Anglo American Platinum (Amplats), alongside Shell Technology Ventures (STV), has taken a stake in High-Yield Energy Technologies (HyET) (earlier post), a Dutch company that has developed cost-effective electrochemical hydrogen compression (EHC) technology. HyET’s technology is a reliable substitute for mechanical hydrogen compression both in existing industrial applications and in hydrogen... Read more →


The Australian, Japanese and Victorian governments and a consortium of companies have launched the pilot of an innovative supply chain that will deliver liquefied hydrogen from the Latrobe Valley in Australia to Japan. The Hydrogen Energy Supply Chain (HESC) project will convert brown coal from the AGL Loy Yang mine... Read more →


The European H2FUTURE project consortium, comprising voestalpine, Siemens, VERBUND, and Austrian Power Grid, together with the research partners K1-MET and ECN, officially gave the green light to the construction of a 6 MW “green” hydrogen pilot production plant—the world’s largest—at a voestalpine Linz steel plant. (Earlier post.) The partners from... Read more →


Researchers at Northwestern University have developed a new approach for creating new catalysts to aid in clean energy conversion and storage. The design method, reported in a paper in the Proceedings of the National Academy of Sciences, (PNAS) also has the potential to impact the discovery of new optical and... Read more →


Toyota Mobility Foundation awards 10 grants for hydrogen research initiative

The Toyota Mobility Foundation (TMF) has selected ten researchers to receive grants from the research program to support innovative hydrogen energy solutions launched last year. (Earlier post.) The Hydrogen Research Initiative started in July 2017 to support innovative research to reduce the output of carbon dioxide and/or the cost of... Read more →


ITM Power to study large-scale production of renewable hydrogen in British Columbia; export to Japan and California

The British Columbia Government Ministries of Energy, Mines and Petroleum Resources and Jobs, Trade and Technology has awarded ITM Power a grant to undertake a Power-to-Gas (P2G) feasibility study. In the initial phase of the project, ITM Power will undertake a techno-economic feasibility study for the large-scale centralized production of... Read more →


DGIST, PNNL team develops efficient, low-cost anode material for water electrolysis

Researchers at S. Korea’s DGIST (Daegu Gyeongbuk Institute of Science and Technology), with colleagues at Pacific Northwest National Laboratory (PNNL), have developed a low-cost, highly efficient and ultra-durable core-shell nanostructured electrocatalyst that exhibits an improved oxygen evolution activity and stability compared to that of the commercial noble metal electrodes. They... Read more →


Researchers at Washington State University, with colleagues at Argonne National Laboratory and Pacific Northwest National Laboratory, have combined inexpensive nickel and iron in a very simple, five-minute process to create large amounts of a high-quality catalyst required for water splitting. By in situ reduction of the metal precursors, the researchers... Read more →


Researchers at the University of Twente’s MESA+ research institute have made significant efficiency improvements to the technology used to generate solar fuels. They fabricated a highly efficient photocathode by spatially and functionally decoupling light absorption and catalytic activity. As reported in a paper in the journal Nature Energy, their silicon... Read more →


Shell, ITM Power to build world’s largest hydrogen electrolysis plant in Germany; €20M REFHYNE project

Shell and ITM Power will build the world’s largest hydrogen electrolysis plant at Rhineland refinery, Germany. (Earlier post.) With a peak capacity of 10 megawatts, the hydrogen will be used for the processing and upgrading of products at the refinery’s Wesseling site as well as testing the technology and exploring... Read more →


A low-cost, nanostructured composite material developed by researchers at UC Santa Cruz has shown performance comparable to Pt/C as a catalyst for the electrochemical splitting of water to produce hydrogen. An efficient, low-cost catalyst is essential for realizing the promise of hydrogen as a clean, environmentally friendly fuel. Researchers led... Read more →


AkzoNobel Specialty Chemicals and Gasunie New Energy are partnering to investigate the possible large scale conversion of sustainable electricity into green hydrogen via the electrolysis of water. Intended for Delfzijl in the Netherlands, the installation would use a 20 megawatt water electrolysis unit, the largest in Europe, to convert sustainably... Read more →


SoCalGas, partners developing technology to make carbon fiber during hydrogen production from methane; reducing the cost of H2 and cutting GHG

Southern California Gas Co. (SoCalGas) is partnering with a development team to advance a new process that converts natural gas to hydrogen, carbon fiber, and carbon nanotubes. The low-emission process, selected for funding as part of the H2@Scale initiative (earlier post) by the US Department of Energy’s (DOE) Fuel Cell... Read more →


Korea-led team develops hybrid solid oxide electrolysis cell for efficient production of H2

Solid oxide electrolysis cell (SOEC) has the potential to be cost-effective, environmentally friendly, and highly efficient for the production of hydrogen from water. There are two types of SOECs, based on the electrolyte materials: oxygen ion conducting SOECs (oxygen-SOECs) and proton conducting SOECs (proton-SOECs). Researchers in South Korea, with colleagues... Read more →


The first Power-to-Gas project connected to the French gas transportation network—Jupiter 1000—is being built in Fos-sur-Mer. This 1 MW demonstrator will enable the transition from the concept phase to an industrial tool. The purpose of the project is to test the technical and economic viability of Power-to-Gas, by detecting and... Read more →


A team led by researchers from Sandia National Laboratories and the University of California, Merced has developed an efficient molybdenum disulfide (MoS2) catalyst for driving the hydrogen evolution reaction (HER). In a study published in the journal Advanced Materials, the team reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2)... Read more →


The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR), together with international project partners, has inaugurated the largest solar-chemical installation yet for the production of hydrogen. For the HYDROSOL-Plant (thermochemical HYDROgen product in a SOLar monolithic reactor) project, scientists and companies further developed the process of direct hydrogen... Read more →


Toyota to build first MW-scale 100% renewable power and hydrogen generation station

At the Los Angeles Auto Show, Toyota Motor North America announced that it will build the world’s first megawatt-scale carbonate fuel cell power generation plant with a hydrogen fueling station to support its operations at the Port of Long Beach. The Tri-Gen facility will use bio-waste sourced from California agricultural... Read more →


Integrated solar-driven system for electrochemical energy storage and water electrolysis for H2 production

A team from UCLA and colleagues from Tarbiat Modares University and Shahed University in Iran have devised an integrated solar-powered system for both electrochemical energy storage and water electrolysis. They synthesized a nickel-cobalt-iron layered double hydroxide (Ni-Co-Fe LDH) on a nickel foam substrate using a fast, one-step electrodeposition approach. The... Read more →


A team of scientists from CoorsTek Membrane Sciences, the University of Oslo (Norway) and the Instituto de Tecnología Química (Spain) have successfully completed laboratory testing of a ceramic membrane that generates compressed hydrogen from natural gas and electricity in a one-step process with near-zero energy loss. The research, reported in... Read more →


Researchers at the University of California Santa Barbara have developed catalytic molten metals to pyrolize methane to release hydrogen and to form solid carbon. The insoluble carbon floats to the surface of the melt, where it can be removed and stored or incorporated into composite materials. This method also avoids... Read more →


Hydrogen Council study: hydrogen could contribute to 20% of CO2 emissions reduction targets by 2050

In Bonn, as global leaders gathered at COP 23, the Hydrogen Council coalition (earlier post) released a report developed with support from McKinsey quantifying the potential for hydrogen in the energy transition. According to the study, if deployed at scale, hydrogen could account for almost one-fifth of total final energy... Read more →


Audi is systematically building on its e-fuels strategy. (Earlier post.) Together with the partners Ineratec GmbH (earlier post) and Energiedienst Holding AG, the company has plans for a new pilot facility for the production of e-diesel in Laufenburg, in Canton Aargau (Switzerland). For the first time, the energy needed will... Read more →


A team led by researchers at the US Department of Energy’s Argonne National Laboratory has developed a new way to produce solar fuels by using completely synthetic bionano machinery to harvest light without the need for a living cell. The researchers’ device, reported in the journal ACS Nano as a... Read more →


A ceramic-based mechanical pump able to operate at record temperatures of more than 1,400 ˚C (1,673 K) can transfer high-temperature liquids such as molten tin, enabling a new generation of energy conversion and storage systems. The pump was developed by researchers from the Georgia Institute of Technology, with collaborators from... Read more →


New hybrid photocatalyst for highly efficient hydrogen production from water

Researchers at the University of Central Florida, with colleagues at Pacific Northwest National Laboratory (PNNL) and Tsinghua University, developed a new hybrid nanomaterial—a nonmetal plasmonic MoS2@TiO2 heterostructure—for highly efficient photocatalytic H2 generation from water. As reported in an open access paper in the RSC journal Energy & Environmental Science, the... Read more →


A group of researchers in Spain—from the Universitat Jaume I de Castelló, the University of Zaragoza and the Institute of Chemical Technology of the Universitat Politècnica de València-CSIC—coordinated by Professor José Antonio Mata of the UJI, have developed and patented a new procedure for the efficient on-demand production, storage and... Read more →


Navigant Research forecasts that the transportation segment, with hydrogen demand as a catalyst, will jump-start power-to-gas (P2G) demand and further drive down electrolyzer and other infrastructure costs. P2G—the conversion of electrical power into gaseous energy carriers—has been held back from mass adoption by high costs, regulatory hurdles, and difficulties with... Read more →


A new TOTAL hydrogen filling station on Karlsruhe’s Südtangente ring-road was commissioned on Wednesday. The German Federal Ministry of Transport and Digital Infrastructure approved grants of approx. €970,000 (US$1.2 million) for the hydrogen facility under its National Innovation Program for Hydrogen and Fuel Cell Technology (NIP). This H2 filling station—the... Read more →


Van Hool consortium to deploy first hydrogen bus route in France; green hydrogen for bus rapid transit

A consortium comprising bus-maker Van Hool, ITM Power, SMTU-PPP and Engie will deploy the first hydrogen bus route in France, in Pau. François Bayrou, President of the community of Pau Béarn Pyrénées, made the announcement about the creation of this “zero emission” bus rapid transit (BRT) route, which will be... Read more →


Shell, ITM Power to install 10MW electrolyzer for refinery hydrogen

Shell, together with ITM Power, plans to install a 10MW electrolyzer to produce hydrogen at the Wesseling refinery site within the Rheinland Refinery Complex. This would be the largest unit of its kind in Germany and the world’s largest PEM (Polymer Electrolyte Membrane) electrolyzer. Today, the refinery uses approximately 180,000... Read more →


Researchers at Worcester Polytechnic Institute (WPI) have developed a novel sandwiched liquid metal membrane (SLiMM) for hydrogen separation. Separation membranes hold the key to making hydrogen fuel cheaper; the researchers have shown that membranes made with liquid metals appear to be more efficient at separating hydrogen than conventional palladium membranes... Read more →


Researchers led by a team from KAUST have found a more sustainable route to hydrogen fuel production using chaotic, light-trapping materials that mimic natural photosynthetic water splitting. In a paper in the journal Advanced Materials, the researchers report a new photocatalyst for hydrogen evolution based on metal epsilon-near-zero (ENZ) metamaterials.... Read more →


The US Department of Energy (DOE) has issued a request for proposals (H2_AT_SCALE_CRADA_CALL) for research projects that address the Hydrogen at Scale (H2@Scale) concept (earlier post), which enables wide-scale production and use of hydrogen to address issues such as grid resiliency, energy storage and security, domestic job creation, and domestic... Read more →


As of 5 April 2017, California has more than 1,600 fuel cell electric vehicles (FCEVs) with active registrations with the California Department of Motor Vehicles (DMV), according to the 2017 issue of its Annual Evaluation of Fuel Cell Electric Vehicle Deployment and Hydrogen Fuel Station Network Development released by the... Read more →


Power-to-gas trial to inject hydrogen into Australia’s gas grid; A$5M award to AquaHydrex

The Australian Renewable Energy Agency (ARENA) announced a trial for a new type of electrolyzer which could see excess renewable energy stored in the gas grid and used to decarbonize Australia’s gas supply. On behalf of the Australian Government, ARENA has provided A$5 million (US$4 million) in funding to Wollongong-based... Read more →


Researchers in the Rice University lab of chemist James Tour have produced dual-surface laser-induced graphene (LIG) electrodes on opposing faces of a plastic sheet that split water into hydrogen on one side and oxygen on the other side. The high porosity and electrical conductivity of LIG facilitates the efficient contact... Read more →


Army Research Lab discovers aluminum nanomaterial rapidly splits water on contact

Researchers at the US Army Research Laboratory (ARL) have discovered that a nano-galvanic aluminum-based powder of their design splits water on contact, producing hydrogen and oxygen. Scientists have known for a long time that hydrogen can be produced by adding a catalyst—such as sodium or potassium hydroxide or an acid—to... Read more →


Scientists at Rice University and the Lawrence Livermore National Laboratory have predicted and created new two-dimensional electrocatalysts—low-cost, layered transition-metal dichalcogenides (MX2) based on molybdenum and tungsten—to extract hydrogen from water with high performance and low cost. In the process, they also created a simple model to screen materials for catalytic... Read more →


Toyota Mobility Foundation launches research program to support innovative hydrogen energy solutions

The Toyota Mobility Foundation (TMF) has launched a research program to spur the development of a “hydrogen society”—envisioned as a set of communities with integrated, green-energy networks powered by mini-hydrogen plants that aim to create a carbon-free, hydrogen distribution system. TMF has begun soliciting research proposals under this new program.... Read more →


Four Japanese companies—Chiyoda, Mitsubishi, Mitsui and Nippon Yusen Kabushiki Kaisha—have launched the “Advanced Hydrogen Energy Chain Association for Technology Development”(AHEAD) along with the world’s first Global Hydrogen Supply Chain Demonstration Project. The project, a subsidized “Technology Development Project to establish Hydrogen Society/Technology Development for the Utilization of Large Scale Hydrogen... Read more →


A new robust and highly active bifunctional catalyst developed by Rice University and the University of Houston splits water into hydrogen and oxygen without the need for expensive metals such as platinum. The work, the team suggests, provides a facile strategy for fabricating highly efficient electrocatalysts from earth-abundant materials for... Read more →


German team clarifies key catalytic step in enzymatic production of hydrogen

Enzymes, called [FeFe]-hydrogenases, efficiently turn electrons and protons into hydrogen; they are thus a candidate for the biotechnological production of the potential energy source. For years, researchers had assumed that a highly unstable intermediate state had to exist in the reaction. No one was able to verify this. Until now.... Read more →


A Japanese partnership, consisting of the Kanagawa Prefectural Government, the municipal governments of the cities of Yokohama and Kawasaki, Iwatani Corporation, Toshiba Corporation, Toyota Motor Corporation, Toyota Industries Corporation, Toyota Turbine and Systems, Inc., and Japan Environment Systems Co., Ltd. announced that all facilities to be used in the FY2015... Read more →


New catalyst supports ultra-low-temperature water-gas-shift reaction for hydrogen production

Researchers from China and the US have synthesized gold layered clusters on an α-MoC substrate to create an interfacial catalyst system for the ultra-low-temperature water-gas shift (WGS) reaction for the production of high-purity hydrogen and concomitant utilization of carbon monoxide (CO). The discovery, described in a paper in the journal... Read more →


Osaka team develops new solar-to-hydrogen catalyst that uses broader spectrum of light

A team at Osaka University in Japan has developed a new material based on gold and black phosphorus to harvest a broader spectrum of sunlight for water-splitting to produce hydrogen. The three-part composite maximizes both absorbing light and its efficiency for water splitting. The core is a traditional semiconductor—lanthanum titanium... Read more →


New efficient, low-temperature catalyst for converting water and CO to hydrogen and CO2

Scientists in the US and China have developed a new low-temperature catalyst for producing high-purity hydrogen gas while simultaneously using up carbon monoxide (CO) via the water-gas shift (WGS) reaction. The discovery—described in a paper in the journal Science—could improve the performance of fuel cells that run on hydrogen fuel... Read more →


The UK’s National Physical Laboratory (NPL) has published a report which highlights and prioritizes the current measurement challenges facing the hydrogen industry. The report emphasizes the importance of addressing these challenges should hydrogen play a significant role in a transition to a decarbonized energy system. NPL is the UK’s National... Read more →


Researchers at KAUST have developed a novel molybdenum-coated catalyst that can efficiently split water in acidic electrolytes and that could help with the efficient production of hydrogen. Scientists are searching for ways of improving the water-splitting reaction by developing an optimal catalyst. While many different materials have been tried, they... Read more →


VTT Technical Research Centre of Finland and Lappeenranta University of Technology (LUT) are beginning testing of the Soletair demo plant, which uses air-captured carbon dioxide to produce renewable fuels and chemicals. The pilot plant is coupled to LUT’s solar power plant in Lappeenranta. The aim of the project is to... Read more →