Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Gas-to-Liquids (GTL)

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Researchers clarify role of cetane number and aromaticity in soot-NOx tradeoff

August 22, 2016

A study by researchers at Eindhoven University of Technology has found that the “persistent diesel dogma” of “the higher the cetane number (CN) the better” relative to the soot-NOx trade-off is valid in neither conventional or low temperature combustion operation. The open-access study, published in the journal Fuel also reported that a second piece of conventional wisdom—“the lower the aromaticity the better”— is valid in both combustion modes.

The researchers also devised a new, dimensionless parameter—Π—that holds distinct values for the various combustion modes. This can predict either a positive, neutral or negative impact of high CN and low aromaticity on the soot-NOx trade-off based on a given set of engine operating conditions.

More... | Comments (0)

New ceramic membrane enables first direct conversion of methane to liquids without CO2 emissions

August 05, 2016

A team from CoorsTek Membrane Sciences, the University of Oslo (Norway), and the Instituto de Tecnología Química (ITQ) (Spain) has developed a new process for the direct, non-oxidative conversion of methane to liquids—reducing cost, eliminating multiple process steps, and avoiding CO2 emissions.

The process uses a novel ceramic membrane that simultaneously extracts hydrogen and injects oxide ions. The resulting aromatic precursors are source chemicals for insulation materials, plastics, textiles, and jet fuel, among other valuable products. A paper describing the process is published in the journal Science.

More... | Comments (4)

Siluria Technologies and Air Liquide partner to develop and deliver novel catalytic process technologies to global energy markets

June 07, 2016

Siluria Technologies has entered into a strategic partnership with Air Liquide Global E&C Solutions, the engineering and construction business of the Air Liquide Group, to collaborate on the development of novel catalytic processes utilizing both companies’ expertise in gas conversion technologies.

The novel process offering will be developed using the proven innovation platform that has given rise to Siluria’s revolutionary Oxidative Coupling of Methane (OCM) technology (earlier post), but will be focused on entirely new fields beyond the companies’ current product offerings. Siluria and Air Liquide Global E&C Solutions have agreed to work as partners in the commercialization—including marketing and licensing—of the jointly developed process technologies resulting from the collaboration.

More... | Comments (0)

U Mich study explores performance of renewable diesel, FT diesel and ULSD in PCCI combustion

May 03, 2016

A team at the University of Michigan has investigated the performance of three different fuels—ultralow sulfur diesel (ULSD), diesel fuel produced via a low temperature Fischer–Tropsch process (LTFT), and a renewable diesel (RD), which is a hydrotreated camelina oil under partially premixed compression ignition (PCCI) combustion. Their paper is published in the ACS journal Energy & Fuels.

Partially premixed compression ignition (PCCI) combustion is an advanced, low-temperature combustion mode that creates a partially premixed charge inside the cylinder before ignition occurs. PCCI prolongs the time period for mixing of the fuel–air mixture by separating the end of injection and start of combustion. As a result, NOx and particulate matter (PM) emissions can be reduced simultaneously relative to those of conventional diesel combustion.

More... | Comments (2)

Primus Green Energy produces 100-octane gasoline at commercial demonstration gas-to-liquids plant; improvement to STG+ technology

February 02, 2016

Primus Green Energy Inc., a gas-to-liquids (GTL) technology and solutions company that transforms methane and other hydrocarbon gases into gasoline and methanol (earlier post), has successfully produced 100-octane gasoline at its commercial demonstration plant in Hillsborough, New Jersey.

Primus achieved this milestone as a result of an improvement to its proprietary STG+ technology—itself essentially an improvement upon commercial methanol synthesis processes and ExxonMobil’s methanol-to-gasoline (MTG) process—which allows its plant to produce high-octane gasoline in addition to RBOB (“Reformulated Gasoline Blendstock for Oxygenate Blending”) gasoline and methanol.

More... | Comments (8)

Linde pilot testing dry reforming process to generate syngas from CO2 and methane for production of fuels and chemicals

October 16, 2015

As part of its R&D strategy, Linde has built a pilot reformer facility at Pullach near Munich—Linde’s largest location worldwide—to test dry-reforming technology. The dry reforming process catalytically combines CH4, the principal component of natural gas, and CO2 to produce syngas (CO and H2). Syngas is then used to produce valuable downstream products such as base chemicals or fuels.

The dry reforming process differs from steam reforming, which combines CH4 and water (H2O) in the form of steam to produce the syngas. Producing the steam is energy-intensive; dry reforming requires far less water, and hence avoids the energy burden of steam production. In addition to reducing energy consumption, the dry reforming process also consumes recycled carbon dioxide.

More... | Comments (7)

Green Car Congress © 2016 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group