, the fuel cell and the battery of the vehicle. The braking power is also being tested to check the interface between the pneumatic and the electric brake.

More... | Comments (4)

Hyundai Motor reveals next generation fuel cell concept at Geneva Motor Show; new SUV Fuel Cell model set for launch in 2018

March 07, 2017

Reaffirming its commitment to fuel cell vehicle development, Hyundai Motor unveiled its futuristic FE Fuel Cell Concept at the Geneva Motor Show 2017. The FE Fuel Cell Concept represents the next step for Hyundai Motor toward realizing its ultimate ambition of creating a zero-emission Hydrogen Energy Society.

The FE Fuel Cell Concept continues Hyundai Motor’s commitment to fuel cell vehicle development and is part of the company’s eco-vehicle program that will see 14 or more new environmentally-focused models introduced by 2020. Spurred on by greater global demand for fuel-efficient, eco-friendly vehicles, the program continues the example of innovation set by IONIQ, the first car to offer a choice of three electrified powertrains in a single body type.

More... | Comments (5)

PSA to acquire Opel/Vauxhall & GM Financial Euro operations for €2.2B; partnering on electrification and maybe fuel cells

March 06, 2017

General Motors and PSA Group announced an agreement under which PSA Group will acquire GM’s Opel/Vauxhall subsidiary and GM Financial’s European operations in a transaction valuing these activities at €1.3 billion (US$1.38 billion) and €0.9 billion (US$0.95 billion, respectively. With the addition of Opel/Vauxhall, which generated revenue of €17.7 billion (US$18.75 billion) in 2016, PSA will become the second-largest automotive company in Europe, with a 17% market share.

GM will also own warrants to purchase shares of PSA. GM and PSA also expect to collaborate in the further deployment of electrification technologies. Existing supply agreements for Holden and certain Buick models will continue, and PSA may potentially source long-term supply of fuel cell systems from the GM/Honda joint venture.

More... | Comments (1)

Symbio targets European taxi market with fuel cell range extender in Nissan e-NV200; 500 km range

March 02, 2017

Symbio has integrated a 15 kW (net) fuel cell range extender in a Nissan e-NV200 electric van, with plans to introduce the vehicle to the European taxi market. The new plug-in hybrid hydrogen fuel cell vehicle will deliver at least 500 km of range. Symbio unveiled the van at the FC Expo 2017 in Tokyo.

The customized e-NV200 offers taxi drivers a similar total cost of ownership to a hybrid taxi, but with the range of an internal combustion engine. Thus, this vehicle could be used for intensive urban taxi operations or for online passenger transportation network services. It can be recharged from a low-cost power supply, and refueled with hydrogen in three minutes (3.8 kg hydrogen at 700 bar).

More... | Comments (9)

NSF to award $13M to projects focused on electrochemical and organic photovoltaic systems

February 24, 2017

The US National Science Foundation (NSF) will award more than $13 million to projects in the Energy for Sustainability program. The goal of the Energy for Sustainability program is to support fundamental engineering research that will enable innovative processes for the sustainable production of electricity and fuels, and for energy storage. Processes for sustainable energy production must be environmentally benign, reduce greenhouse gas production, and utilize renewable resources.

The focus of this funding opportunity (PD-17-7644) is on electrochemical energy systems and organic photovoltaics.

More... | Comments (0)

Toyota delivers fuel cell bus to Tokyo Metropolitan Government; more than 100 planned by 2020 Olympics

Toyota Motor Corporation delivered the first fuel cell bus (FC bus) sold under the Toyota brand to the Bureau of Transportation of the Tokyo Metropolitan Government. This FC bus will be put into operation as a Toei route bus in March along with a second bus that is scheduled for delivery in the same month.

Toyota plans to introduce more than 100 FC buses mainly within the Tokyo area, ahead of the Tokyo 2020 Olympic and Paralympic Games. The increased use of FC buses in urban areas is expected to help raise the level of understanding by the general public regarding the use of FC buses as a form of public transportation.

More... | Comments (8)

Ballard signs $25M deal with Broad-Ocean for manufacture & sales of 30 and 85 kW fuel cell systems in China

February 16, 2017

Ballard Power Systems has signed a definitive agreement relating to technology transfer, licensing and supply arrangements with strategic partner Zhongshan Broad-Ocean Motor Co., Ltd. (Broad-Ocean) for the assembly and sale of FCveloCity 30 kW and 85 kW fuel cell systems in China. Under the deal, Broad-Ocean will manufacture fuel cell modules in three strategic regions in China, including Shanghai. The deal has an estimated value of approximately $25 million in revenue to Ballard over the initial 5-year term, including $12 million in Technology Solutions revenue.

In August 2016, Broad-Ocean became Ballard’s largest shareholder following an investment of $28.3 million in Ballard common shares, representing approximately 9.9% of Ballard’s outstanding common shares following the transaction.

More... | Comments (3)

Ballard in consortium with New Flyer to deploy 20 fuel cell electric buses in CA

February 14, 2017

Ballard Power Systems announced its membership in the “Fuel Cell Electric Bus Commercialization Consortium” (FCEBCC), a large-scale project for which funding has now been committed to support deployment of 20 zero-emission hydrogen fuel cell electric buses at two California transit agencies. Ten (10) buses are to be deployed with Alameda Contra-Costa Transit District (AC Transit) and 10 buses are to be deployed with the Orange County Transportation Authority (OCTA).

The FCEBCC project is funded and sponsored by: the California Air Resources Board (CARB) through the California Climate Investments program; the Bay Area Air Quality Management District (BAAQMD); and the South Coast Air Quality Management District (SCAQMD). The Center for Transportation and Environment (CTE), a non-profit member-based organization, is providing project management and oversight.

More... | Comments (2)

H2ME has 100 fuel cell vehicles on the road in Germany, France and UK

February 08, 2017

Hydrogen Mobility Europe (H2ME), a multi-country, multi-partner project to demonstrate that hydrogen can support Europe’s future transport demands, announced that it has deployed its first 100 fuel cell electric vehicles (FCEVs) in Germany, France and the UK.

Sixty Symbio Renault Kangoo ZE-H2 range-extended fuel cell vans have been deployed in the UK and France, supporting the development of a network of hydrogen refuelling stations in those markets. Powered by a compact 5 kW fuel cell module, coupled with a hydrogen storage unit and medium-size automotive battery pack, Symbio’s range-extender kit doubles the range of Renault’s electric-only Kangoo ZE model to 320 km.

More... | Comments (5)

Symbio uses Borit metal bipolar plates in its commercial fuel cell range extender

February 03, 2017

Belgium-based Borit is the supplier-of-choice for metal bipolar plates in the successful range extender fuel cell systems of the French market leader Symbio. (Earlier post.) The production of metal bipolar plates—a key component in fuel cells—is challenging, requiring subtle structures, tight tolerances, precise and gas tight laser welding of very thin metal sheets, and strict quality control in a cost-efficient way at advantageous prices.

The performance and power density of fuel cells—particularly important in vehicles—strongly depends on the capabilities of the bipolar plate manufacturer. Borit’s production is based on its proprietary forming technology Hydrogate, which enables fast development from prototyping to volume production.

More... | Comments (7)

GM and Honda to establish industry-first $85M joint fuel cell system manufacturing operation in Michigan

January 30, 2017

General Motors and Honda are establishing the auto industry’s first manufacturing joint venture—Fuel Cell System Manufacturing, LLC, FCSM)—to mass-produce an advanced hydrogen fuel cell system that will be used in future products from each company. Over the past three years, GM and Honda have been collaborating on next-generation fuel cell and hydrogen storage systems, aiming at commercialization in the 2020 time frame. (Earlier post.)

The co-developed new generation stack builds on the compact size and high-performance of Honda’s current generation stack in the Clarity (earlier post) by achieving significant cost reductions. FCSM will operate within GM’s existing battery pack manufacturing facility site in Brownstown, Michigan, south of Detroit. Mass production of fuel cell systems is expected to begin around 2020 and create nearly 100 new jobs. The companies are making equal investments totaling $85 million in the joint venture.

More... | Comments (33)

Joint CEC, CARB annual report details progress in build-out of hydrogen refueling infrastructure

January 25, 2017

The California Energy Commission and California Air Resources Board released the annual Joint Agency Staff Report on Assembly Bill 8: 2016 Assessment of Time and Cost Needed to Attain 100 Hydrogen Refueling Stations in California. The 2016 Joint Report updates the time and cost assessments to design, permit, construct, and make hydrogen refueling stations operational and open retail for the stations funded under the Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP).

As of 5 December 2016, California has 25 open retail stations selling hydrogen for use as a transportation fuel with 23 more open retail stations under development. Combined with two additional California Air Resources Board-funded stations that are open non-retail (in Harbor City and at California State University, Los Angeles (CSULA)), California’s hydrogen refueling station network comprises 50 stations. When the 2015 Joint Report was published, six stations were open retail.

More... | Comments (0)

Hydrogenious Technologie and MAN Diesel & Turbo partner to develop LOHC hydrogenation reactors

Hydrogenious Technologies GmbH and MAN Diesel & Turbo SE—which, in addition to being a leading provider of large-bore diesels and turbomachinery for marine and stationary applications, is also a specialist for salt-bed reactors for chemical industry—recently closed an agreement for joint development of industrial-scale Liquid Organic Hydrogen Carrier (LOHC) hydrogenation reactors.

LOHC technology enables the safe and efficient storage of hydrogen through molecular binding; Hydrogenious thus builds systems to bind hydrogen chemically to a carrier liquid—specifically, dibenzyltoluene. This enables efficient transport and storage of large amounts of hydrogen at ambient conditions. Following the commissioning of first container-based pilot systems by Hydrogenious Technologies, this joint development now aims at a stepwise scaling of hydrogenation systems to the multi-ton per day scale of today’s hydrogen sources.

More... | Comments (2)

KPMG Survey: execs say connected car generates 10x revenue than a conventional vehicle; market share based on units “outdated”; BEVs #1 trend

January 24, 2017

Advancements such as connectivity, big data, autonomous vehicles and artificial intelligence are driving new economic models for automakers, and most see tremendous revenue potential and consumer value in leveraging driver and vehicle data to offer mobility services, according to the 2017 KPMG Global Automotive Executive Study.

The KPMG research, which polled nearly 1,000 executives with the world’s leading automotive companies, found that 76% say one connected car generates more revenue streams than 10 conventional cars. In fact, expectations for data-driven revenue are so great that 71% say measuring OEM market share based on units sold is outdated.

More... | Comments (21)

UNIST team boosts performance of perovskite catalyst for metal-air batteries & fuel cells using polypyrrole

A team of researchers from S. Korea’s UNIST, with colleagues from Northwestern University, have successfully developed a new way to increase the activity of perovskite oxide catalysts for the oxygen reduction reaction (ORR) and/or the oxygen evolution reaction (OER) in rechargeable metal-air batteries and fuel cells simply by adding the conductive polymer polypyrrole. A paper on their work was published in the RSC journal Energy & Environmental Science.

Oxygen-related electrochemistry is important in next-generation energy conversion and storage. The oxygen reduction reaction (ORR) is the cathodic process of fuel cells and metal air batteries for generating electricity; the reverse, the oxygen evolution reaction (OER), is the anodic processes for splitting water and charging metal air batteries.

More... | Comments (2)

California ARB releases proposed new plan to cut 2030 GHG by 40% v. 1990; more stringent LCFS, more ZEVs

January 21, 2017

The California Air Resources Board (ARB) released the proposed scoping plan to reduce greenhouse gas emissions by 40% below 1990 levels by 2030—the most ambitious target in North America. (Earlier post.) The plan builds on the state’s efforts to reduce emissions and outlines the most effective ways to reach the 2030 goal, including continuing California’s Cap-and-Trade Program.

Achieving the 2030 target under the proposed plan will continue to build on investments in clean energy and set the California economy on a trajectory to achieving an 80% reduction in greenhouse gas emissions by 2050.

More... | Comments (12)

CARB releases Midterm Review of ZEV regulation, LEV III GHG and PM standards; calls for post-2025 standards

January 19, 2017

When the California Air Resources Board (ARB) adopted the Advanced Clean Cars (ACC) program in 2012 (earlier post), the agency committed to conduct a comprehensive midterm review of three elements of the program: the zero-emission vehicle (ZEV) regulation; the 1 mg/mi particulate matter (PM) standard; and the light-duty vehicle greenhouse gas standards for 2022 and later model years. ARB has now released the Midterm Review of Advanced Clean Cars Program—an extensive evaluation of the California passenger vehicle market and technology.

The Review finds that the greenhouse gas (GHG) emission standards currently in place for model years 2022-2025 are readily feasible at or below the costs estimated back in 2012. The report also finds that ZEV technology has seen significant development that, in many cases, is beyond what was envisioned just four years ago. The report indicates that existing programs in California will add at least 1 million zero-emission vehicles on its roads and highways by 2025.

More... | Comments (22)

13 global companies launch Hydrogen Council in Davos; promoting hydrogen to help meet climate goals

January 17, 2017

Thirteen leading energy, transport and industry companies have launched a global initiative in Davos to voice a united vision and long-term ambition for hydrogen to foster the energy transition.

Meeting in Davos for the first time on Tuesday, the Hydrogen Council currently comprises 13 CEOs and Chairpersons from various industries and energy companies committed to help achieve the ambitious goal of reaching the 2 ˚C target as agreed in the 2015 Paris Agreement. The international companies currently involved are: Air Liquide, Alstom, Anglo American, BMW GROUP, Daimler, ENGIE, Honda, Hyundai, Kawasaki, Royal Dutch Shell, The Linde Group, Total and Toyota. The Council is led by two Co-Chairs from different geographies and sectors, currently represented by Air Liquide and Toyota. The members of the Hydrogen Council collectively represent total revenues of €1.07 trillion and 1.72 million employees around the world.

More... | Comments (20)

Toyota to collaborate in research for the creation of H2-based society in the United Arab Emirates

Toyota Motor Corporation has agreed to collaborate with Masdar, Abu Dhabi National Oil Company (ADNOC), Air Liquide, and Toyota distributor Al-Futtaim Motors in a joint research program to explore the potential of hydrogen energy use in the United Arab Emirates (UAE) for the creation of a sustainable, low-carbon society. As part of the program, Toyota will begin driving and refueling demonstration tests of the Mirai fuel cell vehicle (FCV) in the UAE from May 2017.

The agreement was announced at the Abu Dhabi Sustainability Week (ADSW), which was held at the UAE capital of Abu Dhabi. The program partners will jointly research on key issues involving the establishment of a hydrogen-based society, including hydrogen production, logistics, scalability, and business feasibility. The research is expected to take place in part at Masdar Institute, an Abu Dhabi-based independent graduate research university, which has been part of the discussions on the scope of hydrogen research.

More... | Comments (9)

New Flyer zero-emission bus deliveries increased by 48% to 213 EUs in 2016

January 12, 2017

Deliveries of New Flyer of America zero-emission buses (ZEBs) in 2016 reached their highest level in company history, delivering 213 equivalent units (EUs) in 2016. (One equivalent unit represents one 30-foot, 35-foot or 40-foot heavy-duty transit bus or one motor coach. One articulated transit bus represents two equivalent units.) This represented an increase of 48% from 144 ZEB EU’s delivered in 2015, and is represents 8.3% of New Flyer’s total heavy-duty transit bus production in 2016.

New Flyer manufactures all three current types of ZEBs, including: battery-electric, trolley-electric, and hydrogen fuel cell electric buses. This design and manufacturing capability allows transit authorities the ability to optimize charging method, infrastructure and range capability for their specific needs.

More... | Comments (3)

Hyundai “Mobility Vision” concept for integration of car and home; Health + Mobility Cockpit

January 06, 2017

At the Consumer Electronics Show (CES) 2017 in Las Vegas, Hyundai Motor revealed its Mobility Vision concept that, in the future, will connect autonomous cars to living and working environments. Hyundai says that its Smart House technology blurs the line between mobility and living and working space, integrating the car into the daily lives of users.

The Smart House concept shown at CES places connected car technologies at the center of the home. The CES display suggests how the car could shed the image of a conventional vehicle, integrating itself with the living space when docked, before becoming a mobile living space when customers need to move around.

More... | Comments (0)

Ballard-powered fuel cell electric buses exceed 10M km of revenue service

January 04, 2017

Ballard Power Systems fuel cells have powered buses for more than 10 million cumulative kilometers (6.2 million miles) of revenue service. This fuel cell industry milestone has been achieved across the company’s seven generations of its FCveloCity fuel cell engine, which have been deployed in buses in 15 countries on 5 continents during the past 10 years.

Over this period Ballard has worked with 13 bus manufacturers to develop a variety of fuel cell bus configurations that have been deployed in a wide range of climatic conditions and operated under a host of demanding duty cycles.

More... | Comments (5)

HZB, 3M team explores water management in PFIA membranes for fuel cells; better performance at higher temps and low humidity

January 02, 2017

A core component of proton exchange membrane (PEM) fuel cells is the membrane, which allows protons to diffuse selectively towards the cathode while blocking the oxygen and hydrogen gas. Nafion (a sulfonated tetrafluoroethylene based fluoropolymer-copolymer)—the most commonly used PEM membrane—only performs well at high humidity conditions and temperatures below 90 °C, thus limiting its efficiency and operational area and increasing the fuel cell cost.

3M Company’s Fuel Cell Components Group recently developed a different low-cost proton exchange membrane material: perfluoroimide acid (PFIA). PFIA is already widely applied, but much less understood than Nafion. Whereas PFIA has the same mechanically stable hydrophobic backbone, its hydrophilic side chains contain one more acidic site per each chain than in Nafion. These additional acidic sites on each hydrophilic side chain provide additional protons for the proton transport and allow for the formation of larger water channels. The water management in the PFIA membrane is of interest, since it is crucial for the performance of the fuel cell: in order to function it needs to be humid but never wet.

More... | Comments (7)

Proton OnSite to supply 13 MW-scale electrolyzers to provide hydrogen for fuel cell bus fueling in China

December 20, 2016

Proton OnSite signed a contract with Guangdong Synergy Hydrogen Power Technology Co., Ltd. to provide megawatt-scale Proton Exchange Membrane (PEM) electrolyzers for the deployment of fuel cell-powered buses in the cities of Foshan and Yunfu, China.

Three of the megawatt systems will ship this summer, and an additional ten systems are planned to ship over the next 18 months, with the opportunity for significant recurring systems to follow. The agreement names Proton as the exclusive supplier of electrolyzers to Synergy and opens discussions for a joint venture to manufacture a portion of Proton’s M Series electrolyzers in Foshan exclusively for the fueling market in China.

More... | Comments (23)

Efficient and stable PtPb/Pt core/shell nanoplate catalysts for ORR in fuel cells; new way of introducing tensile strain

December 19, 2016

Scientists from the US Department of Energy’s (DOE) Brookhaven National Laboratory; California State University–Northridge; Soochow University; Peking University; and Shanghai Institute of Applied Physics have developed new catalysts for the oxygen reduction reaction (ORR) in fuel cells that can undergo 50,000 voltage cycles with a negligible decay in their catalytic activity and no apparent changes in their structure or elemental composition.

In a paper published in Science, the team reports on a class of platinum-lead/platinum (PtPb/Pt) core/shell nanoplate catalysts that exhibit large biaxial strains. (Modifying the electronic structure of catalysts can improve their performance; lattice strain (either compressive or tensile) modifies the distances between surface atoms and hence modifies catalytic activity. Earlier post.) The stable Pt (110) facets of the nanoplates have high ORR specific and mass activities that reach 7.8 milliampere (mA) per cm2 and 4.3 ampere per milligram of platinum at 0.9 volts versus the reversible hydrogen electrode (RHE), respectively.

More... | Comments (5)

London to phase out diesel buses; all new single deckers for central London to be zero emission

December 13, 2016

The Mayor of London Sadiq Khan recently committed to phasing out purchasing new pure diesel buses from the capital. No more pure diesel double-deck buses will be added to the capital’s fleet from 2018 and all new single-decks for central London will be zero-emission. The Mayor made the announcement along with unveiling the first double-decker hydrogen bus, manufactured by the Wrights Group. (Earlier post.)

London has committed to procuring roughly 300 zero emission buses by 2020, with 51 battery electric buses recently going into service on the 507/521 route, taking the number of completely electric bus routes to three, with 79 zero emission buses in total in the fleet.

More... | Comments (13)

Nikola Motor unveils prototype Class 8 fuel cell range-extended electric truck, plans for H2 fueling network

December 06, 2016

At an event at its Salt Lake City headquarters last week, startup Nikola Motor Company (NMC) unveiled the first public prototype of its Nikola One Class 8 hydrogen fuel cell range-extended electric truck, as well as renderings of the Nikola Two Class 8 day cab version. The company also announced its plan for a network of 364 hydrogen fueling stations across the US and Canada (Nikola is bundling fuel with the truck), and unveiled a 107 kWh battery pack for the Nikola Zero UTV along with a business plan to sell packs to OEMs.

The Nikola One utilizes a fully electric drivetrain featuring a 320 kWh Li-ion battery pack (32,000 cells) and a nearly 300 kW fuel cell stack powering a 6x4 four-wheel electric drive (four 800V AC motors) with torque vectoring. Delivering more than 1,000 hp (746 kW) and 2,000 lb-ft of torque, the Nikola One will have an expected range of 800-1,200 miles, the company said.

More... | Comments (20)

SGL Group is development partner for GDLs in high-performance fuel cells in the automotive sector

December 01, 2016

Carbon specialist SGL Group is a development partner in the European joint development project INSPIRE (Integration of Novel Stack Components for Performance, Improved DuRability and LowEr Cost), which has been funded with a €7-million (US$7.4-million) award from Europe’s Fuel Cells and Hydrogen Joint Undertaking (FCH JU) and will run for three years. (Earlier post.)

The aim of INSPIRE is to develop a new generation of fuel cells with higher performance and longer lifetime. SGL Group brings its long-established expertise as a component developer to the project, and is responsible for the development of the gas diffusion layers (GDL), which will be manufactured based on carbon fibers.

More... | Comments (3)

US FTA to award up to $2.75M for zero-emissions public transportation tech

The Federal Transit Administration (FTA) announced the availability of $2.75 million of funding for its Zero Emission Research Opportunity (ZERO) (FTA-2017-001-TRI). The ZERO program is to facilitate the advancement, production, and deployment of zero-emission public transportation vehicle technology and related infrastructure.

FTA intends to select, and enter into cooperative agreements with, multiple (up to three) nonprofit consortia to build on past research innovation and development efforts to facilitate the deployment of zero-emission vehicles and associated advanced technology. Eligibility for future ZERO funding opportunities in fiscal years 2017-2020 will be limited to those nonprofit consortia selected under this fiscal year 2017 notice.

More... | Comments (0)

NREL report finds hydrogen fuel cell bus fuel economy up to 1.4x that of diesel, 1.9x CNG

The US Department of Energy (DOE) Fuel Cell Technology Office (FCTO) has released the latest edition of an annual report showing that the average fuel economy of fuel cell electric buses from three fleets is 6.8 miles per diesel gallon equivalent (DGE) (ranging from 5.56 - 7.71 DGE), 1.4 times higher than conventional diesel buses (~4.2 miles per DGE) from one fleet and up to 1.9 times higher than compressed natural gas buses (~3.3 miles per DGE) in another fleet.

This demonstrates significant fuel economy improvement toward the DOE and Federal Transit Administration’s (FTA) target of 8 miles per DGE. FCEB durability has reached 23,000 hours, surpassing FCTO’s 2016 target of 18,000 hours, and range has reached up to 340 miles (547 km), more than 13% above the 2016 target of 300 miles (483 km).

More... | Comments (12)

Ballard signs fuel cell supply agreement with Solaris; initial order of 10 modules as range extenders for electric trolley buses

November 30, 2016

Ballard Power Systems has signed a Long-Term Sales Agreement (LTSA) with Solaris Bus & Coach, a bus OEM headquartered in Poland, for the sale and supply of fuel cell modules to support deployment of Solaris fuel cell buses in Europe. An initial order placed under the LTSA is for 10 FCveloCity-HD fuel cell modules, with deliveries planned to start in 2017.

Each 85 kilowatt FCveloCity-HD fuel cell module that has been ordered will be deployed as a range extender in a Solaris Trollino model low-floor trolley bus. Solaris has signed a contract with Rigas Satiksme, the transport operator in the city of Riga, Latvia for 10 of the Trollino trolley buses.

More... | Comments (8)

Stanford team uses battery electrode materials to boost platinum catalytic performance for fuel cells

November 25, 2016

A team at Stanford University has developed a method for using battery electrode materials directly and continuously to control the lattice strain of a platinum (Pt) catalyst, thereby boosting catalytic activity for the oxygen reduction reaction (ORR) in fuel cells by up to nearly 90%. A paper on their work is published in Science.

Modifying the electronic structure of catalysts can improve their performance; lattice strain (either compressive or tensile) modifies the distances between surface atoms and hence modifies catalytic activity. However, the common approach of using metal overlayers to induce strain has some control issues, such as introducing ligand effects.

More... | Comments (7)

Loop Energy introduces fuel cell range extender for heavy-duty vehicles; in-service operation to begin in 2017

Loop Energy (earlier post) has introduced a new range-extender (REX) power module for heavy-duty electric transport vehicles. At the core of the module is Loop’s unique fuel cell design which improves performance, durability and cost. Following a three-year development period, the Loop power module is now being integrated by an original equipment manufacturer and will begin in-service operation in 2017.

Loop’s patented eFlow fuel cell features an improved design, and is the competitive advantage within all Loop fuel cell stacks and power modules. By optimizing air flow inside the fuel cell, Loop’s eFlow design produces greater power density than industry-standard fuel cells, the company says. This higher power density allows Loop to simplify and significantly increase the efficiency of the fuel cell stack and system.

More... | Comments (2)

DOE announces $30M in funding for hydrogen and fuel cell technologies

November 18, 2016

The US Department of Energy (DOE) announced approximately $30 million in available funding (DE-FOA-0001647), subject to appropriations, for research and development of low-cost hydrogen production, onboard hydrogen storage, and proton exchange membrane fuel cells to advance the widespread commercialization of fuel cell electric vehicles.

Selected projects will leverage national lab consortia launched under DOE’s Energy Materials Network (EMN) this past year, in support of DOE’s materials research and advanced manufacturing priorities. The EMN consortia have been established to make unique, world-class capabilities at the national laboratories more accessible to industry, facilitating collaborations that will expedite the development and manufacturing of advanced materials for commercial markets.

More... | Comments (22)

Ultrafine jagged Pt nanowires extremely efficient ORR catalysts; 50x more power than current commercial catalyst

An international team led by researchers at UCLA and Caltech has demonstrated that altering the form of platinum nanoscale wires from a smooth surface to a jagged one can significantly reduce the amount of precious metal required as a catalyst for the oxygen reduction reaction (ORR) in fuel cells and thus lower the cost. According to the findings, the newly developed catalyst is so active that the amount of platinum required for a fuel cell could be 1/50 of what is needed today.

In a paper published in Science, the team reports that the jagged Pt nanowires exhibit an ECSA (electrochemical active surface area) of 118 m2 per gram Pt and a specific activity of 11.5 mA per square centimeter for ORR for a mass activity of 13.6 ampere per milligram Pt, nearly doubling previously reported best values. Reactive molecular dynamics simulations suggested that the highly stressed, under-coordinated rhombohedral-rich surface configurations of the jagged nanowire enhanced ORR activity versus more relaxed surfaces.

More... | Comments (1)

DOE FY17 SBIR Phase I Release 2 topics include fuel cells, EV batteries, engines

November 08, 2016

The US Department of Energy (DOE) has announced the 2017 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 topics, including three subtopics focused on hydrogen and fuel cell technologies. The fuel cell subtopics include innovative materials for bipolar plates; liquid organic hydrogen carriers; and emergency hydrogen refuelers.

The Phase I Release 2 topics also include four vehicle subtopics, including electric drive vehicle batteries; SiC device qualification for electric drive vehicle power electronics; fuel efficiency improvement technologies for conventional stoichiometric gasoline direct injection multi-cylinder internal combustion engines; and wide-range high-boost turbocharging system. Further, a technology transfer opportunity is the use of a new Argonne catalyst for reducing NOx.

More... | Comments (1)

Québec moves forward with a zero-emission vehicle standard

October 29, 2016

Earlier this week, the Québec National Assembly unanimously adopted Bill 104, a zero-emission vehicle standard. Automakers that sell or lease a yearly average of more than 4,500 new vehicles (all light models combined) will be subject to the ZEV standard.

In its 2015-2020 Transportation Electrification Action Plan, Québec set a target of 100,000 registered plug-in vehicles by 2020. The bill gives the Government of Québec the powers it needs to require car manufacturers to sell a minimum of zero-emission vehicles through a tradable credit system.

More... | Comments (4)

California SCAQMD partnering with Livermore and Los Alamos researchers on H2 sensor demonstrations

The South Coast Air Quality Management District (SCAQMD), the air pollution control agency for Orange County and major portions of Los Angeles, San Bernardino and Riverside counties, is partnering with researchers from Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL) on a demonstration of highly sensitive hydrogen sensor prototypes at two hydrogen-refueling stations in Burbank and Chino.

The initial development of the sensors has spanned more than a decade, mostly led by teams at LLNL headed by chemist Bob Glass, until his retirement in 2014, and Eric Brosha at LANL. The sensors can detect the amount of the colorless, odorless gas in the atmosphere at 1 percent to 4 percent concentrations, the critical range for safety applications, without triggering false alarms and with very rapid response time.

More... | Comments (2)

Lung Association report highlights health and climate costs of petroleum-based transportation and the benefits of shifting to ZEVs

October 27, 2016

A new report produced by the American Lung Association concludes that over-reliance on petroleum-based fuels for transportation costs the 10 ZEV states in the US (California and nine other states that have adopted the California Zero Emission Vehicle (ZEV) program) an estimated $37 billion in health expenses and climate costs every year—with California costs alone hitting $15 billion.

Of that $37 billion, health costs added up to $24 billion in 2015; the $24 billion represents the monetized sum of harmful emissions responsible for an estimated 220,000 work-loss days, more than 109,000 asthma exacerbations, hundreds of thousands of other respiratory impacts, and 2,580 premature deaths.

More... | Comments (8)

Ballard closes JV deal for fuel cell stack production in China

October 26, 2016

Ballard Power Systems has closed its joint venture transaction with Guangdong Nation Synergy Hydrogen Power Technology Co. Ltd. (Synergy) for the establishment of an FCvelocity-9SSL fuel cell stack production operation in the City of Yunfu, in China’s Guangdong Province. (Earlier post.) As of closing, Ballard received initial payments totaling $10.9 million.

The fuel cell stacks manufactured by the JV are expected to be used primarily in locally-assembled fuel cell systems to provide propulsion power for zero-emission buses and commercial vehicles in China.

More... | Comments (2)

Honda Clarity Fuel Cell EPA-rated with 366-mile range; longest of any ZEV

October 24, 2016

The Honda Clarity Fuel Cell sedan (earlier post), launching later this year, received an EPA driving range rating of 366 miles (589 km) and fuel economy rating of 68 mpg of gasoline-equivalent combined, giving it the best range rating of any electric vehicle without a combustion engine, including fuel cell and all-electric vehicles, in the United States.

Honda will introduce the new 5-passenger, hydrogen-powered Clarity Fuel Cell sedan by the end of 2016, beginning with retail leasing to customers through its expanded network of 12 approved fuel cell vehicle dealerships located in select California markets.

More... | Comments (9)

Toyota to start sales of fuel cell buses under the Toyota brand from early 2017

October 21, 2016

Toyota Motor Corporation will begin to sell fuel cell buses (FC buses) under the Toyota brand from early 2017. After repeated field tests of the hydrogen-powered buses for practical use, the Bureau of Transportation of the Tokyo Metropolitan Government plans to utilize two of the Toyota FC Buses as fixed-route buses.

Toyota plans to introduce more than 100 FC buses mainly in the Tokyo area, ahead of the Tokyo 2020 Olympic and Paralympic Games. In view of this, the FC buses will be sold for the first time in Japan in early 2017, so as to help increase the level of understanding by the general public of the utilization of FC buses as a form of public transportation.

More... | Comments (13)

BMW plans hydrogen fuel cell offering “early in next decade”

October 13, 2016

Speaking on the future of powertrains at the Aachen Colloquium, Klaus Fröhlich, Member of the Board of Management at BMW AG, Development, said that BMW will enter the fuel cell market early in the next decade, starting with very small production runs.

Fröhlich noted that at least until 2025 costs will remain too high and the hydrogen infrastructure too sparse to allow broad-based market penetration. However, he added, “by the time the fundamentals are in place, the BMW Group will also have marketable products ready that are attractive to customers.

More... | Comments (5)

New Icon-class ships from Royal Caribbean to be powered by LNG with 2022 delivery; testing hydrogen fuel cells in 2017

October 11, 2016

The newest class of ships from Royal Caribbean Cruises Ltd (RCL) will be powered by liquefied natural gas (LNG) and likely will introduce the use of fuel cell technology, ushering in a new era of shipbuilding that will significantly reduce greenhouse gas emissions. The ships will join the fleet of Royal Caribbean International.

RCL has signed a memorandum of understanding with Finland shipbuilder Meyer Turku for the new class of vessel under the project name “Icon.” The around 200,000 gross ton large cruise ships will be delivered in the second quarters of 2022 and 2024. In the meantime, the company said, it will begin testing fuel cell technology on an existing Oasis-class ship in 2017, and will also run progressively larger fuel cell projects on new Quantum class vessels being built in the next several years.

More... | Comments (4)

Sandia study finds high-speed hydrogen-powered ferry and supporting infrastructure in SF Bay feasible

October 06, 2016

A study by two researchers at Sandia National Laboratories has concluded that building and operating a high-speed passenger ferry solely powered by hydrogen fuel cells within the context of the San Francisco Bay is technically feasible, with full regulatory acceptance as well as the requisite associated hydrogen fueling infrastructure.

Funded by the Department of Transportation’s Maritime Administration and led by Sandia, the feasibility study of the SF-Breeze (San Francisco Bay Renewable Energy Electric Vessel with Zero Emissions) brought together the American Bureau of Shipping (ABS), the US Coast Guard, naval architect Elliott Bay Design Group (EBDG), the Port of San Francisco and dozens of other contributors.

More... | Comments (1)

DOE to invest $30M to further H2 and fuel cell technology as industry continues strong growth

The US Department of Energy (DOE) Energy Department (DOE) released a new report showing continued momentum and growth in the fuel cell industry. The 2015 Fuel Cell Technologies Market Report shows that more than 60,000 fuel cells, totaling roughly 300 megawatts (MW), shipped worldwide in 2015. The number of MW shipped grew by more than 65% compared to 2014. 2015 also saw the world’s first fuel cell vehicles for sale.

To further this emerging market, DOE also announced a notice of intent (DE-FOA-0001411) to invest $30 million, subject to appropriations, to advance fuel cell and hydrogen technologies. These projects will leverage national lab consortia launched under DOE’s Energy Materials Network (EMN) this past year (earlier post), and will support the President’s Materials Genome Initiative and advanced manufacturing priorities.

More... | Comments (5)

Chevrolet Colorado ZH2 Fuel Cell Vehicle debuts at AUSA meeting

October 03, 2016

The Chevrolet Colorado ZH2, the extreme off-road-capable fuel-cell-powered electric vehicle from General Motors, made its debut at the fall meeting of the Association of the United States Army (AUSA). (Earlier post.)

Standing more than 6½ feet tall and more than seven feet wide, the Colorado ZH2 was built on a stretched midsize pickup chassis. Reinforced inside and out, the ZH2 rides on 37-inch tires and a specially modified suspension that helps the vehicle climb over and descend all manner of terrain.

More... | Comments (7)

Commissioning of initial 12 Ballard-powered buses in China’s largest fuel cell bus deployment

September 30, 2016

Ballard Power Systems announced the commissioning and deployment of an initial 12 fuel cell-powered buses in the District of Sanshui, in the City of Foshan, in the Province of Guangdong, China. The buses will be operated by Foshan Sanshui Guohong Public Transit Co. Ltd., on demonstration route #682 from Gaofeng Park Station to Shuidu Industrial Park Station.

The buses are 11 meters in length and feature advanced safety systems, 80-person capacity, anticipated driving range in excess of 300 kilometers (186 miles), expected hydrogen gas consumption of less than 6.5 kilograms per 100 kilometers, zero tailpipe emissions and remote monitoring. Unlike many battery electric bus routes, the transit route in Foshan will not require any catenary wires or on-route recharging.

More... | Comments (2)

Volkswagen Group & Audi accelerate fuel cell technology solutions program with Ballard

September 27, 2016

Ballard Power Systems announced that automotive OEM Audi AG has issued purchase orders to Ballard to accelerate certain key development activities under the current long-term Technology Solutions program that Volkswagen Group has with Ballard. (Earlier post.)

The current 6-year engineering services contract with Volkswagen Group runs to March 2019, with an optional 2-year extension beyond that date. The contract has an estimated value of C$100-140 million. The resulting HyMotion program encompasses automotive fuel cell stack development as well as system design support activities.

More... | Comments (3)

Celeroton launches its first turbo compressors with gas bearings; applied in fuel cell range extender for Fiat 500

September 23, 2016

Celeroton AG, a leading manufacturer of ultra-high-speed electrical drive systems with speeds up to 1 million rpm, has launched its first turbo compressors with gas bearings—unique in their weight and performance, being wear- and oil-free, and obtaining the highest levels of energy efficiency. The developed technology widens the horizon for application areas, where the operation of miniaturized turbo compressors has been either limited or not even possible including the oil-free air supply of fuel cells as well as low-maintenance air conditioning and heat pumps with the highest performance (in stationary as well as mobile applications e.g. hybrid and electric cars).

The gas bearing turbo compressors CT-17-700.GB and CT-17-1000.GB, with a rated speed of 280,000 rpm in air offer 100% oil-free and lubricant-free compression of air, with infinite bearing lifetime in continuous operation, a pressure ratio of up to 1.65, a mass flow of up to 24 g/s, maximum isentropic overall efficiency of 59% and a rated maximum power of 1 kW with a volume of just 530 cm3.

More... | Comments (1)

Hyundai introduces hydrogen fuel cell H350 light commercial van concept at IAA

September 22, 2016

Hyundai Motor is introducing a hydrogen fuel cell concept version of its H350 light commercial van at the 2016 IAA Commercial Vehicle Show in Hannover. The powertrain study shows the potential for the company’s advanced hydrogen fuel cell technology in the light commercial vehicle (LCV) segment.

Unlike a conventional electric vehicle, which requires a number of hours to recharge, the 175-liter hydrogen tank system can be filled in less than four minutes—similar to the time it takes to refill a tank of gasoline or diesel in a vehicle with a traditional internal combustion engine. The H350 Fuel Cell Concept has a total range of 422 km (262 miles).

More... | Comments (6)

Toyota 2017 Mirai fuel cell vehicle remains $57,500; 312-mile electric range

September 21, 2016

Toyota announced the pricing for the 2017 model year Mirai fuel cell vehicle. MY17 MSRP remains $57,500 plus an $865 destination fee. Mirai customers also may qualify for an $8,000 federal tax credit and $5,000 potential California rebate along with access to the California HOV carpool lane.

The Mirai hydrogen fuel cell electric vehicle is a zero-emission vehicle with an EPA-estimated driving range of 312 miles (502 km); it refuels in around five minutes.

More... | Comments (9)

Alstom unveils hydrogen fuel cell regional train Coradia iLint

September 20, 2016

Alstom presented its Coradia iLint hydrogen fuel cell regional train at InnoTrans, the railway industry’s largest trade fair, taking place in Berlin from 20 to 23 September 2016.

Alstom is among the first railway manufacturers to develop a passenger train based on fuel cell technology. To make the deployment of the Coradia iLint as simple as possible for operators, Alstom offers a complete package, consisting of the train and maintenance, as well as also the whole hydrogen infrastructure thanks to help from partners.

More... | Comments (6)

Liverpool team develops better material for PEM fuel cells; porous organic cage solids with 3D protonic conductivity

September 14, 2016

Proton conduction is key to devices such as proton exchange membrane fuel cells (PEMFCs); the performance-limiting component in PEMFCs is often the proton exchange membrane (PEM). In the search for more effective PEMs, reseachers have looked to porous solids such as metal-organic frameworks (MOFs) or covalent organic frameworks. With these, the proton conduction properties can be fine-tuned by controlling crystallinity, porosity and chemical functionality. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions.

Researchers led by a team at the University of Liverpool (UK) now report in an open-access paper in the journal Nature Communications that they have developed crystalline porous molecular solids where the proton transport occurs in 3D pathway by virtue of the native channel structure and topology. The development could lead to the design of more effective fuel cell materials, including high-temperature PEMFCs.

More... | Comments (2)

ARPA-E awards $37M for IONICS projects; improving solid-state batteries and fuel cells

The US Department of Energy (DOE) Advanced Research Projects Agency-Energy (ARPA-E) announced $37 million in funding for 16 innovative new projects as part of a new ARPA-E program: Integration and Optimization of Novel Ion-Conducting Solids (IONICS). IONICS project teams are paving the way for technologies that overcome the limitations of current battery and fuel cell products.

By creating high performance parts built with solid ion conductors—solids in which ions can be mobile and store energy—the IONICS program will focus on new ways to process and integrate these parts into devices with the goal of accelerating their commercial deployment. In particular, IONICS projects will work to improve energy storage and conversion technologies in three categories: transportation batteries, grid-level storage, and fuel cells.

More... | Comments (1)

DOE seeking input on H2@scale: hydrogen as centerpiece of future energy system; 50% reduction in energy GHGs by 2050

September 11, 2016

Earlier this year, The US Department of Energy (DOE) national laboratories identified the potential of hydrogen to decarbonize deeply a multitude of sectors in a proposal termed “H2@Scale”. Preliminary analysis performed by the national laboratories on the H2@Scale concept indicated that nearly a 50% reduction in greenhouse gas emissions is possible by 2050 via such large-scale hydrogen production and use.

The concept sees hydrogen—a flexible, clean energy-carrying intermediate—having the potential to be a centerpiece of a future energy system where aggressive market penetration of renewables (wind and solar) are coupled with renewable hydrogen production to meet society’s energy demands across industrial, transportation, and power generation sectors using clean, renewable resources and processes.

More... | Comments (16)

Ballard providing ten 30 kW fuel cell modules to UpPowerTech; expanding into China’s Guangxi Province

September 08, 2016

Ballard Power Systems has signed a purchase order from Shenzhen UpPower Technology Co., Ltd. (UpPowerTech), a leading fuel cell bus systems integrator in China, for the supply of 10 FCveloCity-MD 30 kW fuel cell power modules to be integrated by UpPowerTech into clean energy buses manufactured by Gaungxi Yuanzheng New Energy Co. Ltd. (Yuanzheng), a Chinese bus manufacturer, for deployment in the City of Nanning in the Province of Guangxi.

UpPowerTech previously demonstrated a hydrogen fuel cell bus, using Ballard’s new FCveloCity-MD 30-kilowatt fuel cell power module as a battery range extender, during the “4th Shenzhen International Low Carbon City Forum.” The bus was a 12-meter (40-foot) city bus with a powertrain built by UpPowerTech. The coach was manufactured by Xiamen King Long United Automotive Industry Co., Ltd. The Forum, held in Longgang District of Guangdong Province, featured low carbon urban development and innovation technologies designed to tackle global environmental challenges.

More... | Comments (2)

Sandia fuel cell membrane outperforms market; temperature range and durability

September 07, 2016

Researchers at Sandia National Laboratories, have developed a new membrane for fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. A paper describing the Sandia-patented technology is published in the journal Nature Energy.

Fuel cells with this membrane technology exhibit stable performance at 80–160 ˚C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems, the researchers said.

More... | Comments (7)

Ballard MOU with strategic partner Broad-Ocean targets fuel cell modules for buses and commercial vehicles

September 01, 2016

Ballard Power Systems has signed a Memorandum of Understanding (MOU) with strategic partner Zhongshan Broad-Ocean Motor Company Limited with the goal of producing fuel cell modules for use in buses and commercial vehicles in select cities and regions in China.

In July, Broad-Ocean announced a $28.3-million strategic equity investment in Ballard, through which Broad-Ocean acquired a 9.9% ownership position in Ballard, making it the company’s largest shareholder. (Earlier post.)

More... | Comments (3)

SLAC, Utrecht Univ. team visualize poisoning of FCC catalysts used in gasoline production; seeing changes in pore network materials

August 31, 2016

Merging two powerful 3-D X-ray techniques, a team of researchers from the Department of Energy’s SLAC National Accelerator Laboratory and Utrecht University in the Netherlands revealed new details of the metal poisoning process that clogs the pores of fluid catalytic cracking (FCC) catalyst particles used in gasoline production, causing them to lose effectiveness.

The team combined their data to produce a video that shows the chemistry of this aging process and takes the viewer on a virtual flight through the pores of a catalyst particle. More broadly, the approach is generally applicable and provides an unprecedented view of dynamic changes in a material’s pore space—an essential factor in the rational design of functional porous materials including those use for batteries and fuel cells. The results were published in an open access paper in Nature Communications.

More... | Comments (1)

Ten H2 and fuel cell companies received DOE SBV round 2 awards

Among the 43 small businesses participating in the newly announced second round of the US Department of Energy (DOE) Small Business Vouchers (SBV) pilot are 10 projects in the area of hydrogen and fuel cells.

These selected projects are aimed at reducing the costs and improving the performance of hydrogen and fuel cell technologies, such as finding ways to lower costs of membrane electrode assemblies (MEAs), a critical component of fuel cell stacks and electrolyzers. Some of these collaborations will explore using lower cost materials, reducing the quantity of pricey raw material required, and developing better and more precise methods in manufacturing MEAs.

More... | Comments (0)

GM and US Army TARDEC to reveal Chevy Colorado-based fuel cell vehicle

August 30, 2016

General Motors and the US Army Tank Automotive Research, Development and Engineering Center (TARDEC) will reveal a Chevrolet Colorado-based fuel cell electric vehicle in October at the fall meeting of the Association of the United States Army (AUSA) in Washington, D.C.

The fuel-cell version of the mid-size pickup is being developed under an agreement between TARDEC and GM signed in 2015 (earlier post). The collaboration enables TARDEC to access consumer-driven automotive technology for use in military applications while providing GM with feedback on non-standard fuel cell technology applications.

More... | Comments (10)

Dalian team synthesizes advanced catalytic layer for fuel cell MEAs; low Pt-loading, high mass activity

August 29, 2016

Researchers at Dalian Institute of Chemical Physics (China) have synthesized an advanced catalytic layer in the membrane electroide assembly (MEA) for proton exchange membrane fuel cells (PEMFCs) using vertically aligned polymer–polypyrrole (PPy) nanowire arrays as ordered catalyst supports.

In a paper published in the Journal of Power Sources, they report that a single cell fitted with their MEA yields a maximum performance of 762.1 mW cm−2 with a low Pt loading (0.241 mg Pt cm−2, anode + cathode). The advanced catalyst layer indicates better mass transfer in high current density than that of commercial Pt/C-based electrode. The mass activity is 1.08-fold greater than that of US Department of Energy (DOE) 2017 target.

More... | Comments (1)

New LANL membrane bridges operational gap between low- and high-temperature PEM fuel cells; potential for lower cost systems

August 23, 2016

A Los Alamos National Laboratory team, in collaboration with Yoong-Kee Choe at the National Institute of Advanced Industrial Science and Technology in Japan and Cy Fujimoto of Sandia National Laboratories, has discovered that fuel cells based on a new phosphate-quaternary ammonium ion-pair membrane can be operated between 80 °C and 200 °C with and without water, enhancing the fuel cells’ usability under a range of conditions. The research is published in the journal Nature Energy.

These fuel cells exhibit stable performance at 80–160 ˚C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.

More... | Comments (6)

Kenworth receives $8.6M in grants for low-emission T680 Day Cab drayage truck projects in California; hybrids, CNG hybrid and fuel cell

August 20, 2016

Kenworth has been awarded three government grants totaling $8.6 million that will support low emissions projects involving Kenworth T680 Day Cabs targeted for use as drayage tractors in Southern California ports.

The first two projects are funded at $1.9 million each by the US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), with Southern California’s South Coast Air Quality Management District (SCAQMD) as the prime applicant. Kenworth will build two, proof-of-concept T680 Day Cab drayage tractors to transport freight from the Ports of Los Angeles and Long Beach to warehouses and railyards along the I-710 corridor in the Los Angeles basin.

More... | Comments (0)

Sumitomo and US Hybrid partnering to grow hydrogen fuel cell business for commercial vehicles and mass transit

August 12, 2016

Sumitomo Corporation together with Sumitomo Corporation of Americas (collectively, SC Group) announced a strategic collaboration agreement with US Hybrid to grow US Hybrid’s fuel cell production business through the expansion of fuel cell stack production capacity. (Earlier post.) SC Group will play an integral role in the project by coordinating discussions with OEMs using the integrated trading company’s global network.

US Hybrid, together with its Fuel Cell division, US FuelCell, has more than 26 years of experience in fuel cell balance of plant components and vehicle development and deployment. US FuelCell was established in 2013 after US Hybrid purchased the UTC Power PEM fuel cell Transportation division along with the global PEM IP license. The company currently offers an 80 kW integrated fuel cell system (FCe 80) and a 150 kW system (FCe150).

More... | Comments (2)

Report: Sumitomo to begin selling fuel cells for commercial vehicles with US Hybrid

August 11, 2016

The Nikkei reports that Sumitomo Corp., the giant Japanese integrated trading company, will start selling fuel cells for commercial vehicles via a partnership with California-based US Hybrid. Sumitomo, which is strengthening its automobile business and expects growth in the fuel cell market, plans to supply mostly Japanese commercial vehicle makers, according to the report.

Sumitomo has been involved in fuel cell research and development of years, and already produces fuel cell components. For example, Sumitomo Metal Industries developed the world’s first high performance stainless steel for bipolar plates. The plates employed a unique method of adding low-cost alloy elements into the molten steel, resulting in the dispersion of highly conductive metal inclusions throughout the steel, thereby delivering the needed electrical conductivity.

More... | Comments (4)

Vanderbilt, Nissan and Georgia Tech partner on new low PGM electrospun nanofiber catalysts for improved automotive fuel cells

August 09, 2016

Vanderbilt University, Nissan North America and Georgia Institute of Technology are collaborating to test a new technique to electospin low-platinum-metal-group (low PGM) electrocatalysts with a proton-conducting binder to improve durability and performance of fuel cell electrodes. The project is one of four awarded a combined $13 million by the Department of Energy program to advance fuel cell performance and durability and hydrogen storage technologies announced last month. (Earlier post.)

The $4.5-million collaboration is based on nanofiber mat technology developed by Peter Pintauro, the H. Eugene McBrayer Professor of Chemical Engineering at Vanderbilt, that replaces the conventional electrodes used in fuel cells. The nanofiber electrodes boost the power output of fuel cells by 30% while being less expensive and more durable than conventional catalyst layers.

More... | Comments (1)

TU Delft student team presents Forze VII hydrogen racer

August 08, 2016

TU Delft student team Forze presented the Forze VII hydrogen racer to the public for the first time on Sunday during the Gamma Racing Day at the TT Circuit in Assen.

The Forze VII is built using an ADESS-03 LMP3 monocoque and is powered by a 100 kW Ballard FC Velocity MK1100 stack with Forze balance of plant along with a battery pack. Two Yasa P400 electric motors give the car a peak power of 320 kW. The gearbox, gearbox, designed and integrated by the team, has a gear ratio of 1:4.6 and weighs just 6 kg (13.23 lbs). This design of the drivetrain will accelerate the car from 0-100 km/h in less than 4 seconds. Top speed is about 210 km/h (130 mph).

More... | Comments (0)

Nissan unveils first Solid-Oxide Fuel Cell vehicle; fueled by ethanol, 600 km range

August 05, 2016

In Brazil, Nissan Motor revealed the first Solid Oxide Fuel-Cell (SOFC)-powered prototype vehicle that runs on bio-ethanol electric power. Research and development of the e-Bio Fuel-Cell was announced by Nissan in June in Yokohama. (Earlier post.)

The e-Bio Fuel-Cell prototype vehicle, based on a Nissan e-NV200 electric van (earlier post), is equipped with a 5 kW SOFC that runs on 100% ethanol to charge a 24 kWh battery that enables a cruising range of more than 600 km (373 miles). Nissan will conduct further field tests on public roads in Brazil using the prototype.

More... | Comments (42)

DOE issues Request for Information on hydrogen infrastructure RD&D

July 28, 2016

The US Department of Energy’s (DOE’s) Fuel Cell Technologies Office (FCTO) has issued a request for information (RFI) (DE-FOA-0001626) to obtain feedback from stakeholders regarding deployment of hydrogen fueling stations, delivery infrastructure, and barriers and activities to pursue in both the near and longer term.

Potential activities would complement existing FCTO activities that address the barriers hydrogen fueling stations face today, including renewable hydrogen fuel cost; station and equipment cost; station reliability and performance; codes and standards development; manufacturing needs; and outreach and training needs.

More... | Comments (4)

Broad-Ocean Motor in strategic collaboration with Ballard; $28.3M investment, 9.9% ownership; initial order for 10,000 fuel cell vehicles

July 27, 2016

Zhongshan Broad-Ocean Motor Co., Ltd. has entered into a strategic collaboration with Ballard Power Systems, including a $28.3-million equity investment in Ballard, representing 9.9% of the company following the transaction.

Founded in 1994, Broad-Ocean is a global manufacturer of motors that power small and specialized electric machinery for electric vehicles (EVs), including buses, commercial vehicles and passenger vehicles, and for heating, ventilation and air conditioning (HVAC). Broad-Ocean has 4 business units: EV; Rotating Electrical for Vehicles; HVAC; and EV Operations Platform.

More... | Comments (3)

European Strategy for low-emission mobility stresses digital tech, electrification and ZEVs

July 22, 2016

Earlier this week, the European Commission published a strategy for low-emission mobility, which sets out guiding principles to Member States to prepare for the future. EU legislation currently refers to low-emission vehicles as vehicles having tailpipe emissions below 50 g/km. This would include some plug-in hybrids, full electric cars and hydrogen fuel cell vehicles. The latter two examples also represent zero-emission vehicles.

The low-emission mobility strategy will frame the initiatives that the Commission is planning in the coming years, and it maps the areas in which it is exploring options. It also shows how initiatives in related fields are linked and how synergies can be achieved. In parallel to this strategy, the Commission is launching public consultations on the approach towards reducing emissions from road transport: cars and vans as well as trucks, buses and coaches.

More... | Comments (0)

NRDC-sponsored Shulock report says California ZEV regulations need a tune-up to meet 2025 goals

A report commissioned by the Natural Resources Defense Council (NRDC) and prepared by Chuck Shulock finds that the California Zero-Emission Vehicles (ZEV) regulations—also adopted by nine other states—requires a ‘tune-up’ to ensure the market expands well beyond current sale levels.

The findings of the report suggest that the number of vehicles required through 2025 will be smaller than originally projected in 2012 when ARB adopted the last major revisions to the ZEV program. While some of these vehicles will be higher performing in terms of electric range than the vehicles originally assumed in 2012, the net result is that the total number of ZEVs is likely to fall short of the original 2025 goals.

More... | Comments (0)

DOE announces FY17 SBIR Phase I Release 1 topics; includes fuel cell catalysts and hydrogen delivery

July 21, 2016

The US Department of Energy (DOE) has announced the 2017 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 topics, including two subtopics focused on hydrogen and fuel cell technologies.

The fuel cell subtopic includes novel, durable supports for low-platinum group metal (PGM) catalysts for polymer electrolyte membrane (PEM) fuel cells. The hydrogen delivery subtopic focuses on metal hydride materials for compression. Specific topics are:

More... | Comments (0)

Ballard signs follow-on technology solutions agreement for MEA development with leading global automotive OEM

Ballard Power Systems signed a follow-on Technology Solutions contract with an unnamed leading global automotive OEM. Under the contract Ballard will provide expertise in proton exchange membrane (PEM) fuel cell technology in order to advance the customer’s membrane electrode assembly (MEA) development program related to future versions of its engine for fuel cell vehicles.

This follow-on contract involves Technology Solutions work that began with this customer in 2014, including technology transfer. MEAs are a key component of each PEM fuel cell and the MEA-related work in this customer program is being undertaken by Ballard engineers and test technicians in conjunction with the OEM’s in-house fuel cell technical team. The program is expected to be completed later in 2016.

More... | Comments (0)

Ballard Power signs deal for production of fuel cell stacks in China; est. $168M over 5 years; buses and commercial vehicles

July 18, 2016

Ballard Power Systems signed definitive agreements with Guangdong Nation Synergy Hydrogen Power Technology Co. Ltd. (Synergy) for the establishment of an FCvelocity-9SSL fuel cell stack production operation in the City of Yunfu, in Guangdong Province. The fuel cell stacks will be packaged into locally-assembled fuel cell systems and integrated into electric buses and commercial vehicles in China.

Subject to closing, the transaction has a contemplated minimum value to Ballard of $168 million over 5-years and includes these key elements:

More... | Comments (1)

Hyundai and US DOE extend fuel cell vehicle loan partnership in concert with new DC-based hydrogen fueling station

July 11, 2016

Hyundai and the US Department of Energy (DOE) are extending their fuel cell vehicle confirmation program, originally from 2013 through 2015, to a second phase, from 2016 through 2017.

The program involves Hyundai providing a number of Tucson Fuel Cell CUVs (earlier post) for daily use and confirmation by the DOE using existing hydrogen infrastructure. This phase of the program will make significant use of a newly-opened hydrogen refueling station in the Washington DC region.

More... | Comments (1)

Researchers use ceria to trap platinum atoms, improving catalyst efficiency and enabling reduced loading

July 08, 2016

Researchers from the University of New Mexico, Washington State University, and GM Global R&D have developed a novel approach to trap platinum atoms used in catalysts, preventing their agglomeration and the resultant reduction of catalyst efficiency. By trapping the platinum to prevent agglomeration, the process enables the atoms to continue their activity, enabling lower loading and thus lower cost. A paper on the work is published in the journal Science.

Platinum is used as a catalyst in many clean energy systems, including in catalytic converters and fuel cells. The precious metal facilitates chemical reactions for many commonly used products and processes, such as converting poisonous carbon monoxide to less harmful carbon dioxide in catalytic converters. Because of platinum’s expense and scarcity, industries are continually looking to use less of it and to develop catalysts that more efficiently use individual platinum atoms in reactions. At high temperatures, however, the atoms become mobile and fly together into clumps, which reduces catalyst efficiency and performance. This is the primary reason catalytic converters are tested regularly for effectiveness.

More... | Comments (0)

DOE awarding $13M to advance fuel cell performance and durability and H2 storage technologies

July 07, 2016

The US Department of Energy (DOE) announced more than $13 million in funding for the advancement of hydrogen and fuel cell technologies. These projects, selected through collaborative research consortia, will leverage industry, university and laboratory expertise to accelerate advanced hydrogen storage technologies and fuel cell performance and durability.

In 2016, the Office of Energy Efficiency and Renewable Energy established two collaborative research consortia, each comprising a core team of DOE national laboratories, with plans to add industry and university partners: the Fuel Cell Consortium for Performance and Durability (FC-PAD) and the Hydrogen Materials—Advanced Research Consortium (HyMARC). (Earlier post.)

More... | Comments (0)

ISO/TS 19880:2016 – New technical document for hydrogen stations

July 05, 2016

ISO has published a new Technical Specification ISO/TS 19880-1, Gaseous hydrogen — fueling stations — Part 1: General requirements, which is a key document for the building of hydrogen fueling stations worldwide. (Earlier post.) The TS was prepared by ISO/TC 197 WG 24, led by co-conveners Jesse Schneider (BMW) and Guy Dang-Nhu (Air Liquide), along with Nick Hart (ITM Power) as secretary.

The scope of the TS covers the processes from hydrogen production and delivery to compression, storage and fueling of a hydrogen vehicle. It is essentially a safety and performance guideline for hydrogen stations, including the interface to fuel vehicles. The level of safety specified in the TS is similar to the level of safety of stations fueling with conventional fuels.

More... | Comments (3)

Ceres Power to demonstrate SOFC stack technology for EV range extender with Nissan; light commercial vehicle

June 28, 2016

UK-based Ceres Power Holdings, a spin-out from Imperial College, is leading a consortium that includes Nissan Motor Manufacturing (UK) Ltd and M-Solv to develop a compact, on-board solid oxide fuel cell (SOFC) stack as a range extender for an electric light commercial vehicle (van). (Earlier post.)

£772,000 (US$1 million) in funding for the work comes from Innovate UK and The Office for Low Emission Vehicles (OLEV); of that, £573,000 (US$755,000) is allocated to Ceres. The SOFC stack is based on Ceres Power’s unique SteelCell technology, which is able to work with a variety of high efficiency fuel types (including biofuels) applicable to the automotive sector.

More... | Comments (6)

DOE issues request for information on a Hydrogen Technology Showcase and Training (HyTeST) station

June 23, 2016

The US Department of Energy’s (DOE’s) Fuel Cell Technologies Office has issued a request for information (RFI) (DE-FOA-0001555) to obtain feedback from stakeholders regarding the construction and benefits of a National Hydrogen Technology Showcase and Training (HyTeST) station.

The facility would serve as a tool for research and development, testing, safety and demonstration training, and outreach for community and commercial early adopters, including station developers, owners, code officials, first responders, operators, investors, and insurers.

More... | Comments (0)

Johnson Matthey-led consortium to develop advanced automotive fuel cells in €7M EU-funded INSPIRE; BMW Group

June 21, 2016

A coalition led by Johnson Matthey is working to develop the next-generation of automotive fuel cell technology in the three-year, €7-million (US$7.9-million) EU-funded project INSPIRE (Integration Of Novel Stack Components For Performance, Improved Durability And Lower Cost). Consortium members include fuel cell component suppliers, academic institutions and the BMW Group.

INSPIRE’s stated objective is to develop advanced components and to integrate them into an automotive stack showing BOL (beginning of life) performance of 1.5 W/cm2 at 0.6V, less than 10% power degradation after 6,000 hours, and with a technical and economic assessment showing a cost of less than €50/kW (US$57/KW) at a 50,000 annual production scale.

More... | Comments (6)

€100M H2ME 2 launches: 2nd pan-European deployment of H2 refueling infrastructure and fuel cell vehicles

June 14, 2016

A second pan-European deployment of hydrogen refueling infrastructure, and passenger and commercial fuel cell electric vehicles has now launched. The six-year H2ME 2 project brings together 37 partners from across Europe.

H2ME 2 will include the deployment and operation of 1,230 fuel cell vehicles, the addition of 20 extra hydrogen-refueling stations (HRS) to the European network and will test the ability of electrolyzer-HRS to help balance the electrical grid. The project has been developed under the auspices of the Hydrogen Mobility Europe (H2ME) initiative and supported by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) with funding from the European Union Horizon 2020 program.

More... | Comments (6)

Nissan developing electric vehicles powered by ethanol-fueled solid oxide fuel cells; commercialization in 2020

Nissan Motor Co., Ltd. announced that it is currently researching and developing a Solid Oxide Fuel-Cell (SOFC)-powered system using bio-ethanol as the on-board hydrogen source. The new e-Bio Fuel Cell system—a world-first for automotive use—features an an SOFC stack and an on-board reformer to convert 100% ethanol or ethanol-blended water (55% water, 45% ethanol) to hydrogen. SOFCs can utilize the reaction of multiple fuels, including ethanol and natural gas, with oxygen to produce electricity with high efficiency.

The e-Bio Fuel Cell system is suited for larger vehicles and longer ranges (~600 km, 373 miles) than battery-electric vehicles, Nissan said in a media briefing. The e-Bio Fuel Cell system can be run 24x7; features a quiet drive and short refueling time; is versatile, with ample power supply to support refrigerated delivery services; and will have running costs equivalent to that of EVs when using ethanol-water blends. Nissan said it planned commercialization for the technology in 2020.

More... | Comments (23)

Mercedes-Benz’ GLC F-CELL fuel-cell plug-in hybrid SUV coming in 2017

June 13, 2016

Daimler will introduce a series-production fuel-cell plug-in hybrid—the Mercedes-Benz GLC F-CELL—in 2017. (Earlier post.)

The GLC F-CELL features a ~9 kWh lithium-ion battery pack combined with a new fuel cell stack developed in Vancouver, Canada together with partner Ford in the Automotive Fuel Cell Cooperation (AFCC) joint venture. The combination of fuel cell and battery system—along with a further developed intelligent operating strategy—will offer a combined range of around 500 km (311 miles) in the NEDC.

More... | Comments (15)

Daimler investing >€7B in next 2 years in green tech; fuel cell plug-in, BEV architecture; 48V

At its TecDay event in Stuttgart, Daimler said it will invest more than €7 billion (US$7.9 billion) in green technologies in the next two years alone. Shortly, smart will be the only automaker worldwide to offer its entire model range both powered by internal combustion engines or operating on battery power. Mercedes-Benz will put the first fuel-cell-powered vehicle with plug-in technology into series production: the GLC F-CELL. In addition, the company is developing a dedicated vehicle architecture for battery-electric motor cars.

Following the company’s recent introduction of the new OM 654 diesel family (earlier post), Daimler will introduce a new family of gasoline engines in 2017, which will again set efficiency standards and will be the first ever to be equipped with a particulate filter (earlier post). The 48-volt on-board power supply will be introduced at the same time and starter-generators will become part of the standard specification. The 48V system will make fuel savings possible that previously were the exclusive domain of the high-voltage hybrid technology.

More... | Comments (0)

DOE issues request for information on medium- and heavy-duty fuel cell electric truck targets

June 10, 2016

The US Department of Energy’s (DOE’s) Fuel Cell Technologies Office (FCTO) has issued a request for information (RFI) (DE-FOA-0001600) to obtain feedback and opinions from truck operators, truck and storage tank manufacturers, fuel cell manufacturers, station equipment designers, and other related stakeholders on issues related to medium- and heavy-duty (MD and HD) fuel cell electric truck targets.

The MD/HD market spans multiple weight classes (i.e. class 3-8 or 10,000-80,000+ lbs.) and vocational uses (i.e. delivery van, tractor trailer, flatbed, etc.). Today, MD/HD trucks account for 28% of petroleum use in the US transportation sector, according to the US Energy Information Administration (EIA).

More... | Comments (0)

Plug Power and HyGear partner to provide small-scale SMR hydrogen production technology to fuel cell system customers

Fuel cell system manufacturer Plug Power Inc. and HyGear, supplier of cost-effective industrial gases, are partnering to supply HyGear’s Hy.GEN hydrogen generation technology to Plug Power fuel cell customers globally. The first deployments are scheduled to be installed in the fourth quarter of 2016 at a new site for one of Plug Power’s existing customers.

Hy.GEN is based on small-scale steam methane reforming (SMR). The small scale on-site hydrogen generation systems range from 5 Nm3/h up to 100 Nm3/h, making them suitable for use at industrial sites and hydrogen filling stations. Hy.GEN systems allow the option to use biogas for a “green” hydrogen solution.

More... | Comments (9)

Green Car Congress © 2017 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group