Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Hydrogen

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

ULEMCo delivers first hydrogen-diesel dual-fuel refuse trucks to Fife Council in Scotland

May 23, 2016

ULEMCo, the developer of a hydrogen-diesel dual fuel conversion system for commercial vehicles, has delivered its first hydrogen dual-fuel refuse vehicles to Fife Council in Scotland. The trucks, which deliver reduced CO2 emissions as well as improving air quality for the local community, are planned for use in densely populated urban areas, where improving air quality is a major concern.

The dual-fuel engines are equipped with hydrogen injection and a separate ECU control system. A diesel pilot injection initiates combustion of the hydrogen, which is stored onboard at 350 bar. CO2 emissions under dual fuel mode are approximately 70% less than a comparable diesel vehicle, according to the company.

More... | Comments (1)

DOE awarding ~$4.75M to San Francisco and Strategic Analysis for hydrogen fuel cell vehicle and infrastructure projects

May 20, 2016

The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) has selected the city of San Francisco for funding as the first Climate Action Champion to pursue hydrogen and fuel cell technologies for local transportation. (Earlier post.) In addition, new analysis projects by Strategic Analysis, Inc. focused on hydrogen fuel cell vehicle and infrastructure technologies will receive funding.

The nearly $4.75 million in funding for both efforts will go towards the development of education and outreach programs to increase the deployment of fuel cell electric vehicles (FCEVs) and hydrogen infrastructure, as well as provide detailed cost analyses for hydrogen fuel cell systems, hydrogen storage, and hydrogen production and delivery technologies.

More... | Comments (5)

Argonne rolls out updated version of AFLEET alternative fuels and advanced vehicles analysis tool

May 10, 2016

The US Department of Energy (DOE’s) Argonne National Laboratory is releasing an updated version of its AFLEET tool to reflect the latest advances in alternative fuels and advanced vehicle technologies and updated emissions data. Sponsored by the DOE Clean Cities program, AFLEET (Alternative Fuel Life-Cycle Environmental and Economic Transportation Tool) is a free, publicly-available tool that provides users with a roadmap for assessing which types of vehicles and fuels are right for them. The 2016 AFLEET Tool and user guide are available online. Although anyone can download and use the tool, AFLEET was designed for managers that purchase and maintain a fleet of vehicles.

The latest version includes, for the first time: gaseous hydrogen fuel cell vehicles; state-based (rather than national-based) fuel pricing, private station fuel pricing and fueling infrastructure costs. Updates to existing inputs include new light-duty vehicle costs; vehicle air pollutant emission factors derived from the Environmental Protection Agency’s emissions modeling system, MOVES 2014a; and petroleum use and greenhouse gas and relative air pollutant emissions from the 2015 GREET model, Argonne’s leading fuel life-cycle analysis model that is now in its twentieth year.

More... | Comments (0)

Columbia team develops simple, low-cost, scaleable membraneless electrolyzer fabricated with 3D printing for H2 production

May 09, 2016

Researchers at Columbia University are investigating the use of membraneless electrochemical flow cells for hydrogen production from water electrolysis that are based on angled mesh flow-through electrodes.

The devices can be fabricated with as few as three parts (anode, cathode, and cell body), reflecting their simplicity and potential for low-cost manufacture.The researchers used 3D printing to fabricate prototype electrolyzers that they demonstrated to be electrolyte agnostic, modular, and capable of operating with minimal product crossover. An open-access paper describing their work is published in the Journal of the Electrochemical Society.

More... | Comments (1)

IHS: fuel cell vehicle production of > 70,000 annually by 2027; <0.1% of all vehicles produced; Europe to lead by 2021

May 08, 2016

A new report on fuel cell vehicles from IHS Automotive forecasts that global production of hydrogen fuel cell electric vehicles (FCEVs) will reach more than 70,000 vehicles annually by 2027, as more automotive OEMs bring FCEVs to market. However,this will only represent less than 0.1% of all vehicles produced, according to IHS Automotive forecasts.

IHS expects that during the next 11 years, the number of available FCEV models will jump to 17 from the current three (Toyota Mirai, Hyundai ix35/Tucson and the Honda Clarity), as more OEMs add FCEVs to their product portfolios. In the near-term, most FCEV production is expected to be in Japan and Korea, but by 2021, European FCEV production will take the lead globally. This indicates a shift in regional momentum for FCEVs as OEMs look to meet emissions targets.

More... | Comments (60)

Loop Energy collaborates with CRRC to develop fuel cell electric drive systems for heavy-duty trucks

May 06, 2016

Canada-based Loop Energy (earlier post) has entered a collaboration agreement with Hunan CRRC Times Electric Vehicle Co., Ltd. (a subsidiary of CRRC Corporation Ltd.) to develop zero-emission power systems for heavy-duty transportation applications.

The power system to be developed for the initial project will combine Loop’s fuel cell technologies with CRRC’s leading electric drive train system to provide a better performing solution for heavy-duty trucks in comparison to traditional diesel engines.

More... | Comments (12)

Hydrogenious Technologies partners with United Hydrogen Group (UHG) to bring novel LOHC H2 storage system to US market

May 04, 2016

One of Anglo American Platinum’s investments, Hydrogenious Technologies, a German hydrogen storage startup, has launched its first commercial hydrogen storage and logistics system using its innovative Liquid Organic Hydrogen Carrier (LOHC) technology.

Hydrogenious Technologies is a spin-off from the University of Erlangen- Nuremberg (Germany), which also holds a stake in the company, and the Bavarian Hydrogen Center. Instead of storing hydrogen either under high pressure of up to 700 bar or in liquid form at –253 °C, Hydrogenious’ technology catalytically binds and releases the hydrogen molecules to liquid organic hydrogen carriers (LOHCs). (Earlier post.)

More... | Comments (18)

Cactus-inspired membranes with nanocrack coatings boost fuel cell performance significantly

April 29, 2016

Regulating water content in polymeric membranes is important in a number of applications—such as in the proton-exchange fuel-cell membranes used in automotive fuel cell stacks. Researchers from CSIRO in Australia and Hanyang University in Korea have now developed a new type of hydrocarbon polymer membrane that has the potential to deliver a significant boost in fuel cell performance.

Water content in the membranes is regulated through nanometer-scale cracks (nanocracks) in a hydrophobic surface coating. These cracks work as nanoscale valves to retard water desorption and to maintain ion conductivity in the membrane on dehumidification. In a paper published in the journal Nature, the researchers reported that hydrocarbon fuel-cell membranes with these surface nanocrack coatings operated at intermediate temperatures show improved electrochemical performance.

More... | Comments (3)

SAE technical experts: fuel cell technology has advanced significantly, FC vehicle production has begun, further cost reductions & infrastructure development required

April 27, 2016

Wrapping up the track on the commercialization of hydrogen fuel cell vehicles and hydrogen infrastructure held at the 2016 SAE World Congress (earlier post), a panel of technical experts agreed that while significant progress has been made with the technology, and while the first generation of consumer-available fuel cell vehicles is now being sold in parts of the US, there are still challenges to overcome with respect to the cost of the technology and the build-out of a supporting hydrogen refueling infrastructure.

The panel, moderated by Jesse Schneider, BMW, included Takashi Moriya, Senior Chief Engineer at Honda R&D; Dr. Will James, Manager, Safety, Codes, and Standards at the US Department of Energy (DOE); and Dr. Ralph Clague, Head of Motive Systems and Architecture, Intelligent Energy.

More... | Comments (38)

Tsinghua team evaluates impact of types and arrangements of electric traction motors in fuel cell hybrid buses

April 20, 2016

Researchers at Tsinghua University have compared the performance of two different powertrains for fuel cell hybrid buses. Both buses use 50 kW PEM fuel cell stacks (from different manufacturers) as the primary power source, with LiMn2O4 battery packs as secondary power sources. A significant difference between the two powertrains lies in the types and arrangements of the electrical motor.

One powertrain employs a single induction motor (IM) to drive the vehicle via a reduction gearbox and differential (Powertrain A), while the other powertrain adopts two permanent magnetic synchronous motors (PMSMs) for near-wheel propulsion (Powertrain B). A further difference between the proposed powertrains is the supply path for the fuel cell accessories. A paper on their study is published in Journal of Power Sources.

More... | Comments (6)

New Flyer introduces first 60-foot hydrogen fuel cell bus in North America

New Flyer of America, a subsidiary of New Flyer Industries Inc., the leading manufacturer of heavy-duty transit buses and motor coaches in the United States and Canada, conducted the inaugural road demonstration of the Xcelsior XHE60 heavy-duty articulated fuel cell transit bus. Representatives from two major transit Authorities—Alameda County Transit (AC Transit) of California, and Metro Transit of Minneapolis, Minnesota—participated in the vehicle’s debut and demonstration.

Based on its Buy America compliant and proven Xcelsior X60 heavy-duty transit bus platform, New Flyer partnered with Ballard Power Systems Inc. and Siemens to develop the propulsion system. The bus will be operated in revenue service by AC Transit for 22 months following the completion of a comprehensive evaluation at the FTA’s Altoona test facility.

More... | Comments (3)

FTA selects 7 projects to receive $22.5M in grants for battery-electric and fuel cell buses, infrastructure

The US Department of Transportation’s Federal Transit Administration (FTA) announced the latest project selections for the Low and No-Emission Vehicle Deployment Program, known as Low-No. Seven transit providers in five states will receive a share of $22.5 million toward transit buses and related facilities that utilize battery-electric, fuel cell, and other innovative technologies to reduce greenhouse gas emissions and improve operating efficiency.

FTA awarded the FY 2015 funds after a competitive review process that prioritized transit agencies and bus manufacturers with strong records in building, deploying, and operating clean buses and infrastructure. The projects selected in this round of Low-No funding are:

More... | Comments (1)

ARB Chair Mary Nichols, CA officials leading hydrogen fuel cell vehicle rally from LA to Sacramento

California Air Resources Board (ARB) Chair Mary Nichols today is leading a rally of hydrogen fuel cell electric vehicles with Energy Commissioner Janea Scott and Governor’s Office of Business and Economic Development (GO-Biz) Deputy Director Tyson Eckerle on a 400-mile journey from Los Angeles to ARB headquarters in Sacramento in celebration of Earth Day.

The rally is intended to highlight that these hydrogen-fueled electric vehicles are now available for sale or lease, and there is a rapidly growing statewide network of hydrogen filling stations to support them.

More... | Comments (3)

Toyota details design of fuel cell system in Mirai; work on electrode catalysts

April 19, 2016

While other major automakers have either introduced (Hyundai, Honda) or are in serious development of new hydrogen fuel cell vehicles for the market, Toyota continues to take the point in not just promoting, but also supporting the broader technical (and infrastructure) development required for a large-scale realization of hydrogen-based electromobility.

At the 2015 CES, Toyota announced royalty-free use of approximately 5,680 fuel-cell-related patents held globally, including critical technologies developed for the Mirai fuel cell vehicle. (Earlier post.) At the SAE 2015 World Congress, Toyota presented a set of four technical papers detailing some of the technology innovations used in Mirai fuel cell stack. (Earlier post.) And again at this year’s 2016 SAE World Congress, Toyota presented three more papers: one detailing the development of Mirai’s Toyota Fuel Cell System (TCFS) and two dealing with the critical issues of the fuel cell catalysts.

More... | Comments (42)

Japan updates hydrogen fuel cell targets; 320 stations by 2025, 800,000 vehicles by 2030

April 15, 2016

Japan’s Council for a Strategy for Hydrogen and Fuel Cells, which includes experts from industry, academia, and government, recently issued a revised version of the Strategic Roadmap for Hydrogen and Fuel Cells.

Japan’s Ministry of Economy, Trade and Industry (METI) established the Council in December 2013; the Strategic Road Map was first published in June 2014. With the increased dissemination of fuel cells for households, the launch of fuel cell vehicles onto the market, and steady progress in the construction of hydrogen stations, the Council has revised the plan, setting new targets. For vehicles, these targets are:

More... | Comments (97)

California Energy Commission releases $17.3M funding opportunity for H2 stations

April 08, 2016

The California Energy Commission has released a $17.3-million solicitation (GFO-15-605) for publicly accessible hydrogen refueling stations that serve California’s light duty fuel cell electric vehicles (FCEVs).

The Energy Commission will make available two categories of Capital Expense (Cap-X) funding. Operation and Maintenance (O&M) funding is also available for stations whose capital expenses are funded under this solicitation. This solicitation places a preference on hydrogen refueling stations that fill hydrogen refueling station coverage gaps and hydrogen refueling capacity gaps in California.

More... | Comments (1)

Hyundai Motor powers world’s first hydrogen fuel cell vehicle car-sharing service

April 07, 2016

Zero-emission car sharing service BeeZero, run by a newly founded subsidiary of The Linde Group, will feature 50 Hyundai ix35 Fuel Cell electric vehicles for public use. BeeZero, which will launch in Munich this summer, will be the first car sharing service using hydrogen fuel cell cars.

The BeeZero car sharing service will be run on a zone-based model. The fleet of fifty ix35 Fuel Cell cars will be available in Munich’s city centre and also in the areas of Schwabing, Haidhausen, Au and Glockenbachviertel. As with conventional car sharing services, the cars can be easily booked online or via a smartphone app.

More... | Comments (11)

SSAB, LKAB and Vattenfall launch long-term initiative for CO2-free ironmaking for steel production

April 04, 2016

Swedish-Finnish steel company SSAB, mining company LKAB and power company Vattenfall have launched an initiative to develop a steel production process that emits water rather than carbon dioxide.

The aim of the HYBRIT (Hydrogen Breakthrough Ironmaking Technology) project is to reduce carbon dioxide emissions from ironmaking to zero by eliminating the need to use fossil fuel for iron ore reduction. The idea is to replace the blast furnaces with an alternative process, using hydrogen produced from “clean” electricity.

More... | Comments (3)

Uno-X Hydrogen to build 1st hydrogen refueling station w/ hydrogen produced by surplus renewable energy from neighboring building

Uno-X Hydrogen AS, a NEL ASA (NEL) joint venture, will build a hydrogen refueling station (HRS) with on-site hydrogen production co-located with Powerhouse Kjørbo, an energy-positive office building in Sandvika, Norway.

Powerhouse Kjørbo, which is owned by Entra ASA, uses solar panels that can supply upward of 200,000 kWh each year, twice the amount of the building’s annual energy consumption. Excess electricity from solar will be used to produce the hydrogen on-site.

More... | Comments (10)

JRC proposing new harmonized test protocols for PEM fuel cells in hydrogen vehicles

March 29, 2016

The European Commission’s Joint Research Center (JRC) is proposing a test methodology for polymer electrolyte membrane (PEM) fuel cells, including a set of representative operating conditions. The resulting harmonized test protocols allow the evaluation of the performance and durability of PEM fuel cells by focusing on the membrane-electrode assemblies (MEA), which constitute the heart of a fuel cell.

A lack of standards for testing PEM fuel cells has hampered objective comparative assessment of their performance and durability under operating conditions and hence of their technological progress, JRC said.

More... | Comments (21)

IIT team explores combustion, performance and emissions characteristics of HCNG blends in spark ignition engine

March 28, 2016

A new study by a team from the Engine Research Laboratory at the Indian Institute of Technology Kanpur explores the combustion, performance and emission characteristics of a prototype spark ignition engine operating with different blend ratios of HCNG (hydrogen and compressed natural gas blends). Their paper is published in the journal Fuel.

Use of lower carbon natural gas and carbon-free hydrogen have potential to reduce harmful emissions of criteria pollutants and greenhouse gas (GHG) emissions and and could displace a portion of conventional liquid fossil fuels, the IIT noted. However, both fuels pose different challenges for use in internal combustion (IC) engines.

More... | Comments (1)

California ARB posts discussion document on $500M FY 2016-17 spend for low carbon transportation and fuels; $230M to fund CVRP

The California Air Resources Board (ARB) staff has posted a discussion document prior to a 4 April 2016 public workshop on the development of the FY 2016-17 Funding Plan for Low Carbon Transportation and Fuels Investments and AQIP.

The Governor’s proposed 2016-17 budget would appropriate to ARB $500 million in Cap-and-Trade auction proceeds for Low Carbon Transportation and Fuels investments—including $40 million for very low carbon fuel production incentives—and $28.6 million for Air Quality Improvement Program (AQIP) projects.

More... | Comments (3)

Japanese public-private partnership to test end-to-end H2 supply chain using wind power to begin this fall; 2nd-life hybrid batteries for ESS

March 14, 2016

A Japanese partnership comprising the Kanagawa Prefectural Government; the municipal governments of the cities of Yokohama and Kawasaki; Toyota; Toshiba; and Iwatani announced the forthcoming start of a four-year project to implement and evaluate an end-to-end low-carbon hydrogen supply chain which will use hydrogen produced from renewable energy to power forklifts. (Earlier post.) The project will be carried out at facilities along Tokyo Bay in Yokohama and Kawasaki, with support from Japan’s Ministry of the Environment.

Electricity generated at the Yokohama City Wind Power Plant (Hama Wing) will power the electrolytic production of hydrogen, which will then be compressed, stored, and then transported in a hydrogen fueling truck to four sites: a factory, a vegetable and fruit market, and two warehouses. At these locations, the hydrogen will be used in fuel cells to power forklifts operating in diverse conditions.

More... | Comments (4)

Kawasaki Heavy and Shell to partner on technologies for transporting liquefied hydrogen by sea

The Nikkei reports that Kawasaki Heavy Industries and Royal Dutch Shell will partner to develop technologies for transporting large volumes of liquefied hydrogen by sea.

Kawasaki has already been collaborating with Iwatani and Electric Power Development in hydrogen mass production and transportation. Kawasaki is also currently developing a small test vessel for the marine transportation of liquefied hydrogen. (Earlier post.) The vessel will have a cargo capacity of 2,500 m3, equivalent to that of coastal trading LNG vessels.

More... | Comments (7)

Berkeley Lab team develops new high-performance solid-state H2 storage material: graphene oxide (GO)/Mg nanocrystal hybrid

March 12, 2016

Researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new, environmentally stable solid-state hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets.

This material, protected from oxygen and moisture by the rGO layers, exhibits dense hydrogen storage (6.5 wt% and 0.105 kg H2 per liter in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance.

More... | Comments (20)

Honda begins sales of Clarity Fuel Cell in Japan; targeting 200 units first year

March 11, 2016

On 10 March, Honda Motor Co. began sales in Japan of its all-new fuel cell vehicle (FCV), the Clarity Fuel Cell. (Earlier post.) Honda is targeting sales of approximately 200 units in the first year, with a focus on lease sales mainly to local government bodies or businesses Honda has already been working with over the years for the development and popularization of FCVs.

During this period, Honda will collect information about the in-market use of the Clarity Fuel Cell as well as its external power output device and gather opinions and requests from customers and other relevant organizations, and then later begin sales to individual customers.

More... | Comments (16)

German team doubles activity of water electrolysis catalysts for H2 production with monolayer of copper on platinum

March 10, 2016

A team from the Ruhr-Universität Bochum, Technische Universität München and Universiteit Leiden has doubled the catalytic activity of electrodes for water electrolysis by applying a monolayer of copper the platinum electrodes. The resulting electrodes are the most active electrocatalysts ever reported for the HER (hydrogen evolution reaction) in acidic media under comparable conditions, to the best of their knowledge, wrote the authors in an open-access paper in the journal Nature Communications.

Only about 4% of global hydrogen production is via water electrolysis, according to a 2012 analysis (Bičáková and Straka). The main impediments to a wider commercialization are the high energy losses in electrolyzers due to the insufficient activity of state-of-the-art electrodes.

More... | Comments (5)

Argonne LCA study finds many alternative fuels consume more water than petroleum and natural gas fuels

March 09, 2016

Researchers at Argonne National Laboratory have analyzed the water consumption for transportation fuels in the United States using an extended lifecycle system boundary that includes the water embedded in intermediate processing steps.

In a paper published in the RSC journal Energy & Environmental Science, they compared the water consumed per unit energy and per km traveled in light-duty vehicles. They found that many alternative fuels consume larger quantities of water on a per km basis than traditional petroleum and natural gas pathways. The authors concluded that it will be important to consider the implications of transportation and energy policy changes on water resources in the future.

More... | Comments (16)

Ceres Power scales up “Steel Cell” SOFC fuel cell production capability with Innovate UK funding

March 06, 2016

UK-based Ceres Power Holdings, a spin-out from Imperial College, has completed a manufacturing scale-up project that enables high volume production capability for its Steel Cell solid oxide fuel cell (SOFC) fuel cell technology, a key step towards mass market commercialization of its unique fuel cell technology in response to growing market opportunities. The SOFC uses natural gas as a fuel to produce electricity.

Ceres Power recently signed a new Joint Development Agreement with Honda R&D jointly to develop stacks using Ceres Power’s metal-supported Steel Cell technology for a range of potential power equipment applications. (Earlier post.)

More... | Comments (14)

DOE seeking input on R&D and business needs for automotive PEM fuel cells and fueling

March 05, 2016

The US Department of Energy’s (DOE) Fuel Cell Technologies Office (FCTO) is seeking feedback from the research community, relevant stakeholders, and industry on technical and economic barriers for fuel cell-related technologies. (RFI DE-FOA-0001510)

Specifically, FCTO seeks information regarding: R&D needs to improve performance and reduce cost of bipolar plates for polymer electrolyte membrane fuel cells (PEMFCs); the high startup cost for hydrogen refueling stations, which may be caused by extensive installation and permitting efforts or low equipment utilization; and innovative research topics that may not currently be part of the FCTO portfolio but could potentially be appropriate for future efforts or funding opportunity announcements.

More... | Comments (20)

Loop Energy wins $7.5M from SDTC to support battery/fuel cell powertrains for heavy-duty trucks

March 04, 2016

Loop Energy—formerly known as PowerDisc Development—has been awarded a $7.5-million grant from Sustainable Development Technology Canada (SDTC) to accelerate deployment of the company’s new zero-emission powertrain for heavy-duty trucks.

The Loop heavy­duty powertrain combines an electric battery with a hydrogen fuel cell designed around its patented eFlow technology. eFlow addresses unequal current distribution in the fuel cell by improving the flow of oxygen, fuel and water within a fuel cell and avoiding degradation of the fuel cell membrane and stack materials.

More... | Comments (2)

H2 Logic delivers 9th H2 fueling station for Denmark; 100% renewable hydrogen, 1st country-wide station network

H2 Logic has delivered the ninth hydrogen fueling station in Denmark. The latest site was inaugurated in Kolding. This narrows the driving distance to the nearest station in Hamburg, Germany to only 245 km (150 miles) making cross-border driving on hydrogen more feasible. The station in Kolding is the third to open in Denmark during the past six months, and in total the ninth public accessible hydrogen station in 24/7 operation throughout Denmark.

Additional H2Stations are planned during 2016 which will ensure that 50% of Danish population will have less than 15 kilometers to hydrogen fueling. Already today hydrogen available is in all of the major cities across the country, making it the first countrywide hydrogen station network in the world.

More... | Comments (12)

Study suggests policymakers need to move beyond alt fuels hype to decarbonize transport successfully

March 02, 2016

Policymakers who want to decarbonize the transportation sector will need to move beyond the hype that has characterized alternative fuels over the past three decades and find better ways to assess and sustain promising technologies and fuels, according to a study from Simon Fraser University, Canadian consulting firm Navius Research, and the University of California, Davis.

In the study, published in the journal Nature Energy, Noel Melton, Jonn Axsen and Daniel Sperling conduct a media analysis to show how society’s attention has skipped among alternative fuel vehicle (AFV) technology between 1980 and 2013, including methanol, natural gas, plug-in electric, hybrid electric, hydrogen and biofuels. They then make recommendations that governments can follow to move past hype to support significant AFV adoption and displace fossil fuel use in the transportation sector.

More... | Comments (20)

Argonne and Los Alamos national laboratories partner to find alternative to platinum in hydrogen fuel cells; Electrocatalysis Consortium

Researchers at the US Department of Energy’s (DOE) Argonne and Los Alamos national laboratories have teamed up to support a DOE initiative through the creation of the Electrocatalysis Consortium (ElectroCat), a collaboration devoted to finding an effective but cheaper alternative to platinum in hydrogen fuel cells. ElectroCat is one of four consortia that make up DOE’s new Energy Materials Network (EMN). (Earlier post.)

About half of the total cost of a typical automotive fuel cell stack comes directly from the cost of the platinum metal in the electrode catalysts. ElectroCat is dedicated to finding new ways to replace rare and costly platinum group metals in fuel cell cathodes with more accessible and inexpensive substitutes such as materials based on the earth-abundant metals iron and cobalt.

More... | Comments (3)

Riversimple introduces Rasa prototype two-seater fuel cell vehicle; 300 miles on 1.5kg H2; production version in 2018

February 17, 2016

Riversimple Movement Ltd. unveiled the Rasa, a road-legal engineering prototype of its first two-seater hydrogen fuel cell road car, built for full European type approval. (Earlier post.) Supported by a £2-million (US$2.9-million) grant from the Welsh government in 2015, the Rasa was designed for lightness, strength, affordability and safety.

Riversimple plans to offer the car to motorists through a “sale-of-service” model. For a fixed monthly fee and mileage allowance, similar in expenditure to leasing and running a new family-sized hatchback, the company will cover all repair, maintenance, insurance and fuel expenses. Customers will simply exchange or return the car at the end of the ownership period.

More... | Comments (15)

First UAV test flight with Cella solid-state hydrogen storage and fuel-cell power system

February 08, 2016

The Scottish Association for Marine Science (SAMS) recently completed a UAV test flight using Cella Energy’s hydrogen-based power system. The system is based on Cella’s solid, nanostructured chemical hydride hydrogen storage material which is capable of releasing large quantities of hydrogen when heated. Cella Energy is a spin-off from STFC’s Rutherford Appleton Laboratory in the UK. (Earlier post.)

Cella designed and built a gas generator using this material, which when combined with a fuel cell, creates electrical power. The complete system—Cella gas generator along with a fuel cell supplied and integrated by Arcola Energy—is considerably lighter than the lithium-ion battery it replaced.

More... | Comments (12)

New UMTRI paper reviews major advantages and disadvantages of battery-electric and fuel-cell vehicles

February 01, 2016

A new report from the University of Michigan Transportation Research Institute (UMTRI) reviews the major advantages and disadvantages associated with battery-electric vehicles (BEVs) and fuel-cell vehicles (FCVs). The team of Brandon Schoettle and Dr. Michael Sivak also incudes information for current gasoline-powered internal combustion engines as a baseline comparison.

In addition to reviewing the technical literature, the UMTRI researchers interviewed experts in the automotive and energy sectors regarding their views concerning these issues. Among their findings:

More... | Comments (29)

Technavio forecasts 45% CAGR in automotive fuel cell market through 2019

January 31, 2016

The global fuel cell market in the automotive industry is set to grow at a rapid CAGR of more than 45% (in terms of unit shipments) through 2019, according to a new report by global technology research and advisory company Technavio.

Technavio calculated the market size for 2015-2019 based on the revenue generated from the global units and MW shipments of fuel cells in the automotive industry.

More... | Comments (19)

Cost-effective iron-nitrogen-doped graphene fuel-cell catalyst approaches performance of platinum

January 27, 2016

Teams at Helmholtz Zentrum Berlin (HZB) and TU Darmstadt have produced a cost-effective fuel-cell catalyst material consisting of iron-nitrogen complexes embedded in tiny islands of graphene only a few nanometers in diameter. The FeN4 centers provide excellent catalytic efficiency, approaching that of platinum.

For their synthesis process, they devised a simple and feasible way to reduce the contribution of inorganic metal species in the catalyst material—in some cases even down to zero. The presence of inorganic species interferes with the oxygen reduction reaction (ORR) activity of metal and nitrogen-doped carbon catalysts. A paper on their work is published in the Journal of the American Chemical Society.

More... | Comments (8)

Tottori Prefecture, Tottori Gas, Sekisui House and Honda cooperate in hydrogen demonstration; smart house and FCV

January 25, 2016

Tottori Prefecture, Tottori Gas Co., Ltd, Sekisui House Ltd. and Honda Motor Co., Ltd. signed an agreement to pursue jointly Tottori Prefecture’s project to establish a base for a hydrogen energy demonstration (and environmental education). This will be Japan’s first case where hydrogen energy will be utilized through the integration of a hydrogen station which creates hydrogen from renewable energy, a smart house and a fuel cell vehicle (FCV).

The purpose of this project is to promote the popularization of smart houses and FCVs. The project will install, for the first time on the Sea of Japan side of the archipelago, a Smart Hydrogen Station (SHS) using Honda’s high-differential-pressure electrolyzer that supplies hydrogen created by electrolysis of water using renewable energy. Honda will also supply its new Clarity fuel cell vehicle.

More... | Comments (19)

Ballard signs $12M agreement for 15 kW fuel cell stacks for commercial bus range-extenders in China

January 22, 2016

Ballard Power Systems signed an Equipment Supply Agreement (ESA), valued at $12 million, with Guangdong Synergy Hydrogen Power Technology Co., Ltd. (Synergy) to provide FCvelocity-9SSL fuel cell stacks for use in commercial buses in China. Ballard expects to deliver the stacks in 2016 and 2017.

Each FCvelocity-9SSL fuel cell stack will deliver approximately 15 kilowatts (kW) of power, appropriate for range-extension applications. The ESA for fuel cell stacks signed today is in addition to agreements that Ballard previously announced for heavy-duty power applications in China. (Earlier post, earlier post, earlier post.)

More... | Comments (7)

Honda to begin leasing Clarity fuel cell vehicle in California by year end; targeting <$500/month

January 21, 2016

At Washington, D.C. Auto Show, Honda said that it will begin retail leasing of the new 5-passenger, hydrogen-powered Clarity Fuel Cell sedan (earlier post) to customers in select California markets before the end of 2016. Honda expects to price the Clarity Fuel Cell at around $60,000 with a targeted monthly lease under $500.

Honda expects limited volumes in the early stages of production. Deliveries will begin through certified fuel cell vehicle dealers in Los Angeles and Orange counties as well as the San Francisco Bay Area and Sacramento. The company will start by leasing vehicles and expects to move to retail sales with increased volumes and market coverage coincident with increasing vehicle supplies and the growing hydrogen refueling station network.

More... | Comments (16)

SAE’s highest technical safety award goes to hydrogen fueling paper

At the Awards Ceremony at the SAE 2016 Government/Industry Meeting, SAE International honored the recipients of the Ralph H. Isbrandt Automotive Safety Engineering Award, including the lead author, Jesse Schneider, (BMW); along with co-authors Jihyun Shim (Hyundai); Graham Meadows (IMPCO); Steven R. Mathison (Honda); Michael J. Veenstra (Ford); Rainer Immel (Opel); Morten Wistoft-Ibsen (H2 Logic); Manfred Greisel (Wenger Engineering); Spencer Quong (SQI); Timothy McGuire (MB RDNA); and Peter Potzel (Daimler).

The Ralph Isbrandt Award annually recognizes the author(s) delivering the most outstanding paper at an SAE Society or section meeting on the subject of automotive safety engineering. The 2016 Ralph Isbrandt award recognizes the advancement to SAE literature of the recipients’ SAE World Congress Technical Paper on Hydrogen Fueling, “Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard” (SAE 2014-01-1990). (Earlier post.)

More... | Comments (0)

New high-activity, low-cost nickel-based catalyst for fuel cells exhibits performance similar to Pt; hydroxide exchange membrane fuel cells

January 15, 2016

Researchers at the University of Delaware, with a colleague at the Beijing University of Chemical Technology, have developed a composite catalyst—nickel nanoparticles supported on nitrogen-doped carbon nanotubes—that exhibits hydrogen oxidation activity in alkaline electrolyte similar to platinum-group metals. An open access paper on their work is published in the journal Nature Communications.

Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, they increase the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles, the researchers reported. Owing to its high activity and low cost, the catalyst shows significant potential for use in low-cost, high-performance fuel cells, the team suggested.

More... | Comments (27)

Audi unveils h-tron quattro fuel cell SUV concept at Detroit; MLB evo platform

January 13, 2016

In a demonstration of its ongoing development of advanced alternative powertrains, Audi unveiled the new h-tron quattro fuel cell concept vehicle at the North American International Auto Show (NAIAS). Like its production-bound sibling the e-tron quattro battery-electric vehicle, the h-tron concept is based on Audi’s second-generation modular longitudinal platform (MLB evo, earlier post).

The Audi h-tron quattro concept combines an Audi fifth-generation fuel cell stack delivering up to 110 kW with a power-optimized 1.8 kWh HEV battery that can provide a temporary boost of 100 kW for combined peak system power of 210 kW. The car can be fully refueled with hydrogen in around four minutes, and is then ready to drive for up to 600 kilometers (372.8 miles). Unlike the 3-motor e-tron quattro, the h-tron uses two electric motors, one on each axle, and so drives like a “conventional” electric vehicle, notes Audi Head of Electric Powertrain Siegfried Pint—i.e. without the potential for the type of advanced dynamics control offered by the e-tron quattro. (Earlier post.)

More... | Comments (11)

Toyota displays Mirai-based research vehicle with satellite communications function; Kymeta flat-panel antennae

January 12, 2016

At the 2016 North American International Auto Show (NAIAS), Toyota is displaying a research vehicle based on the Mirai fuel cell vehicle which is equipped with satellite communications technology from Kymeta, a US-based company that is the world's leader in flat-panel antenna technology.

Toyota is working to enhance its connected technologies, including a plan to install a Data Communication Module into a broader range of its vehicles. (Earlier post.) The company is also considering using satellite communications in the future, including high capacity satellites that offer much higher data transfer rates than conventional satellite technologies.

More... | Comments (4)

DOE releases three reports showing strong growth in US fuel cell and hydrogen technologies market

December 24, 2015

The US Department of Energy (DOE) released three new reports today showcasing strong growth across the US fuel cell and hydrogen technologies market. According to these reports, the United States continues to be one of the world’s largest and fastest growing markets for fuel cell and hydrogen technologies.

With support from the Energy Department, its national laboratories and private industry have already achieved significant advances in fuel cell and hydrogen technologies, resulting in reduced costs and improved performance. These research and development efforts have helped reduce automotive fuel cell costs by more than 50% since 2006 and by more than 30% since 2008. At the same time, fuel cell durability has quadrupled and the amount of expensive platinum needed in fuel cells has decreased by 80 percent in the last decade.

More... | Comments (6)

DOE’s HyStEP device will accelerate hydrogen refueling station commissioning

December 17, 2015

The Hydrogen Station Equipment Performance device (HyStEP) (earlier post), developed by US Department of Energy’s (DOE) Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), could reduce the time to commission new hydrogen refueling stations from months to just one week.

The primary purpose of the HyStEP Device is to be used by a certification agency to measure the performance of hydrogen dispensers with respect to the required fueling protocol standard. Specifically, the device has been designed to carry out the test methods of CSA HGV 4.3 to measure that stations follow the fueling protocols standard SAE J2601-2014 including IrDA communications per SAE J2799.

More... | Comments (1)

Purdue, EPFL team propose Hydricity concept for integrated co-production of H2 and electricity from solar thermal energy

December 16, 2015

Researchers from Purdue University and École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland are proposing a new integrated process involving the co-production of hydrogen and electricity from solar thermal energy—a concept they label “hydricity”. They describe their proposal in a paper in the Proceedings of the National Academy of Sciences (PNAS).

The hydricity process entails integrating solar water power (SWP) cycle and solar thermal hydrogen production technologies and a turbine-based hydrogen power cycle with suitable improvements of each for compatibility and beneficial interaction.

More... | Comments (9)

DOE issues $35M funding opportunity for hydrogen and fuel cell technologies

December 11, 2015

The US Department of Energy (DOE) announced up to $35 million in available funding to advance hydrogen and fuel cell technologies (earlier post) to support research and development, early market deployments, and domestic manufacturing. The Department also aims to develop collaborative consortia for fuel cell performance and durability and advanced hydrogen storage materials research to leverage the capabilities of national lab core teams.

The available funding (DE-FOA-0001412) includes hydrogen production, delivery, and storage research and development (R&D); demonstration of infrastructure component manufacturing, and support for Climate Action Champions deploying hydrogen and fuel cell technologies; consortia topics for fuel cell performance and durability and advanced hydrogen storage materials research; and cost and performance analysis for hydrogen production, storage, and fuel cells.

More... | Comments (1)

GM and US Army to demonstrate extreme off-road hydrogen fuel cell Chevrolet Colorado

November 20, 2015

General Motors and the US Army Tank Automotive Research, Development &

Engineering Center (TARDEC) are modifying a Chevrolet Colorado midsize pickup truck to run on a commercial hydrogen fuel cell propulsion system and will expose the truck to the extremes of daily military use for 12 months.

Fuel cell propulsion has very high low-end torque capability useful in off-road environments. It also offers exportable electric power and quiet operation, attractive characteristics to both commercial and military use.

More... | Comments (1)

ISO 19880 – New technical ISO document for hydrogen fueling station standardization

November 18, 2015

At the Fuel Cell Seminar in Los Angeles, California today, Jesse Schneider (BMW), the ANSI Convener of ISO Working Group 24 (from the Technical Committee on Fueling Stations) gave an overview presentation on the new ISO 19880 technical report for hydrogen fueling stations.

The ISO WG (Working Group) 24 committee members represent hydrogen suppliers, hydrogen organizations, local and national governments as well as automakers (OEMs) from North America, Europe and Asia. Last month, the participating members (P-Members) of ISO/TC (Technical Committee) 197 (Hydrogen Technologies), voted to approve ISO Technical Report 19880-1, Gaseous hydrogen — Fueling stations — Part 1: General requirements—essentially a worldwide safety and performance guideline for hydrogen stations and the interface to fuel cell vehicles (FCEVs). The station safety expectation, according to ISO 19880-1, will give the same level of safety to that of fueling with conventional fuels.

More... | Comments (0)

Honda Clarity Fuel Cell sedan makes N. American debut at LA Auto Show; available in California late 2016; PHEV in 2018

The Honda Clarity Fuel Cell sedan (earlier post) made its North American debut at the 2015 Los Angeles Auto Show as Honda announced additional details for the vehicle’s entry into the US market. The next evolution of Honda’s fuel cell technology, the Clarity Fuel Cell delivers significant gains in packaging, interior space, efficiency and real-world performance.

Honda also announced that the platform underpinning the Clarity Fuel Cell will also serve as the foundation for a next-generation Honda plug-in hybrid electric vehicle (PHEV) that will launch nationwide by 2018, with more than triple the 13-mile all-electric range of the Accord Plug-In Hybrid Sedan.

More... | Comments (19)

Audi highlights its range of electrification efforts; Q7 diesel PHEV, A7 fuel cell PHEV, BEV, 48V and more; 750 Wh/l by 2025

November 17, 2015

Audi presented a range of its ongoing work on electromobility and efficiency—from fuels and systems to full vehicles—under the “Future Performance Days 2015” banner.

On the full vehicle side, Audi put forward the Audi Q7 e-tron 3.0 TDI quattro plug-in hybrid (earlier post); the Audi A7 h-tron quattro fuel cell vehicle (earlier post); the Audi e-tron quattro concept battery-electric SUV (earlier post); the Audi TT clubsport turbo concept (earlier post); the Audi RS 5 TDI competition concept (earlier post); and the Audi R18 e-tron quattro (earlier post). On the systems and fuels side, Audi discussed battery technology; wireless charging; 48 V electrification (earlier post); Audi fuel cell technology; and Audi e-fuels (earlier post).

More... | Comments (6)

Kia outlines 5-year plan for more green vehicles; Optima PHEV, Niro hybrid, FCV; $10.2B investment

November 16, 2015

Kia Motors outlined its mid- to long-term plans for the development of a greatly increased range of environmentally friendly vehicles, with the goal of becoming a leader in the low-emissions car market by 2020. Kia said it intends to expand its green car line-up from four current models to 11 by 2020, including hybrids, plug-in hybrids, battery-electric and fuel cell electric vehicles.

The five-year development plan will see Kia further increase its investment in research and development (R&D) into fuel-efficient technologies and new products, with a range of all-new models and highly advanced powertrains for global markets.

More... | Comments (1)

DOE releases SBIR/STTR FY16 Phase 1 Release 2 topics; hydrogen, electric vehicles, more efficient combustion engines; biogas-to-fuels

The US Department of Energy has announced the 2016 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 Topics, covering eight DOE research program organizations.

Among the many topics listed are magnetocaloric materials development for hydrogen delivery; two hydrogen technology transfer opportunities (TTO); EV traction batteries and power electronics; new combustion engine technologies; and the co-utilization of CO2 and methane in biogas to produce higher hydrocarbon fuels. DOE plans to issue the full Funding Opportunity Announcement (FOA) on 30 November 2015.

More... | Comments (0)

3M and Plug Power announce strategic supply agreement for PEM fuel cell MEAs; material handling and EV markets

November 15, 2015

3M will supply Plug Power Inc. with membrane electrode assemblies (MEAs) to be used in Plug Power designed proton exchange membrane (PEM) fuel cell stacks under a new strategic supply agreement.

Through this strategic supply agreement, fuel cell stacks will be manufactured in Plug Power’s Latham, NY and Spokane, WA facilities to support the $20-billion material handling market. Additionally, this new fuel cell stack technology will be utilized to expand Plug Power’s presence into hydrogen-enabled electric vehicle applications outside of the material handling market. Fuel cell systems using the 3M MEA’s and Plug Power stack design will begin shipments in the fourth quarter of 2015.

More... | Comments (3)

AC Transit files LCFS pathway application for H2 produced by electrolysis (solar): 0.00 gCO2e/MJ

November 06, 2015

AC Transit (Alameda-Contra Costa Transit District), which operates the third-largest public bus system in California, has filed a fuel pathway application for gaseous hydrogen produced via electrolysis powered by renewable electricity (solar) with the California Air Resources Board (ARB) under the Low Carbon Fuel Standard (LCFS) regulation.

According to AC Transit’s analysis—which is supported by ARB Staff—the carbon intensity (CI) of the gaseous hydrogen produced by the pathway is 0.00 gCO2e/MJ—i.e., a zero-carbon fuel on a “well-to-tank” lifecycle basis.

More... | Comments (22)

Mercedes-Benz Vision Tokyo concept fuel cell hybrid leverages F 015 Luxury in Motion concept

October 28, 2015

Mercedes-Benz introduced a new advanced design concept at the Tokyo Motor Show: the Vision Tokyo. The concept is powered by a fuel cell electric drive system based on the F-CELL PLUG-IN HYBRID of the self-driving F 015 Luxury in Motion concept introduced at CES in January. (Earlier post.) The next combines the on-board generation of electricity with a particularly powerful and compact high-voltage battery that can be charged wirelessly via induction.

Pressure tanks made from CFRP store the hydrogen in the concept car. The electric hybrid system has a total range of 980 kilometers (609 miles), of which some 190 kilometers (118 miles) are courtesy of battery-powered driving and around 790 kilometers (491 miles) from the electricity produced in the fuel cell.

More... | Comments (21)

Honda leverages older name for new FCV: Clarity Fuel Cell makes its debut at Tokyo; 435-mile range on JC08

October 27, 2015

Honda Motor Co., Ltd. unveiled the planned production model of its all-new fuel cell vehicle (FCV), called Clarity Fuel Cell, at the 44th Tokyo Motor Show 2015. This model will be on display at the Honda booth during the show. The name honors its predecessor, the FCX Clarity fuel cell vehicle, introduced at the LA Auto Show in 2007. (Earlier post.)

Employing original Honda technologies, the fuel cell stack for this model was downsized by 33% compared to the previous version of the fuel cell stack yet delivers output of more than 100 kW, with an output density of 3.1 kW/L—approximately a 60% improvement. The fuel cell powertrain was made as compact as a Honda 3.5L V6 engine, enabling it to be packaged under the hood of a sedan-type vehicle for the first time. This powertrain layout enabled a full cabin package that seats five adults.

More... | Comments (20)

DLR developing four-passenger fuel cell aircraft

October 15, 2015

The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) is developing a four-passenger aircraft powered solely by a hydrogen fuel cell battery system. DLR presented the HY4 project at the International Trade Fair World of Energy Solutions this week in Stuttgart.

HY4 uses a hybrid system: the main power source is a low-temperature Proton Exchange Membrane (PEM) fuel cell, which continuously supplies the electric motor with durable and reliable power. A high-performance lithium battery covers peak power loads during take-off and when climbing.

More... | Comments (62)

Toyota announces aggressive environmental targets through 2050; cutting new vehicle CO2 by 90% compared to 2010

October 14, 2015

Addressing key global environmental issues such as climate change, water shortages, resource depletion, and degradation of biodiversity, the Toyota Environmental Challenge 2050 aims to reduce the negative impact of manufacturing and driving vehicles as much as possible. The challenge comprises six individual challenges across three areas: Ever-better cars, quantified as reducing global average new-vehicle CO2 emissions by 90% by 2050 compared to Toyota’s 2010 global average; ever-better manufacturing (zero CO2 emissions at all plants by 2050); and enriching the lives of communities.

As a key step toward achieving these long-term targets, Toyota is announcing its Sixth Toyota Environmental Action Plan, which will be enacted between April 2016 and the end of March 2021.

More... | Comments (19)

California Hydrogen Business Council says a robust P2G RD&D program should be a priority for the state

The case for using Power-to-Gas solutions to store renewable energy is compelling for a number of important use cases, according to a new white paper released by the California Hydrogen Business Council (CHBC). The paper, —“Power-To-Gas: The Case For Hydrogen”—outlines the feasibility and economics of renewable energy storage solutions using P2G. Among the paper’s conclusions is that a robust P2G RD&D program should be a priority for the state of California. Currently, P2G is being deployed in Europe and Canada but is only at the early demonstration phase in California.

P2G systems use electrolysis powered by renewable energy to split water into hydrogen and oxygen—i.e., P2G converts electrical energy to chemical energy in the form of hydrogen. The hydrogen can then be transported through the natural gas grid via blending or further conversion to methane, transported by other means such as trucks, or used directly at the point of production. (Posts.)

More... | Comments (4)

European working group led by Intelligent Energy to develop 90kW automotive EC fuel cell stack for mass manufacture

October 13, 2015

Intelligent Energy will lead a pan-European industry working group to develop its proprietary 90kW EC (evaporatively cooled, earlier post) fuel cell automotive technology in the funded project called VolumetriQ.

VolumetriQ is a three-year program that will deliver a blueprint for stack suitability for mass manufacture and potential future industrialization. Funded by €5 million (US$5.7 million) from the European program FCH JU (Fuel Cells and Hydrogen Joint Undertaking, the target is to develop fuel cell stacks that can be manufactured in high volumes for use in hydrogen fuel cell vehicles by 2020.

More... | Comments (1)

New JV pushes hydrogen infrastructure expansion in Germany; ~400 stations by 2023; $455M investment

Six industrial companies in Germany—Air Liquide, Daimler, Linde, OMV, Shell and Total—have formed a cross-sector joint venture, H2 Mobility Deutschland GmbH & Co. KG, to support a staged expansion of hydrogen filling stations across Germany to bring the total to around 400 stations by 2023.

The Berlin-based company has started operations and is working in preparation for Stage One of the joint action plan. This envisages the accelerated set-up of 100 filling stations over the next few years. Senior representatives of the H2 Mobility venture partners met today at launch talks held with Federal Minister of Transport Alexander Dobrindt and discussed the next steps. The industry and government partners have reinforced their commitment by signing a memorandum of understanding on hydrogen filling stations for Germany.

More... | Comments (14)

Hydrexia and HyGear partner on low-cost hydrogen distribution in Europe; solid state storage and delivery

Australia-based hydrogen solid state storage and distribution company Hydrexia has entered an agreement with Netherlands-based HyGear, supplier of industrial gases and on-site generation systems, to supply hydrogen in Europe. The hydrogen will be produced by HyGear’s small-scale Hy.GEN steam methane reforming (SMR) facilities located across Europe.

The agreement between the two companies allows for development and supply of a complete hydrogen generation, storage and distribution system with a lower cost product for customers. Hydrexia is entering the European market in partnership with HyGear with the intention of becoming a distributor of the lowest cost hydrogen in Europe.

More... | Comments (2)

DOE awards more than $20M to advance fuel cell technologies; new report highlights strong market growth

October 09, 2015

The US Department of Energy (DOE) has awarded more than $20 million to 10 projects to advance fuel cell and hydrogen technologies, and to enable early adoption of fuel cell applications such as light-duty fuel cell electric vehicles (FCEVs) (DE-FOA-0001224, earlier post).

The announcement of the latest investment come along with release of a new DOE report—“Fuel Cell Technologies Market Report 2014”—showing the fuel cell industry is continuing to grow at an unprecedented rate, totaling more than $2.2 billion in sales in 2014. The report describes data compiled in 2015 on trends in the fuel cell industry for 2014 with some comparison to previous years.

More... | Comments (14)

Sandia, Berkeley and Los Alamos labs in $9M effort for automotive onboard solid-state hydrogen storage; HyMARC

October 08, 2015

Sandia National Laboratories will lead a new tri-lab consortium to address unsolved scientific challenges in the development of viable solid-state materials for storage of hydrogen onboard vehicles. Better onboard hydrogen storage could lead to more reliable and economic hydrogen fuel cell vehicles.

Called the Hydrogen Materials—Advanced Research Consortium (HyMARC), the program is funded by the US Department of Energy’s (DOE) Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy at $3 million per year for three years ($9 million total), with the possibility of renewal. In addition to Sandia, the core team includes Lawrence Livermore and Lawrence Berkeley national laboratories.

More... | Comments (9)

Toyota to unveil new fuel cell vehicle concept; focus on distributed generation as well as transportation

With its fuel cell Mirai already on sale, Toyota Motor is continuing to push the fuel cell envelope with the introduction of a new fuel cell concept at the upcoming Tokyo Moto Show at the end of this month. The new Toyota FCV Plus is a fuel cell concept that embodies Toyota’s vision of a hydrogen-based society. Toyota is also introducing the all-new Prius and the Toyota C-HR Concept, a compact hybrid crossover.

Toyota envisages a sustainable society in which hydrogen energy is in widespread use—a society it says is embodied by the new FCV Plus concept vehicle, which functions as a distributed power generation system as well as a vehicle.

More... | Comments (13)

Sandia team boosts hydrogen production activity by molybdenum disulfide four-fold; low-cost catalyst for solar-driven water splitting

October 07, 2015

A team led by researchers from Sandia National Laboratories has shown that molybdenum disulfide (MoS2), exfoliated with lithiation intercalation to change its physical structure, performs as well as the best state-of-the-art catalysts for the hydrogen evolution reaction (HER) but at a significantly lower cost. An open access paper on their study is published in the journal Nature Communications.

The improved catalyst has already released four times the amount of hydrogen ever produced by MoS2 from water. To Sandia postdoctoral fellow and lead author Stan Chou, this is just the beginning: “We should get far more output as we learn to better integrate molly with, for example, fuel-cell systems,” he said.

More... | Comments (1)

Intelligent Energy announces US$1.8B deal for ~27K telecom towers in India; fuel cell power for ~70%; landmark in fuel cell deployment

October 04, 2015

UK-based fuel cell developer Intelligent Energy will purchase contracts from GTL Limited to supply energy-management services across more than 27,400 telecom towers in India—about 6.4% of the country’s total. Essential Energy, a subsidiary of Intelligent Energy in India, will assume the power management for the towers—a figure equivalent to 50% of the UK’s telecom towers and 13% of the US’. Essential Energy intends to transition around 70% of the managed telecom towers from diesel power to hydrogen fuel cells throughout their contracts’ tenure.

The transaction delivers contracted revenues of approximately £1.2 billion (US$1.8 billion) over ten years—a major development for Intelligent Energy and the industry, said Henri Winand, CEO of Intelligent Energy Holdings. The landmark deal also represents a major milestone in hydrogen fuel cell deployment.

More... | Comments (4)

ARB posts discussion draft of new proposed mobile-source emissions reduction strategy through 2030; Advanced Clean Cars 2 regulation

October 02, 2015

The California Air Resources Board (ARB) staff has published a discussion draft of a proposed strategy for further regulation and reduction of mobile source—cars, trucks, and off-road equipment—emissions. The approach described is designed to meet simultaneously federal air quality standards; achieve greenhouse gas emission reduction targets; reduce petroleum consumption; and decrease health risk from transportation sources through 2030.

ARB staff developed this strategy using a multi-pollutant scenario planning tool (Vision 2.0) that quantifies changes in ozone and PM2.5 precursor emissions; GHG emissions; petroleum usage; and diesel toxics emissions as various technologies become widespread in vehicle and equipment fleets.

More... | Comments (0)

California ARB announces $24M grant solicitation for zero-emission truck and bus pilot commercial deployment projects

The California Air Resources Board (ARB) announced a grant solicitation for Zero-Emission Truck and Bus Pilot Commercial Deployment Projects. Up to $23,658,000 is available for this project from FY 2014-15 funds. Up to an additional $60,000,000 may be available for projects under this solicitation from future funds appropriated by the California legislature on or before 30 June 2016.

This project complements the Zero-Emission Drayage Truck and Multi-Source Facility Demonstration Projects solicitations released in June of this year as part of a $50-million allocation for advanced technology freight demonstrations.

More... | Comments (1)

Ballard lands $17M deal for deployment of ~300 fuel cell buses in China; new 30 kW and 60 kW modules

September 26, 2015

Under a newly signed long-term license and supply agreement, Ballard Power Systems will supply Guangdong Synergy Hydrogen Power Technology Co., Ltd., an existing partner in China, fuel cell power products and technology in support of the planned deployment of approximately 300 fuel cell-powered buses in the cities of Foshan and Yunfu, China.

The deal has an estimated initial value of $17 million through 2016, with the opportunity for significant recurring royalties starting in 2017. The agreement includes supply and sale of fully-assembled fuel cell power modules; ready-to-assemble module kits; a technology license for localization of assembly; supply of proprietary fuel cell stacks; and long-term recurring royalties leveraged to unit volumes of locally assembled modules.

More... | Comments (1)

$70M H2ME project launches in Europe to deploy 325 fuel cell vehicles and 29 refueling stations

September 24, 2015

A large coalition of European partners has launched the €63-million (US$70-million) project Hydrogen Mobility Europe (H2ME). H2ME is co-funded with €32 million (US$36 million) from the Fuel Cells and Hydrogen Joint Undertaking (FCH JU). The project will support the deployment of 325 Fuel Cell Electric Vehicles (FCEVs), including 125 fuel-cell range-extended electric vans, and 29 Hydrogen Refueling Stations (HRS) across Europe.

Together with the project HyFive, which started last year, H2ME complements the pre-existing plans for more than 50 stations, and will create a European network of at least 85 stations (the largest in the world).

More... | Comments (4)

Toyota and public and private partners in Japan to trial renewable CO2-free hydrogen supply chain

September 08, 2015

Major corporate and public sector partners in Japan are launching an effort to test a full carbon-neutral hydrogen supply chain powered by renewable wind energy. The trials are planned to take place near the cities of Yokohama and Kawasaki in the Keihin coastal region.

On the public sector side, the project is being implemented by the Kanagawa Prefectural Government, Yokohama City, and Kawasaki City. The four private sector participants are Iwatani Corporation, Toshiba Corporation, Toyota Motor Corporation, and Toyota Turbine and Systems Inc. In addition, the project will be supported by Japan’s Ministry of the Environment.

More... | Comments (23)

Argonne researchers develop new non-precious-metal fuel cell catalyst with performance comparable to platinum

August 27, 2015

Researchers at the US Department of Energy’s Argonne National Laboratory have developed a new fuel cell catalyst using earth-abundant materials with performance that is comparable to platinum in laboratory tests. The nanofibrous non-precious metal catalyst (NPMC) is synthesized by electrospinning a polymer solution containing a mixture of ferrous organometallics and metal-organic frameworks and then is thermally activated.

The resulting catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. As reported in an open access paper in Proceedings of the National Academy of Sciences (PNAS), in a single-cell test, the membrane electrode containing the catalyst delivered volumetric activities of 3.3 A⋅cm−3 at 0.9 V or 450 A⋅cm−3 extrapolated at 0.8 V, representing the highest reported value in the literature. The team also observed improved fuel cell durability.

More... | Comments (2)

Ipsos poll finds 64% of Canadians would consider buying or leasing fuel cell vehicle if available

August 11, 2015

Eight in ten (80%) Canadians “agree” (33% strongly/48% somewhat) that “electric cars are the way of the future”, according to a new Ipsos poll conducted on behalf of Hyundai. Just two in ten (20%) “disagree” (3% strongly/17% somewhat). Three quarters (75%) of Canadians “agree” (32% strongly/44% somewhat) that they would “like to have a car that is not powered by traditional gasoline”, while only one in four (25%) “disagree” (7% strongly/18% somewhat) that they would like to drive such a car.

However, the poll also found that a majority (71%) “agrees” (25% strongly/46% somewhat) that “constantly having to charge electric cars is a pain” (29% disagree – 7% strongly/22% somewhat). While most (90%) can “agree” (45% strongly/45% somewhat) that “cars that operate on an alternate source of fuel rather than traditional gasoline are great for the environment” and that they’re “innovative” (89% agree – 38% strongly/51% somewhat), two in three (67%) also “agree” (20% strongly/47% somewhat) that they would “like to own an eco-friendly car but electric-powered cars are too much hassle”. One in three (33%) “disagrees” (8% strongly/25% somewhat) that electric-powered cars are too much hassle. Only one in four (24%) say they’re “familiar” (3% very/22% somewhat) with hydrogen fuel cell technology, while most (76%) are not (43% not very/32% not at all familiar – never heard of it).

More... | Comments (10)

Sandia Labs partnering with Red and White Fleet to develop high-speed H2 fuel cell passenger ferry and world’s largest H2 refueling station

July 28, 2015

Sandia National Laboratories and San Francisco’s Red and White Fleet are partnering in a project—SF-BREEZE (San Francisco Bay Renewable Energy Electric vessel with Zero Emissions)—to develop a high-speed, hydrogen-fuel-cell-powered passenger ferry and refueling station. The hydrogen refueling station is planned to be the largest in the world and serve fuel cell electric cars, buses and fleet vehicles in addition to the ferry and other maritime vehicles.

The US Department of Transportation’s Maritime Administration (MARAD) is funding a feasibility study to examine the technical, regulatory and economic aspects of the project. The outcome of the feasibility study will be a “Go/No-Go” recommendation to proceed with the actual design and build of the ferry and hydrogen station.

More... | Comments (1)

NIST calculates H2 pipeline can cost up to 68% more than nat gas pipeline; proposes code change to reduce cost

July 20, 2015

Pipelines to carry hydrogen cost more than other gas pipelines because of the measures required to combat the damage hydrogen does to steel’s mechanical properties (e.g., hydrogen embrittlement, HE) over time. Researchers at the National Institute of Standards and Technology (NIST) have now calculated that hydrogen-specific steel pipelines can cost as much as 68% more than natural gas pipelines, depending on pipe diameter and operating pressure.[1] By contrast, a widely used cost model[2] suggests a cost penalty of only about 10%.

However, according to the new NIST study, hydrogen transport costs could be reduced for most pipeline sizes and pressures by modifying industry codes[3] to allow the use of a higher-strength grade of steel alloy without requiring thicker pipe walls.

More... | Comments (7)

Fukushima launching power-to-gas hydrogen project with MCH as hydrogen carrier; supply center by 2016

Fukushima and the Fukushima Renewable Energy Institute (FREA) have launched a power-to-has project with a view to making the prefecture a hydrogen supply center by as early as 2016, according to a report in The Japan Times, via Fukushima Minpo. The project will test and refine a model of hydrogen-supply infrastructure, which would then be used in creating a functioning supply center.

The project is a collaboration between the prefecture and the National Institute of Advanced Industrial Science and Technology (AIST), the parent of FREA. AIST established FREA in April 2014 to promote R&D into renewable energy. FREA has two basic missions: the promotion of R&D into renewable energy, which is open to the world; and making a contribution to industrial clusters and reconstruction.

More... | Comments (10)

Total hydrogen station in Munich first to feature standard compressed H2 and BMW cryo-compressed H2 technology

July 16, 2015

Total has opened a hydrogen filling station on Munich’s Detmoldstraße. The station, which completes the European HyFIVE project’s South Cluster—comprising Stuttgart, Munich, Innsbruck and Bolsano—is the first public filling station at which the two pumps dispense hydrogen using two different types of refueling technology: industry-standard 700 bar CGH2 hydrogen storage technology (SAE J2601); and cryo-compressed hydrogen storage technology (CCH2).

Cryo-compressed hydrogen storage, being developed by the BMW Group based on its long experience with cryogenic storage, involves storing gaseous hydrogen at low temperature on board the vehicle at a pressure of up to 350 bar. It is currently at the advanced development stage and will only come on stream for general use over the longer time frame. CCH2 tanks offer up to 50% more hydrogen storage capacity than 700 bar tanks and can support a driving range of more than 500 kilometers (310 miles).

More... | Comments (36)

Navigant forecasts global annual sales of LDVs of 122.6M by 2035, up 38% from 2015

July 06, 2015

In a new report, Navigant Research forecasts global annual sales of light duty vehicles will reach 122.6 million by 2035, up 38% from a projected 88.8 million this year, representing a compound annual growth rate (CAGR) of 1.6%. Navigant Research expects the number of LDVs in use on roads worldwide to grow by 57.1% from 2015 to 2035 to almost 1.9 billion units.

Navigant expects sales of conventional internal combustion engine (ICE) vehicles will fall significantly over the forecast period, experiencing a CAGR of -6.6%. As a result, the share of vehicles in use that are conventional ICE vehicles will fall from more than 91% in 2015 to under 40% by 2035. Navigant expects ICE vehicles will be replaced by start-stop vehicles (SSVs), which will grow from representing more than 4% of vehicles in use in 2015 to nearly 49% in 2035. Hybrids (HEVs) are expected to account for nearly 3%, while PHEVs (plug-in hybrids), BEVs (battery-electric vehicles), NGVs (natural gas vehicles), PAGVs (propane autogas vehicles), and FCV (fuel cell vehicles) s together are projected to add up to more than 9% of the LDVs in use in 2035.

More... | Comments (2)

BMW shows future drive technologies; 2 Series PHEV prototype, direct water injection in 3-cyl. engine, and fuel cell eDrive

July 02, 2015

During a driving event at the Miramas proving grounds in southern France, BMW presented future drive technologies, including the prototype of a BMW 2 Series Active Tourer with plug-in hybrid drive. This application of BMW eDrive technologies features the first PHEV system with a front/transverse-mounted combustion engine, high-voltage generator and road-linked all-wheel drive via an electric drive system at the rear axle.

The company also showcased the use of direct water injection to enhance the efficiency of combustion engines at higher performance levels while also significantly reducing fuel consumption and emissions in key driving cycles. Finally, BMW showcased a hydrogen fuel cell drive system as a future-focused variant of BMW eDrive (teased in a technical session during April’s SAE World Congress in Detroit) enabling all-electric driving with a high operating range and short refueling times. (BMW is collaborating with Toyota on fuel cell systems. Earlier post.)

More... | Comments (9)

Toyota, Nissan and Honda agree on details of H2 station support in Japan

July 01, 2015

Toyota Motor Corporation, Nissan Motor Co., Ltd., and Honda Motor Co., Ltd. have agreed on key details of their joint support project for the development of hydrogen station infrastructure in Japan. (Earlier post.) The joint project (conducted alongside the Japanese government’s support for hydrogen stations) will cover one-third of the hydrogen station operating expenses incurred by infrastructure companies, and was first announced on 12 February.

Annual financial support per station is limited to ¥11 million (US$89,000). (The annual limit is ¥13 million (US$106,000) where two or more mobile stations are operated.) The partners envision funding support until around 2020. 100 hydrogen stations will be constructed initially, with a gradual increase expected thereafter. The total value of the support is estimated at around ¥5-6 billion (US$41-$49 million).

More... | Comments (1)

Study of size-dependent properties of Mg nanoparticles in H2 storage suggests path to better performance; potential for better on-board tanks

Although magnesium hydride (MgH2) is a promising solid-state hydrogen storage material, its slow hydrogen sorption kinetics have limited its application. Recent studies have shown, however, that with smaller Mg particles, the sorption kinetics improve. Since volume change during sorption generates stress, leading in turn to plastic deformation, the fundamentals of the mechanical deformation of the Mg particles are a significant issue.

Now, researchers from China and the US, including a colleague from GM R&D, have used in situ transmission electron microscopy to elucidate the size-dependent mechanical properties of Mg nanoparticles used for hydrogen storage. The team tested different sized nanoparticles to gauge their mechanical properties and discovered lessons on how one might engineer the nanoparticles to improve their performance. Their paper is published in the journal Applied Physics Letters.

More... | Comments (0)

Stanford team develops new low-voltage single-catalyst water splitter for hydrogen production

June 23, 2015

Researchers at Stanford University have developed a new low-voltage, single-catalyst water splitter that continuously generates hydrogen and oxygen. An open access paper describing the synthesis and functionality of the bi-functional non-noble metal oxide nanoparticle electrocatalysts appears in the journal Nature Communications.

In the reported study, the new catalyst achieved 10 mA cm−2 water-splitting current at only 1.51 V for more than 200 h without degradation in a two-electrode configuration and 1 M KOH—better than the combination of iridium and platinum as benchmark catalysts.

More... | Comments (18)

Automakers develop consensus list of priority locations for next 19 H2 fueling stations in California

June 16, 2015

The automaker OEM Advisory Group (OEM AG) of the California Fuel Cell Partnership (CaFCP) has developed a consensus list of recommended station priority locations for the next 19 hydrogen stations to be built in California. The OEM AG members are American Honda, General Motors, Hyundai, Mercedes-Benz, Nissan, Toyota and Volkswagen.

The priority locations represent general geographic areas that the OEM AG suggests be considered by the California Air Resources Board (ARB), station developers and the California Energy Commission (CEC) in planning the next phase of hydrogen station network development in California. (Earlier post.) The automakers consider their recommendations as preliminary and expect to refine them further through subsequent analysis and further consultation with stakeholders prior to future solicitations.

More... | Comments (34)

McGill team develops simple system for reversible H2 storage using organic cyclic hydrocarbons; alternative route to solar fuels

June 15, 2015

A team at McGill University in Canada has developed a reversible hydrogen storage/release system based on the metal-catalyzed hydrogenation and photo-induced dehydrogenation of organic cyclic hydrocarbons at room temperature. The system, they suggest in a paper published in the Journal of the American Chemical Society, provides an alternative route to artificial photosynthesis for directly harvesting and storing solar energy in the form of chemical fuel.

The system easily switches between hydrogen addition (>97% conversion) and release (>99% conversion) with superior capacity of 7.1 H2 wt% using a rationally optimized platinum catalyst with high electron density, simply regulated by dark/light conditions. In a paper published in the Journal of the American Chemical Society, the researchers reported that the photodriven dehydrogenation of cyclic alkanes gave an excellent apparent quantum efficiency of 6.0% under visible light illumination (420–600 nm) without any other energy input.

More... | Comments (1)

DOE Hydrogen and Fuel Cell Program Annual Merit Review Awards

Each year, at the US Department of Energy’s (DOE) Annual Merit Review and Peer Evaluation Meeting, the Hydrogen and Fuel Cells Program presents awards for contributions to the overall efforts of the Program and to recognize achievements in specific areas. At last week’s merit review meeting, DOE made awards to 13 engineers and researchers.

Hydrogen and Fuel Cells Program Awards. DOE awarded two Hydrogen and Fuel Cells Program awards: one to George Parks of Fuel Science, the other to Jesse Schneider of BMW. (Schneider also recently received the 2015 James M. Crawford Technical Standards Board Outstanding Achievement Award from SAE for his work on hydrogen standards.)

More... | Comments (0)

DOE issues request for information on gas clean-up for fuel cell applications

June 02, 2015

The US Department of Energy’s (DOE’s) Fuel Cell Technologies Office (FCTO) has issued a request for information (DE-FOA-0001331) to obtain feedback and opinions from industry, academia, research laboratories, government agencies, and other stakeholders on the report findings from the Gas Clean-up for Fuel Cell Applications Workshop.

The Gas Clean-up for Fuel Cell Applications Workshop was held last year at Argonne National Laboratory, and featured 43 participants from industry (fuel cell, process solution providers, and material suppliers), government agencies, advocacy groups, universities, and national laboratories with expertise in the relevant fields. The objective of the workshop was to identify and prioritize:

More... | Comments (1)

DOE announces $26.6M SBIR/STTR FY15 Phase 1 Release 2 awards; fuel cells, batteries, power electronics and efficient combustion engines

May 28, 2015

The US Department of Energy (DOE) has selected 162 projects to receive about $26.6 million in the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 Awards. (Earlier post.) Of these, 16 are vehicle-related, encompassing projects developing batteries, power electronics and improved combustion engine technology including on-board reformers, and two are specifically hydrogen fuel cell-related.

Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) are Federal programs in which agencies with large research and development (R&D) budgets set aside a small fraction of their funding for competitions among small businesses only. Small businesses that win awards in these programs keep the rights to any technology developed and are encouraged to commercialize the technology. While the original charter of the program focused on technological innovation, the current programs have evolved to have a greater focus on commercialization.

More... | Comments (0) | TrackBack (0)

Hydrogenics and Alstom Transport to develop and commercialize H2 fuel-cell commuter trains in Europe; €50M, 10-year agreement

May 27, 2015

Hydrogenics Corporation, a leading developer and manufacturer of hydrogen generation and hydrogen-based power modules, signed a 10-year exclusive agreement to supply Alstom Transport with hydrogen fuel cell systems for Regional Commuter Trains in Europe. Alstom Transport is a unit of Alstom, a France-based global leader in power generation, transmission and rail infrastructure with sales of €6.2 billion.

The agreement, valued at more than €50 million, includes the supply of at least 200 engine systems along with service and maintenance as necessary over a 10-year period. The fuel cell systems, based on Hydrogenics’s Heavy-Duty HD series fuel cells, will be developed to meet European train compliance regulations. The first units are expected to be delivered in 2016 following prototype work slated for late 2015.

More... | Comments (24) | TrackBack (0)

Ballard to move to next phase of PEM fuel cell catalyst development project with Nisshinbo

May 26, 2015

Ballard Power Systems has received a purchase order from Nisshinbo Holdings Inc. for the next phase of Technology Solutions project work related to the development of a breakthrough catalyst technology intended to reduce manufacturing cost of certain proton exchange membrane (PEM) fuel cells. The project has now been underway for approximately 2 years.

Nisshinbo is an energy company providing low-carbon, optimized products across a range of business lines, including chemicals, precision instruments, electronics, automotive brakes, textiles and paper. Nisshinbo has supplied Ballard with compression molded bipolar flow field plates for more than 10-years, for use in the manufacture of PEM fuel cell membrane electrode assemblies (MEAs) used in various market applications.

More... | Comments (1) | TrackBack (0)

Green Car Congress © 2016 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group