Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search


Hydrogen Production

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

UK team produces hydrogen from fescue grass via photocatalytic reforming

July 21, 2016

A team of researchers from the UK’s Cardiff University’s Cardiff Catalysis Institute and Queen’s University Belfast have shown that significant amounts of hydrogen can be unlocked from fescue grass—without significant pre-treatment—using sunlight and a metal-loaded titania photocatalyst. An open access paper on their work is published in Proceedings of the Royal Society A.

Based on their study, the team proposed that the first step in their photoreforming of cellulose was the (photo)hydrolysis of cellulose into glucose, with the latter then undergoing reforming to hydrogen and CO2. It is the first time that this method has been demonstrated and could potentially lead to a sustainable way of producing hydrogen.

More... | Comments (3)

Duke study: serpentinized rock in oceans may be large, overlooked source of free hydrogen gas

Rocks formed beneath the ocean floor by fast-spreading tectonic plates may be a large and previously overlooked source of free hydrogen gas, a new Duke University study suggests. Their paper is published in the journal Geophysical Research Letters.

Recent discoveries of free hydrogen gas, which was once thought to be very rare, have been made near slow-spreading tectonic plates deep beneath Earth’s continents and under the sea. Previous estimates suggest that serpentinization—a processes whereby rock is changed, with the addition of water, into the crystal structure of the minerals found within the rock—within the continental lithosphere (the crust and upper mantle of the earth) produces hydrogen at rates comparable to the oceanic lithosphere (both are ~1011 mol H2/yr).

More... | Comments (5)

DOE awards $14M to advance hydrogen fuel technologies

July 12, 2016

The US Department of Energy (DOE) announced up to $14 million in funding for the advancement of hydrogen fuel technologies. Specifically, these selections include advanced high-temperature water splitting; advanced compression; and thermal insulation technologies.

For cost-competitive transportation, hydrogen must be comparable to conventional fuels and technologies on a per-mile basis in order to succeed in the commercial marketplace. DOE’s current target is to reduce the cost of producing and delivering hydrogen to less than $4 per gallon of gas equivalent (gge) by 2020 and $7/gge for early markets.

More... | Comments (3)

KTH team develops new cost-effective water-splitting electrocatalyst for H2 production

June 27, 2016

Researchers at KTH Royal Institute of Technology in Stockholm have developed a new cost-effective electrocatalyst for water-splitting to produce hydrogen.

The monolayer of nickel–vanadium-layered double hydroxide shows a current density of 27 mA cm−2 (57 mA cm−2 after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. This performance is comparable to those of the best-performing electrocatalysts that are composed of non-precious materials—nickel–iron-layered double hydroxides for water oxidation in alkaline media—the researchers report in an open access paper in Nature Communications.

More... | Comments (13)

Stanford solar tandem cell shows promise for efficient solar-driven water-splitting to produce hydrogen

June 23, 2016

Researchers at Stanford University, with colleagues in China, have developed a tandem solar cell consisting of an approximately 700-nm-thick nanoporous Mo-doped bismuth vanadate (BiVO4) (Mo:BiVO4) layer on an engineered Si nanocone substrate. The nanocone/Mo:BiVO4 assembly is in turn combined with a solar cell made of perovskite.

When placed in water, the device immediately began splitting water at a solar-to-hydrogen conversion efficiency of 6.2%—matching the theoretical maximum rate for a bismuth vanadate cell. Although the efficiency demonstrated was only 6.2%, the tandem device has room for significant improvement in the future, said Stanford Professor Yi Cui, a principal investigator at the Stanford Institute for Materials and Energy Sciences and senior author of an open access paper describing the work published in Scientific Advances.

More... | Comments (15)

USC team develops new robust iridium catalyst for release of hydrogen from formic acid

June 17, 2016

A team of researchers at the University of Southern California has developed a robust, reusable iridium catalyst that enables hydrogen gas release from neat formic acid. The catalyst works under mild conditions in the presence of air, is highly selective and affords millions of turnover numbers (TONs).

Although other catalysts exist for both formic acid dehydrogenation and carbon dioxide reduction, solutions to date on hydrogen gas release rely on volatile components that reduce the weight content of stored hydrogen and/or introduce fuel cell poisons; this new catalyst does not. An open-access paper on their work is published in the journal Nature Communications.

More... | Comments (1)

Plug Power and HyGear partner to provide small-scale SMR hydrogen production technology to fuel cell system customers

June 10, 2016

Fuel cell system manufacturer Plug Power Inc. and HyGear, supplier of cost-effective industrial gases, are partnering to supply HyGear’s Hy.GEN hydrogen generation technology to Plug Power fuel cell customers globally. The first deployments are scheduled to be installed in the fourth quarter of 2016 at a new site for one of Plug Power’s existing customers.

Hy.GEN is based on small-scale steam methane reforming (SMR). The small scale on-site hydrogen generation systems range from 5 Nm3/h up to 100 Nm3/h, making them suitable for use at industrial sites and hydrogen filling stations. Hy.GEN systems allow the option to use biogas for a “green” hydrogen solution.

More... | Comments (9)

New catalyst system produces H2 and CO2 from formic acid at low temperatures

June 07, 2016

An international team led by researchers at the University of Melbourne has developed a new catalyst system for the efficient removal of CO2 from formic acid (HO2CH), resulting in the production of CO2 and H2 at a low temperature of 70 °C. Other methods for producing hydrogen from formic acid have required high temperatures, and also produce waste products.

The work, described in an open-access paper in Nature Communications marks a new frontier in catalyst design at the molecular level. Such catalysts are formulated to produce highly selective chemical reactions.

More... | Comments (1)

Bochum team engineers artificial hydrogenase for hydrogen production; targeting foundation for industrial manufacturing

June 01, 2016

Researchers at Ruhr-Universität Bochum (RUB) have engineered a hydrogen-producing enzyme in the test tube that works as efficiently as the original. The protein—a hydrogenase from green algae ( [FeFe]-hydrogenase HYDA1 from Chlamydomonas reinhardtii)—is made up of a protein scaffold and a cofactor.

The researchers have been investigating mechanisms of hydrogen biocatalysis for a number of years. In 2013, the team reported developing semi-synthetic hydrogenases by adding the protein’s biological precursor to a chemically synthesized inactive iron complex.

More... | Comments (0)

Researchers report cost-effective synthesis of NiFe-layered double hydroxides nanosheets as efficient OER catalyst

May 31, 2016

A team from Brown University and Lakehead University (Canada) have developed a method for the facile and cost-effective synthesis of NiFe-layered double hydroxides (LDH) nanosheets to serve as efficient catalyst for the oxygen evolution reaction in an alkaline environment.

Compared to previously reported LDH catalysts, the new nanosheets exhibit a much higher oxygen evolution activity. The overpotential of catalytic OER was very low and the Tafel slope (Tafel analysis is a tool for comparing electrocatalytic activity and elucidating the reaction mechanism) was close to that of a commercial RuO2 catalyst. A paper describing their work is published in the journal Electrochemistry Communications.

More... | Comments (0)

Clariant to scale-up catalysts for Gevo’s Ethanol-to-Olefins (ETO) technology; renewable diesel and hydrogen

May 19, 2016

Gevo, Inc. has entered into an agreement with Clariant Corp., one of the world’s leading specialty chemical companies, to develop catalysts to enable Gevo’s Ethanol-to-Olefins (ETO) technology.

Gevo’s ETO technology, which uses ethanol as a feedstock, produces tailored mixes of propylene, isobutylene and hydrogen, which are valuable as standalone molecules, or as feedstocks to produce other products such as diesel fuel and commodity plastics, that would be drop-in replacements for their fossil-based equivalents. ETO is a chemical process, not a biological process as is Gevo’s conversion of biomass to isobutanol.

More... | Comments (0)

Columbia team develops simple, low-cost, scaleable membraneless electrolyzer fabricated with 3D printing for H2 production

May 09, 2016

Researchers at Columbia University are investigating the use of membraneless electrochemical flow cells for hydrogen production from water electrolysis that are based on angled mesh flow-through electrodes.

The devices can be fabricated with as few as three parts (anode, cathode, and cell body), reflecting their simplicity and potential for low-cost manufacture.The researchers used 3D printing to fabricate prototype electrolyzers that they demonstrated to be electrolyte agnostic, modular, and capable of operating with minimal product crossover. An open-access paper describing their work is published in the Journal of the Electrochemical Society.

More... | Comments (1)

Uno-X Hydrogen to build 1st hydrogen refueling station w/ hydrogen produced by surplus renewable energy from neighboring building

April 04, 2016

Uno-X Hydrogen AS, a NEL ASA (NEL) joint venture, will build a hydrogen refueling station (HRS) with on-site hydrogen production co-located with Powerhouse Kjørbo, an energy-positive office building in Sandvika, Norway.

Powerhouse Kjørbo, which is owned by Entra ASA, uses solar panels that can supply upward of 200,000 kWh each year, twice the amount of the building’s annual energy consumption. Excess electricity from solar will be used to produce the hydrogen on-site.

More... | Comments (10)

Researchers synthesize first ruthenium nanoframes; potential for better catalysts

April 02, 2016

A team of chemists, led by Xiaohu Xia from Michigan Technological University, has developed an effective method based on seeded growth and chemical etching for the facile synthesis of ruthenium (Ru) nanoframes (NFs) with high purity for use as effective catalysts. A paper on their work is published in the ACS journal Nano Letters

Although this marks the first synthesis of ruthenium nanoframes, the break-through is not limited to this one metal. Xia says the process the team developed is more important.

More... | Comments (1)

SLAC, U Toronto team develops new highly efficient ternary OER catalyst for water-splitting using earth-abundant metals; >3x TOF prior record-holder

March 25, 2016

Scientists from the Department of Energy’s SLAC National Accelerator Laboratory and the University of Toronto have developed a new type of ternary catalyst for the oxygen evolution reaction (OER) in water-splitting that exhibits a turnover frequency (TOF) that’s more than three-times above the TOF and mass activities of optimized control catalysts and the state-of-art NiFeOOH catalyst.

The research, published in the journal Science, outlines a potential way to make a future generation of water-splitting catalysts from three abundant metals—iron (Fe), cobalt (Co) and tungsten (W)—rather than the rare, costly metals on which many of today’s catalysts rely. The gelled FeCoW oxy-hydroxide material exhibits the lowest overpotential (191 mV) reported at 10 mA per square centimeter in alkaline electrolyte. Further, the ternary catalyst showed no evidence of degradation following more than 500 hours of operation.

More... | Comments (2)

Japanese public-private partnership to test end-to-end H2 supply chain using wind power to begin this fall; 2nd-life hybrid batteries for ESS

March 14, 2016

A Japanese partnership comprising the Kanagawa Prefectural Government; the municipal governments of the cities of Yokohama and Kawasaki; Toyota; Toshiba; and Iwatani announced the forthcoming start of a four-year project to implement and evaluate an end-to-end low-carbon hydrogen supply chain which will use hydrogen produced from renewable energy to power forklifts. (Earlier post.) The project will be carried out at facilities along Tokyo Bay in Yokohama and Kawasaki, with support from Japan’s Ministry of the Environment.

Electricity generated at the Yokohama City Wind Power Plant (Hama Wing) will power the electrolytic production of hydrogen, which will then be compressed, stored, and then transported in a hydrogen fueling truck to four sites: a factory, a vegetable and fruit market, and two warehouses. At these locations, the hydrogen will be used in fuel cells to power forklifts operating in diverse conditions.

More... | Comments (4)

German team doubles activity of water electrolysis catalysts for H2 production with monolayer of copper on platinum

March 10, 2016

A team from the Ruhr-Universität Bochum, Technische Universität München and Universiteit Leiden has doubled the catalytic activity of electrodes for water electrolysis by applying a monolayer of copper the platinum electrodes. The resulting electrodes are the most active electrocatalysts ever reported for the HER (hydrogen evolution reaction) in acidic media under comparable conditions, to the best of their knowledge, wrote the authors in an open-access paper in the journal Nature Communications.

Only about 4% of global hydrogen production is via water electrolysis, according to a 2012 analysis (Bičáková and Straka). The main impediments to a wider commercialization are the high energy losses in electrolyzers due to the insufficient activity of state-of-the-art electrodes.

More... | Comments (5)

New photoelectrode with enhanced visible light absorption for improved solar water-splitting for hydrogen production

February 16, 2016

A team of researchers at Ulsan National Institute of Science and Technology (UNIST), Korea University, and the Korea Advanced Institute of Science and Technology (KAIST) has developed a new type of multilayered (Au NPs/TiO2/Au) photoelectrode that could boost the ability of solar water-splitting to produce hydrogen.

This multilayered photoelectrode is a two-dimensional hybrid metal-dielectric structure, comprising three layers of gold (Au) film; an ultrathin TiO2 layer (20 nm), and gold nanoparticles (Au NPs). In a study, reported in the journal Nano Energy, the team reported that the photoelectrode shows high light absorption of about 90% in the visible range 380-700 nm, as well as significant enhancement in photo-catalytic applications.

More... | Comments (1)

Process for production of jet-range hydrocarbons from crude Jatropha oil using hydrogen produced in-situ from formic acid

A team at the Korea Institute of Energy Research has developed a catalytic process for the production of jet-range oxygen-free hydrocarbons from crude Jatropha oil, using hydrogen produced in-situ from formic acid.

In a fixed bed reaction using a mixture of crude Jatropha oil and formic acid, normal hydrocarbon in the range of C10–C18 (mostly C15 and C17) was the main product—about 97% in the liquid product—and the degree of deoxygenation was about 99.5%. A paper on their work is published in the journal Fuel.

More... | Comments (0)

Berkeley team develops host-guest nanowires for efficient water splitting and solar energy storage

February 04, 2016

Although metal oxides that absorb visible light are attractive for use as photoanodes in photoelectrosynthetic cells, their performance is often limited by poor charge carrier transport. Researchers from UC Berkeley and colleagues have now addressed this issue by using separate materials for light absorption and carrier transport.

The team reports on their host-guest system of Ta:TiO2|BiVO4 as a photoanode for use in solar water splitting cells in an open-access paper in the journal ACS Central Science. BiVO4 acts as a visible light-absorber and Ta:TiO2 acts as a high surface area electron conductor. The host–guest nanowire architecture allows for simultaneously high light absorption and carrier collection efficiency for efficient solar water oxidation.

More... | Comments (5)

New German ecoPtG project seeks to make power-to-gas commercially viable with help of automotive technology

In collaboration with engineering partner IAV, the Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (Centre for Solar Energy and Hydrogen Research Baden-Württemberg, ZSW); the Reiner Lemoine Institut (RLI); and Wasserelektrolyse Hydrotechnik (HT) are researching cost-effective methods of producing hydrogen with the help of automotive technology. In the ecoPtG project, the researchers and engineers are developing an alkaline water electrolyzer with an output of 100 kW. They aim to demonstrate that CO2-neutral hydrogen can be produced in a cost-effective manner and intend to facilitate the storage of electricity.

Electricity is increasingly being generated from fluctuating renewable sources. Solar and wind energy generation depends on the weather and is subject to significant fluctuations. At times, renewable energy production thus temporarily exceeds regional demand. Hydrogen produced according to the power-to-gas method can play a role in resolving this challenge and decarbonizing the transport sector. By converting electricity to gas, solar and wind power become storable. If required, hydrogen can be reconverted or used as environmentally compatible fuel for fuel cell vehicles.

More... | Comments (16)

Tottori Prefecture, Tottori Gas, Sekisui House and Honda cooperate in hydrogen demonstration; smart house and FCV

January 25, 2016

Tottori Prefecture, Tottori Gas Co., Ltd, Sekisui House Ltd. and Honda Motor Co., Ltd. signed an agreement to pursue jointly Tottori Prefecture’s project to establish a base for a hydrogen energy demonstration (and environmental education). This will be Japan’s first case where hydrogen energy will be utilized through the integration of a hydrogen station which creates hydrogen from renewable energy, a smart house and a fuel cell vehicle (FCV).

The purpose of this project is to promote the popularization of smart houses and FCVs. The project will install, for the first time on the Sea of Japan side of the archipelago, a Smart Hydrogen Station (SHS) using Honda’s high-differential-pressure electrolyzer that supplies hydrogen created by electrolysis of water using renewable energy. Honda will also supply its new Clarity fuel cell vehicle.

More... | Comments (19)

IU scientists create self-assembling biocatalyst for the production of hydrogen; modified hydrogenase in a virus shell

January 04, 2016

Scientists at Indiana University have created a highly efficient self-assembling biomaterial that catalyzes the formation of hydrogen. A modified hydrogenase enzyme that gains strength from being protected within the protein shell (capsid) of a bacterial virus, this new material is 150 times more efficient than the unaltered form of the enzyme.

The material is potentially far less expensive and more environmentally friendly to produce than other catalytic materials for hydrogen production. The process of creating the material was recently reported in the journal Nature Chemistry.

More... | Comments (6)

DOE releases three reports showing strong growth in US fuel cell and hydrogen technologies market

December 24, 2015

The US Department of Energy (DOE) released three new reports today showcasing strong growth across the US fuel cell and hydrogen technologies market. According to these reports, the United States continues to be one of the world’s largest and fastest growing markets for fuel cell and hydrogen technologies.

With support from the Energy Department, its national laboratories and private industry have already achieved significant advances in fuel cell and hydrogen technologies, resulting in reduced costs and improved performance. These research and development efforts have helped reduce automotive fuel cell costs by more than 50% since 2006 and by more than 30% since 2008. At the same time, fuel cell durability has quadrupled and the amount of expensive platinum needed in fuel cells has decreased by 80 percent in the last decade.

More... | Comments (6)

FuelCell Energy pathway for hydrogen from digester gas has negative carbon intensity for CA LCFS

December 23, 2015

Connecticut-based FuelCell Energy (FCE) has applied for a prospective pathway for California’s Low Carbon Fuel Standard (LCFS) for the production of hydrogen fuel produced from biogas derived from the mesophilic anaerobic digestion of wastewater sludge at a publicly owned treatment works (POTW).

The biogas is cleaned, then internally reformed in an integrated hydrogen energy system (Tri-Gen DFC) that produces hydrogen fuel for transportation; electric power for plant operations and export; as well as thermal energy for plant use. Once the internal energy demands of the pathway have been met, any energy not utilized for process is considered to be surplus to the system boundary and is credited to the FCE pathway.

More... | Comments (5)

NREL research advances photoelectrochemical production of hydrogen using molecular catalyst

December 21, 2015

Researchers at the Energy Department’s National Renewable Energy Laboratory (NREL) have made advances toward affordable photoelectrochemical (PEC) production of hydrogen. A paper on their work is published in Nature Materials.

The PEC process uses solar energy to split water into hydrogen and oxygen. The process requires special semiconductors, the PEC materials and catalysts to split the water. Previous work used precious metals such as platinum, ruthenium and iridium as catalysts attached to the semiconductors. A large-scale commercial effort using those precious metals wouldn’t be cost-effective, however.

More... | Comments (2)

Purdue, EPFL team propose Hydricity concept for integrated co-production of H2 and electricity from solar thermal energy

December 16, 2015

Researchers from Purdue University and École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland are proposing a new integrated process involving the co-production of hydrogen and electricity from solar thermal energy—a concept they label “hydricity”. They describe their proposal in a paper in the Proceedings of the National Academy of Sciences (PNAS).

The hydricity process entails integrating solar water power (SWP) cycle and solar thermal hydrogen production technologies and a turbine-based hydrogen power cycle with suitable improvements of each for compatibility and beneficial interaction.

More... | Comments (9)

DOE issues $35M funding opportunity for hydrogen and fuel cell technologies

December 11, 2015

The US Department of Energy (DOE) announced up to $35 million in available funding to advance hydrogen and fuel cell technologies (earlier post) to support research and development, early market deployments, and domestic manufacturing. The Department also aims to develop collaborative consortia for fuel cell performance and durability and advanced hydrogen storage materials research to leverage the capabilities of national lab core teams.

The available funding (DE-FOA-0001412) includes hydrogen production, delivery, and storage research and development (R&D); demonstration of infrastructure component manufacturing, and support for Climate Action Champions deploying hydrogen and fuel cell technologies; consortia topics for fuel cell performance and durability and advanced hydrogen storage materials research; and cost and performance analysis for hydrogen production, storage, and fuel cells.

More... | Comments (1)

Proof-of-principle of cost-effective methane cracking technology for H2 production without CO2; 50% cleaner than SMR, comparable to electrolysis

November 19, 2015

Researchers of the Institute for Advanced Sustainability Studies (IASS) in Potsdam and the Karlsruhe Institute of Technology (KIT) have achieved the proof-of-principle for a innovative technique to extract hydrogen (H2) from methane (CH4) without the formation of CO2 as a byproduct.

At this stage, cost estimates are uncertain, since methane cracking is not yet a fully mature technology. However, preliminary calculations show that it could achieve costs of €1.9 to €3.3 per kilogram of hydrogen at German natural gas prices—without taking the market value of the solid black carbon byproduct of the process into consideration.

More... | Comments (69)

PNNL team presents new insight into H2 production by cyanobacterium Cyanothece

November 11, 2015

Researchers at the US Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) have presented a new and more complete view on the way a cyanobacterium—Cyanothece 51142—produces hydrogen.

Using genome-scale transcript and protein profiling, the team study presented and tested a new hypothesis on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H2 production in Cyanothece 51142. The results, reported in an open-access paper in Nature’s Scientific Reports, show that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and are synchronized with nitrogenase expression and H2 production.

More... | Comments (0)

AC Transit files LCFS pathway application for H2 produced by electrolysis (solar): 0.00 gCO2e/MJ

November 06, 2015

AC Transit (Alameda-Contra Costa Transit District), which operates the third-largest public bus system in California, has filed a fuel pathway application for gaseous hydrogen produced via electrolysis powered by renewable electricity (solar) with the California Air Resources Board (ARB) under the Low Carbon Fuel Standard (LCFS) regulation.

According to AC Transit’s analysis—which is supported by ARB Staff—the carbon intensity (CI) of the gaseous hydrogen produced by the pathway is 0.00 gCO2e/MJ—i.e., a zero-carbon fuel on a “well-to-tank” lifecycle basis.

More... | Comments (22)

Atomic cobalt on nitrogen-doped graphene catalyst shows promise to replace platinum for hydrogen production

October 21, 2015

The Rice lab of chemist James Tour and colleagues at the Chinese Academy of Sciences, the University of Texas at San Antonio and the University of Houston have developed a robust, solid-state catalyst that shows promise to replace expensive platinum for hydrogen generation.

The new electrocatalyst, based on very small amounts of cobalt dispersed as individual atoms on nitrogen-doped graphene (Co-NG), is robust and highly active in aqueous media with very low overpotentials (30 mV). In an open-access paper published in Nature Communications, the researchers suggested that the unusual atomic constitution of supported metals is suggestive of a new approach to preparing extremely efficient single-atom catalysts.

More... | Comments (25)

California Hydrogen Business Council says a robust P2G RD&D program should be a priority for the state

October 14, 2015

The case for using Power-to-Gas solutions to store renewable energy is compelling for a number of important use cases, according to a new white paper released by the California Hydrogen Business Council (CHBC). The paper, —“Power-To-Gas: The Case For Hydrogen”—outlines the feasibility and economics of renewable energy storage solutions using P2G. Among the paper’s conclusions is that a robust P2G RD&D program should be a priority for the state of California. Currently, P2G is being deployed in Europe and Canada but is only at the early demonstration phase in California.

P2G systems use electrolysis powered by renewable energy to split water into hydrogen and oxygen—i.e., P2G converts electrical energy to chemical energy in the form of hydrogen. The hydrogen can then be transported through the natural gas grid via blending or further conversion to methane, transported by other means such as trucks, or used directly at the point of production. (Posts.)

More... | Comments (4)

Hydrexia and HyGear partner on low-cost hydrogen distribution in Europe; solid state storage and delivery

October 13, 2015

Australia-based hydrogen solid state storage and distribution company Hydrexia has entered an agreement with Netherlands-based HyGear, supplier of industrial gases and on-site generation systems, to supply hydrogen in Europe. The hydrogen will be produced by HyGear’s small-scale Hy.GEN steam methane reforming (SMR) facilities located across Europe.

The agreement between the two companies allows for development and supply of a complete hydrogen generation, storage and distribution system with a lower cost product for customers. Hydrexia is entering the European market in partnership with HyGear with the intention of becoming a distributor of the lowest cost hydrogen in Europe.

More... | Comments (2)

Sandia team boosts hydrogen production activity by molybdenum disulfide four-fold; low-cost catalyst for solar-driven water splitting

October 07, 2015

A team led by researchers from Sandia National Laboratories has shown that molybdenum disulfide (MoS2), exfoliated with lithiation intercalation to change its physical structure, performs as well as the best state-of-the-art catalysts for the hydrogen evolution reaction (HER) but at a significantly lower cost. An open access paper on their study is published in the journal Nature Communications.

The improved catalyst has already released four times the amount of hydrogen ever produced by MoS2 from water. To Sandia postdoctoral fellow and lead author Stan Chou, this is just the beginning: “We should get far more output as we learn to better integrate molly with, for example, fuel-cell systems,” he said.

More... | Comments (1)

Toyota and public and private partners in Japan to trial renewable CO2-free hydrogen supply chain

September 08, 2015

Major corporate and public sector partners in Japan are launching an effort to test a full carbon-neutral hydrogen supply chain powered by renewable wind energy. The trials are planned to take place near the cities of Yokohama and Kawasaki in the Keihin coastal region.

On the public sector side, the project is being implemented by the Kanagawa Prefectural Government, Yokohama City, and Kawasaki City. The four private sector participants are Iwatani Corporation, Toshiba Corporation, Toyota Motor Corporation, and Toyota Turbine and Systems Inc. In addition, the project will be supported by Japan’s Ministry of the Environment.

More... | Comments (23)

Rice team demonstrates plasmonic hot-electron solar water-splitting technology; simpler, cheaper and efficient

September 05, 2015

Researchers at Rice have demonstrated an efficient new way to use solar energy for water splitting. The technology, described in a paper in the ACS journal Nano Letters, relies on a novel plasmonic photoelectrode architecture of light-activated gold nanoparticles that harvest sunlight to drive photocatalytic reactions by efficient, non-radiative plasmon decay into “hot carriers”—highly excited electrons.

In contrast to past work, the new architecture does not utilize a Schottky junction—the commonly used building block to collect hot carriers. Instead, the team observed large photocurrents from a Schottky-free junction due to direct hot electron injection from plasmonic gold nanoparticles into the reactant species upon plasmon decay.

More... | Comments (12)

DLR-led NEMESIS 2+ project develops compact direct steam reformer for diesel/biodiesel to H2

September 02, 2015

The European NEMESIS 2+ consortium has and successfully tested a pre-commercial on-site system for the production of hydrogen from diesel and biodiesel. The prototype system—the size of a shipping container—can be integrated into existing infrastructure with relative ease.

The prototype, built by the Dutch project partner HyGear, produces 4.4 kilograms of hydrogen from 20 liters of biodiesel per hour—this roughly corresponds to the fuel tank of a B-Class F-cell vehicle. The efficiency of the process, from start to finish, is approximately 70%. (Original project goals were 50 Nm3/h, or 4.5 kg/h with an efficiency >80%.) The EU NEMESIS 2+ project, which ran until June 2015, was coordinated by the German Aerospace Center (DLR).

More... | Comments (5)

JCAP team reports first complete “artificial leaf”; >10% solar-to-hydrogen conversion efficiency

August 28, 2015

Researchers at the Joint Center for Artificial Photosynthesis (JCAP) report the development of the first complete, efficient, safe, integrated solar-driven system—an “artificial leaf”—for splitting water to produce hydrogen. JCAP is a US Department of Energy (DOE) Energy Innovation Hub established at Caltech and its partnering institutions in 2010.

The new system has three main components: two electrodes—one photoanode and one photocathode—and a membrane. The photoanode uses sunlight to oxidize water molecules, generating protons and electrons as well as oxygen gas. The photocathode recombines the protons and electrons to form hydrogen gas. A key part of the JCAP design is the plastic membrane, which keeps the oxygen and hydrogen gases separate. If the two gases are allowed to mix and are accidentally ignited, an explosion can occur; the membrane lets the hydrogen fuel be separately collected under pressure and safely pushed into a pipeline.

More... | Comments (25)

Proposed process for low-emissions coal-to-liquids

August 05, 2015

The EMS (Earth and Mineral Science) Energy Institute at Penn State has developed a conceptual novel process configuration for producing clean middle-distillate fuels from coal with some algal input with minimal emissions.

The Institute was involved for about 20 years in a project intended to develop a coal-derived jet fuel; a number of papers and reports have already been published on that work. In a new paper in the journal Technology, Professor (Emeritus) Harold Schobert combined a review of the two decades of development with the novel conceptual approach for near-zero emissions coal-to-liquids.

More... | Comments (3)

Green Car Congress © 2016 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group