Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search


Hydrogen Production

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Technion team devises method for on-demand H2 production from water and aluminum for aviation applications

April 28, 2017

Aerospace engineers at the Technion-Israel Institute of Technology have developed and patented a process for on-demand hydrogen production from the reaction of activated aluminum powder and water for commercial aircraft applications. The hydrogen produced on-board during flight can be used in a fuel cell to generate electric energy for auxiliary power.

In addition to fresh water, the waste water available on-board the aircraft can be used for hydrogen generation. The researchers demonstrated high reaction rates producing about 200-600 ml/min/g Al of hydrogen at a high yield of about 90% was demonstrated. The possibility to use the available waste water leads to high specific electric energy of up to about 850 Wh/kg. The work was reported in a recent paper published in the International Journal of Hydrogen Energy.

More... | Comments (0)

USC team demonstrates novel hydrogen storage system; amine reforming of methanol

April 20, 2017

A team at the Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, has demonstrated a novel hydrogen storage system based on the release of hydrogen from catalytic dehydrogenative coupling of methanol and 1,2-diamine. The hydrogen-generating step of this process can be termed as “amine reforming of methanol”—in analogy to traditional steam methane reforming, but without the concurrent production of CO2 (unlike steam reforming) or CO (by complete methanol dehydrogenation).

A paper on the team’s work, which is part of their long-term development of aspects of the “Methanol Economy” (earlier post), is published in the Journal of the American Chemical Society.

More... | Comments (4)

NREL researchers capture excess photon energy to produce solar fuels; higher efficiency water-splitting for H2

April 14, 2017

Scientists at the US Department of Energy’s National Renewable Energy Laboratory (NREL) have developed a proof-of-principle photoelectrochemical cell (PEC) capable of capturing excess photon energy normally lost to generating heat.

Using quantum dots (QD) and a process called Multiple Exciton Generation (MEG), the NREL researchers were able to push the peak external quantum efficiency for hydrogen generation to 114%. The advancement could significantly boost the production of hydrogen from sunlight by using the cell to split water at a higher efficiency and lower cost than current photoelectrochemical approaches. The research is outlined in a paper in Nature Energy.

More... | Comments (10)

KAUST team alters atomic composition of MoS2 to boost performance as water-splitting catalyst for H2 production

April 13, 2017

Researchers at KAUST have developed and used a novel way of increasing the chemical reactivity of a two-dimensional molybdenum disulfide material to produce a cheap and effective catalyst for water splitting to produce hydrogen. This technique may also have potential benefits for other manufacturing industries.

One route to hydrogen generation is by electrolysis: passing an electrical current through water via two electrodes to cause a chemical reaction that breaks the water molecule into its component hydrogen and oxygen atoms. The speed of this hydrogen evolution reaction can be increased using a catalyst on the electrodes. Platinum is a perfect material for the job, but is it very expensive.

More... | Comments (1)

NREL sets new world efficiency record for solar hydrogen production: 16.2%

Scientists at the US Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) recaptured the record for highest efficiency in solar hydrogen production via a photoelectrochemical (PEC) water-splitting process.

The new solar-to-hydrogen (STH) efficiency record is 16.2%, topping a reported 14% efficiency in 2015 by an international team made up of researchers from Helmholtz-Zentrum Berlin, TU Ilmenau, Fraunhofer ISE and the California Institute of Technology. A paper in Nature Energy outlines how NREL’s new record was achieved. The authors are James Young, Myles Steiner, Ryan France, John Turner, and Todd Deutsch, all from NREL, and Henning Döscher of Philipps-Universität Marburg in Germany. Döscher has an affiliation with NREL.

More... | Comments (4)

China team develops highly efficient catalyst for low-temperature aqueous phase refoming of methanol to produce hydrogen

April 01, 2017

Researchers in China, along with colleagues in the US, have developed a new catalyst that shows outstanding hydrogen-production activity and stability in the low-temperature aqueous phase reforming of methanol (APRM).

In a paper in the journal Nature, the team reports that platinum (Pt) atomically dispersed on α-molybdenum carbide (α-MoC) enables low-temperature (150–190 ˚C), base-free hydrogen production through APRM, with an average turnover frequency reaching 18,046 moles of hydrogen per mole of platinum per hour. The new catalyst, the researchers suggest, paves a way towards a commercially achievable hydrogen-storage strategy.

More... | Comments (18)

HYREADY collaboration supports introduction of power-to-gas H2 into natural gas infrastructure

March 31, 2017

The addition of hydrogen produced by renewable sources (e.g., electrolysis powered by renewable electricity) to natural gas supports the decarbonization of the natural gas system and integration of sustainable energy sources. However, the properties of hydrogen differ significantly from those of natural gas, and its introduction into the gas infrastructure may negatively impact public safety, the integrity of the gas system and the performance of end-use equipment.

The HYREADY joint industry project (JIP), led by DNV GL, intends to encourage the industry to “Be ready for Hydrogen” by developing practical processes and procedures for the introduction of hydrogen to the grid. HYREADY focuses on the consequences of H2 added to natural gas in an existing specific network and on feasible countermeasures to mitigate these consequences.

More... | Comments (3)

SoCalGas & UC Irvine show power-to-gas technology able to boost use of intermittent renewable energy significantly

Southern California Gas Co. (SoCalGas) announced that new research on power-to-gas technology shows the technique holds the ability to significantly increase the use of intermittent renewable energy. The finding came out of ongoing research conducted at the University of California, Irvine (UCI) and funded by SoCalGas.

Preliminary research findings, announced this week at UCI’s International Colloquium on Environmentally Preferred Advanced Generation (ICEPAG), demonstrated that the campus microgrid could increase the portion of renewable energy it uses from 3.5% to 35% by implementing a power-to-gas strategy.

More... | Comments (1)

Researchers create efficient, simple-to-manufacture photoanode for solar water-splitting

March 24, 2017

Researchers at Rice University and the University of Houston created an efficient, simple-to-manufacture core/shell photoanode with a highly active oxygen evolution electrocatalyst shell (FeMnP) and semiconductor core (rutile TiO2) for the photoelectrochemical oxygen evolution reaction (PEC-OER) for solar water splitting.

The lab of Kenton Whitmire, a Rice professor of chemistry, teamed up with researchers at the University of Houston and discovered that growing a layer of an active catalyst directly on the surface of a light-absorbing nanorod array produced an artificial photosynthesis material that could split water at the full theoretical potential of the light-absorbing semiconductor with sunlight. The results appear in two new studies. The first, on the creation of the catalytic films, appears in Chemistry: A European Journal. The second, which details the creation of photoanodes, appears in ACS Nano.

More... | Comments (0)

Cambridge team demonstrates light-driven photoreforming of unprocessed biomass to H2 at room temperature

March 14, 2017

A team of scientists at the University of Cambridge has reported the light-driven photoreforming of cellulose, hemicellulose and lignin to H2 using semiconducting cadmium sulfide quantum dots in alkaline aqueous solution.

The system operates under visible light, is stable beyond six days and is even able to reform unprocessed lignocellulose, such as wood and paper, under solar irradiation at room temperature, presenting an inexpensive route to drive aqueous proton reduction to H2 through waste biomass oxidation. A paper on their work is published in the journal Nature Energy.

More... | Comments (5)

Georgia Tech team furthers four-stroke-cycle active-membrane piston reactor for enhanced SMR for H2 production

February 17, 2017

Steam methane reforming is currently the primary pathway for hydrogen production worldwide. However, due to its high operating temperature and use of sequential units for the reaction stages, industrial SMR does not scale down well for distributed, point-of-use applications such as fuel cell vehicle refueling stations.

Seeking to develop an SMR system suited for such distributed applications, a team from Georgia Tech in 2014 proposed the sorption-enhanced CO2/H2 Active Membrane Piston reactor (CHAMP-SORB)—a variable-volume batch reactor for the production of hydrogen from catalytic steam reforming of methane that operates in a cycle similar to that of an internal combustion engine. Now, in a paper published in the ACS journal Industrial & Engineering Chemistry Research, the team has developed a comprehensive analysis of the system, focused on understanding the heat/mass transfer and reaction/separation interactions to develop guidelines for scale-up.

More... | Comments (9)

voestalpine, Siemens & VERBUND building one of the world’s largest electrolysis plants for H2 production; EU-funded H2FUTURE

February 08, 2017

The European Commission has awarded the H2FUTURE project consortium—comprising voestalpine, Siemens, VERBUND and Austrian Power Grid (APG) as well as the research-partners K1-MET and ECN—the contract for the construction of one of the world’s largest PEM electrolysis plants for producing green hydrogen.

The project partners will work and research cooperatively on implementing an innovative hydrogen demonstration plant at the voestalpine site in Linz. The green hydrogen generated there will be fed directly into the internal gas network, allowing the testing of the use of hydrogen in various process stages of steel production.

More... | Comments (9)

PNNL team develops fastest synthetic catalyst for H2 production; controlling structural dynamics for 1,000x performance boost

February 06, 2017

Using a natural catalyst from bacteria for inspiration, researchers at Pacific Northwest National Laboratory (PNNL) have now developed the fastest synthetic catalyst for hydrogen production—producing 45 million molecules per second—by controlling the structural dynamics of the molecular catalyst. Instead of a costly metal such as platinum, this catalyst uses inexpensive, abundant nickel at its core.

Although the catalyst requires more energy to run than a conventional platinum catalyst, the insight garnered from this result might eventually help make hydrogen fuel in an environmentally friendly, affordable way, the researchers report in the chemistry journal Angewandte Chemie International Edition.

More... | Comments (3)

NREL shows graded catalytic-protective layer boosts longevity of high-efficiency photocathodes for renewable hydrogen

January 09, 2017

Researchers at the US Department of Energy’s National Renewable Energy Laboratory (NREL) have developed a method which boosts the longevity of high-efficiency photocathodes in photoelectrochemical water-splitting devices. Their works demonstrates the potential of utilizing a hybridized, heterogeneous surface layer as a cost-effective catalytic and protective interface for solar hydrogen production.

In a paper published in the journal Nature Energy, they show that annealing a bilayer of amorphous titanium dioxide (TiOx) and molybdenum sulfide (MoSx) deposited onto GaInP2 results in a photocathode with high catalytic activity and stability for the hydrogen evolution reaction. The study showed that the annealing results in a graded MoSx/MoOx/TiO2 layer that retains much of the high catalytic activity of amorphous MoSx but with stability similar to crystalline MoS2.

More... | Comments (0)

Proton OnSite to supply 13 MW-scale electrolyzers to provide hydrogen for fuel cell bus fueling in China

December 20, 2016

Proton OnSite signed a contract with Guangdong Synergy Hydrogen Power Technology Co., Ltd. to provide megawatt-scale Proton Exchange Membrane (PEM) electrolyzers for the deployment of fuel cell-powered buses in the cities of Foshan and Yunfu, China.

Three of the megawatt systems will ship this summer, and an additional ten systems are planned to ship over the next 18 months, with the opportunity for significant recurring systems to follow. The agreement names Proton as the exclusive supplier of electrolyzers to Synergy and opens discussions for a joint venture to manufacture a portion of Proton’s M Series electrolyzers in Foshan exclusively for the fueling market in China.

More... | Comments (23)

Researchers demonstrate new nickel selenide catalyst for more efficient water splitting

December 19, 2016

A team of researchers from Missouri University of Science and Technology and National and Kapodistrian University of Athens in Greece have developed a highly efficient transition metal selenide-based coordination complex, [Ni{(SePiPr2)2N}2] for oxygen evolution and hydrogen evolution reactions (OER and HER, respectively) in alkaline solution.

In a paper published in ChemSusChem describing their work, the researchers reported that very low overpotentials of 200 mV and 310 mV were required to achieve 10 mA cm−2 for OER and HER, respectively. The overpotential for OER is one of the lowest that has been reported up to now, making this one of the best OER electrocatalysts. In addition, this molecular complex exhibits an exceptionally high mass activity (111.02 A g−1) and a much higher turnover frequency (TOF) value (0.26 s−1) at a overpotential of 300 mV. The bifunctional electrocatalyst enables water electrolysis in alkaline solutions at a cell voltage of 1.54 V.

More... | Comments (14)

ITM Power to launch 100 MW electrolyzer plant designs at Hannover Messe 2017

December 13, 2016

ITM Power will showcase a series of large scale electrolyzer configurations up to 100MW in size at Hannover Messe 2017 (24 - 28 April). This is in response to utility and oil and gas industry demand for larger scale industrial installations.

ITM Power has sold a number of MW-scale plants over the last year and is now responding to enquires for much larger plant for bus and heavy goods vehicle refueling stations in the to 10MW range and, increasingly, industrial applications ranging from power-to-gas, refineries and steel-making in the 10MW to 100MW range.

More... | Comments (11)

Single Pt atom catalysts show enhanced catalytic activity for water-splitting; potential to drive down electrolysis cost

December 12, 2016

A research team from University of Western Ontario, McMaster University and Beijing Computational Science Research Center has developed an effective synthesis method to produce isolated single platinum (Pt) atoms and clusters for use as catalysts for the hydrogen evolution reaction (HER) in water splitting to produce hydrogen.

In an open-access paper published in Nature Communications, the researchers reported that the single Pt atom catalysts exhibit significantly enhanced catalytic activity (up to 37 times) and high stability in comparison to the state-of-the-art commercial platinum/carbon (Pt/C) catalysts.

More... | Comments (2)

Hydrogen from sunlight, but as a dark reaction; time-delayed photocatalytic H2 production

December 09, 2016

A team at the Max Planck Institute for Solid State Research, Germany, and collaborators at ETH Zurich and the University of Cambridge, have developed a system that enables time-delayed photocatalytic hydrogen generation—essentially, an artificial photosynthesis system that can operate in the dark. A paper on their work is published in the journal Angewandte Chemie International Edition.

The system uses a carbon nitride-based material that can harvest and store sunlight as long-lived trapped electrons for redox chemistry in the dark. More specifically, the system comprises a partially anionic, cyanamide-functionalized heptazine polymer, which, in the presence of an appropriate electron donor, forms a radical species under irradiation that has a lifetime of more than 10 hours. This ultra-long-lived radical can reductively produce hydrogen in the presence of a hydrogen evolution catalyst in the dark on demand.

More... | Comments (13)

JISEA: nuclear-renewable hybrid energy systems can reduce GHG from industry, produce fuels and support the power system

Nuclear-renewable hybrid energy systems (N-R HESs) can enable low-carbon, on-demand electricity while providing reduced-emission thermal energy for industrial processes. N-R HES systems are managed by a single entity that link a nuclear reactor that generates heat, a thermal power cycle for heat-to-electricity conversion, at least one renewable energy source, and an industrial process that uses thermal and/or electrical energy.

However, the economic feasibility of these systems may depend on future natural gas prices, electricity market structures, and clean energy incentives. A series of new reports from the Joint Institute for Strategic Energy Analysis (JISEA) and Idaho National Laboratory (INL) examines various hybrid system configurations to provide a basis to identify opportunities for clean energy use and examine the most economically viable configurations.

More... | Comments (8)

Nikola Motor unveils prototype Class 8 fuel cell range-extended electric truck, plans for H2 fueling network

December 06, 2016

At an event at its Salt Lake City headquarters last week, startup Nikola Motor Company (NMC) unveiled the first public prototype of its Nikola One Class 8 hydrogen fuel cell range-extended electric truck, as well as renderings of the Nikola Two Class 8 day cab version. The company also announced its plan for a network of 364 hydrogen fueling stations across the US and Canada (Nikola is bundling fuel with the truck), and unveiled a 107 kWh battery pack for the Nikola Zero UTV along with a business plan to sell packs to OEMs.

The Nikola One utilizes a fully electric drivetrain featuring a 320 kWh Li-ion battery pack (32,000 cells) and a nearly 300 kW fuel cell stack powering a 6x4 four-wheel electric drive (four 800V AC motors) with torque vectoring. Delivering more than 1,000 hp (746 kW) and 2,000 lb-ft of torque, the Nikola One will have an expected range of 800-1,200 miles, the company said.

More... | Comments (20)

Detailed snapshots of photosynthesis at room temperature using SLAC’s X-ray laser show water-splitting reaction

November 21, 2016

One of its molecular mysteries of photosynthesis involves how the photosystem II protein complex harvests energy from sunlight and uses it to split water into hydrogen and oxygen.

Now, an international team of researchers has used femtosecond pulses from an X-ray free electron laser (XFEL) at the Department of Energy’s SLAC National Accelerator Laboratory to capture the highest resolution room-temperature (RT) images of this protein complex, allowing scientists to watch closely how water is split during photosynthesis at the temperature at which it occurs naturally. A paper on the work is published in the journal Nature.

More... | Comments (3)

DOE announces $30M in funding for hydrogen and fuel cell technologies

November 18, 2016

The US Department of Energy (DOE) announced approximately $30 million in available funding (DE-FOA-0001647), subject to appropriations, for research and development of low-cost hydrogen production, onboard hydrogen storage, and proton exchange membrane fuel cells to advance the widespread commercialization of fuel cell electric vehicles.

Selected projects will leverage national lab consortia launched under DOE’s Energy Materials Network (EMN) this past year, in support of DOE’s materials research and advanced manufacturing priorities. The EMN consortia have been established to make unique, world-class capabilities at the national laboratories more accessible to industry, facilitating collaborations that will expedite the development and manufacturing of advanced materials for commercial markets.

More... | Comments (22)

Compact pilot plant for solar to liquid fuels production

November 09, 2016

Partners from Germany and Finland in the SOLETAIR project are building a compact pilot plant for the production of gasoline, diesel and kerosene from solar energy, regenerative hydrogen and carbon dioxide. The plant will be compact enough to fit into a shipping container.

The plant consists of three components. A direct air capture unit developed by the Technical Research Center of Finland (VTT) extracts carbon dioxide from air. An electrolysis unit developed by Lappeenranta University of Technology (LUT) produces the required hydrogen by means of solar power. A microstructured, chemical reactor—the key component of the plant—converts the hydrogen produced from solar power together with carbon dioxide into liquid fuels. This reactor was developed by KIT. The compact plant was developed to maturity and is now being commercialized by KIT spin-off INERATEC.

More... | Comments (20)

Stanford team sets record for solar-to-hydrogen efficiency of solar water splitting: >30%

November 02, 2016

Researchers at Stanford University have demonstrated solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen (STH) efficiency of more than 30%—a new record. The prior record was 24.4%. An open-access paper on their work is published in the journal Nature Communications.

The system consists of two polymer electrolyte membrane electrolyzers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolyzers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolyzers to optimize the system efficiency. The results, the researchers said, demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.

More... | Comments (2)

DOE’s $10M Advanced Water Splitting Materials Consortium accelerating development of green hydrogen production

October 24, 2016

The Energy Department (DOE) recently announced $10 million, subject to appropriations, to support the launch of the HydroGEN Advanced Water Splitting Materials Consortium (HydroGEN). (Earlier post.) This consortium will utilize the expertise and capabilities of the national laboratories to accelerate the development of commercially viable pathways for hydrogen production from renewable energy sources.

HydroGEN is being launched as part of the Energy Materials Network (EMN) that began in February of this year, crafted to give American entrepreneurs and manufacturers a competitive edge in the global development of clean energy in support of the President’s Materials Genome Initiative and advanced manufacturing priorities.

More... | Comments (8)

DOE awarding $3.0M cost-share contract to FuelCell Energy for solid oxide electrolyzer; converting excess electricity to H2

October 23, 2016

FuelCell Energy, Inc. is developing a solid oxide electrolysis cell (SOEC) system to convert excess electricity during periods of low power demand into hydrogen efficiently. The US Department of Energy (DOE) is supporting this development with a $3.0 million cost-share contract to advance SOEC system design that will be added to the Advanced Technology backlog for the fourth quarter of 2016.

The market for energy storage is significant for high efficiency and flexible long duration storage that is affordable for rate payers. The energy storage market is expanding as utilities adjust to manage increased levels of intermittent renewable power generation supplying the electric grid. Annual global energy storage deployments are projected to increase to approximately 7 to 9 gigawatts by 2020 with continued increases thereafter. The SOEC solution being supported with this DOE funding meets these needs for both utility-scale applications as well as on-site opportunities.

More... | Comments (10)

UK, Saudi team shows hydrocarbon wax is a viable, safe medium for on-board hydrogen storage

October 20, 2016

Researchers at the universities of Oxford, Cambridge and Cardiff in the UK, and the King Abdulaziz City for Science and Technology (KACST) in Saudi Arabia have shown that benign, readily-available heavy alkane hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen—sufficient to meet the 7 wt% target set by the US DOE—through microwave-assisted catalytic decomposition.

This discovery, reported in an open-access paper in Scientific Reports, offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a hydrogen fuel cell vehicle. Hydrocarbon wax is the major product of the low temperature Fischer-Tropsch synthesis process from syngas and is currently thermally “cracked” to produce various fuels.

More... | Comments (18)

Sandia study finds high-speed hydrogen-powered ferry and supporting infrastructure in SF Bay feasible

October 06, 2016

A study by two researchers at Sandia National Laboratories has concluded that building and operating a high-speed passenger ferry solely powered by hydrogen fuel cells within the context of the San Francisco Bay is technically feasible, with full regulatory acceptance as well as the requisite associated hydrogen fueling infrastructure.

Funded by the Department of Transportation’s Maritime Administration and led by Sandia, the feasibility study of the SF-Breeze (San Francisco Bay Renewable Energy Electric Vessel with Zero Emissions) brought together the American Bureau of Shipping (ABS), the US Coast Guard, naval architect Elliott Bay Design Group (EBDG), the Port of San Francisco and dozens of other contributors.

More... | Comments (1)

DOE to invest $30M to further H2 and fuel cell technology as industry continues strong growth

The US Department of Energy (DOE) Energy Department (DOE) released a new report showing continued momentum and growth in the fuel cell industry. The 2015 Fuel Cell Technologies Market Report shows that more than 60,000 fuel cells, totaling roughly 300 megawatts (MW), shipped worldwide in 2015. The number of MW shipped grew by more than 65% compared to 2014. 2015 also saw the world’s first fuel cell vehicles for sale.

To further this emerging market, DOE also announced a notice of intent (DE-FOA-0001411) to invest $30 million, subject to appropriations, to advance fuel cell and hydrogen technologies. These projects will leverage national lab consortia launched under DOE’s Energy Materials Network (EMN) this past year (earlier post), and will support the President’s Materials Genome Initiative and advanced manufacturing priorities.

More... | Comments (5)

Univ. Houston, Caltech team develops new earth-abundant, cost-effective catalyst for water-splitting

September 20, 2016

A team of researchers from the University of Houston and the California Institute of Technology has developed an active and durable earth-abundant transition metal dichalcogenide-based hybrid catalyst for water-splitting that exhibits high hydrogen evolution activity approaching the state-of-the-art platinum catalysts. The new catalyst also offers activity superior to that of most transition metal dichalcogenides (molybdenum sulfide, cobalt diselenide and so on).

The material is fabricated by growing ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. In an open-access paper in the journal Nature Communications, the team said that their advance provides a different pathway to design cheap, efficient and sizable hydrogen-evolving electrode by simultaneously tuning the number of catalytic edge sites, porosity, heteroatom doping and electrical conductivity.

More... | Comments (1)

DOE seeking input on H2@scale: hydrogen as centerpiece of future energy system; 50% reduction in energy GHGs by 2050

September 11, 2016

Earlier this year, The US Department of Energy (DOE) national laboratories identified the potential of hydrogen to decarbonize deeply a multitude of sectors in a proposal termed “H2@Scale”. Preliminary analysis performed by the national laboratories on the H2@Scale concept indicated that nearly a 50% reduction in greenhouse gas emissions is possible by 2050 via such large-scale hydrogen production and use.

The concept sees hydrogen—a flexible, clean energy-carrying intermediate—having the potential to be a centerpiece of a future energy system where aggressive market penetration of renewables (wind and solar) are coupled with renewable hydrogen production to meet society’s energy demands across industrial, transportation, and power generation sectors using clean, renewable resources and processes.

More... | Comments (16)

SLAC, Stanford team develops new catalyst for water-splitting for renewable fuels production; 100x more efficient than other acid-stable catalysts

September 02, 2016

Researchers at Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory have developed a new highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction (OER).

The new catalyst outperforms known IrOx and ruthenium oxide (RuOx) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte. Because it requires less of the rare and costly metal iridium, the new catalyst could bring down the cost of artifical photosynthetic processes that use sunlight to split water molecules—a key step in a renewable, sustainable pathway to produce hydrogen or carbon-based fuels that can power a broad range of energy technologies. The team published their results in the journal Science.

More... | Comments (2)

Swiss team develops effective and low-cost solar water-splitting device; 14.2% solar-to-hydrogen efficiency

August 25, 2016

Using commercially available solar cells and none of the usual rare metals, researchers at the Swiss Center for Electronics and Microtechnology (CSEM) and École Polytechnique Fédérale de Lausanne (EPFL) have designed an intrinsically stable and scalable solar water splitting device that is fully based on earth-abundant materials, with a solar-to-hydrogen conversion efficiency of 14.2%.

The prototype system is made up of three interconnected, new-generation, crystalline silicon solar cells attached to an electrolysis system that does not rely on rare metals. The device has already been run for more than 100 hours straight under test conditions. The method, which surpasses previous efforts in terms of stability, performance, lifespan and cost efficiency, is published in the Journal of The Electrochemical Society.

More... | Comments (41)

DOE issues Request for Information on hydrogen infrastructure RD&D

July 28, 2016

The US Department of Energy’s (DOE’s) Fuel Cell Technologies Office (FCTO) has issued a request for information (RFI) (DE-FOA-0001626) to obtain feedback from stakeholders regarding deployment of hydrogen fueling stations, delivery infrastructure, and barriers and activities to pursue in both the near and longer term.

Potential activities would complement existing FCTO activities that address the barriers hydrogen fueling stations face today, including renewable hydrogen fuel cost; station and equipment cost; station reliability and performance; codes and standards development; manufacturing needs; and outreach and training needs.

More... | Comments (4)

Researchers identify pentlandite as equally efficient alternative to platinum for hydrogen production

July 27, 2016

Researchers have identified artificially-produced pentlandite (a natural ore, Fe4.5Ni4.5S8) as a direct ‘rock’ electrode without the need of further surface modifications for hydrogen evolution under acidic conditions. The pentlandite provides high activity and stability at low overpotential for H2 generation. According to their study, artificial pentlandite is just as efficient as the platinum electrodes commonly used today for the electrolytic production of hydrogen from water, but is lower cost.

A team headed by Dr. Ulf-Peter Apfel and Prof. Dr. Wolfgang Schuhmann of the Ruhr-Universität Bochum describes the results of their work together with colleagues from the Max-Planck-Institute for Coal Research in Mülheim an der Ruhr and the Technical University of Bratislava in an open-access paper published in Nature Communications.

More... | Comments (4)

UK team produces hydrogen from fescue grass via photocatalytic reforming

July 21, 2016

A team of researchers from the UK’s Cardiff University’s Cardiff Catalysis Institute and Queen’s University Belfast have shown that significant amounts of hydrogen can be unlocked from fescue grass—without significant pre-treatment—using sunlight and a metal-loaded titania photocatalyst. An open access paper on their work is published in Proceedings of the Royal Society A.

Based on their study, the team proposed that the first step in their photoreforming of cellulose was the (photo)hydrolysis of cellulose into glucose, with the latter then undergoing reforming to hydrogen and CO2. It is the first time that this method has been demonstrated and could potentially lead to a sustainable way of producing hydrogen.

More... | Comments (4)

Duke study: serpentinized rock in oceans may be large, overlooked source of free hydrogen gas

Rocks formed beneath the ocean floor by fast-spreading tectonic plates may be a large and previously overlooked source of free hydrogen gas, a new Duke University study suggests. Their paper is published in the journal Geophysical Research Letters.

Recent discoveries of free hydrogen gas, which was once thought to be very rare, have been made near slow-spreading tectonic plates deep beneath Earth’s continents and under the sea. Previous estimates suggest that serpentinization—a processes whereby rock is changed, with the addition of water, into the crystal structure of the minerals found within the rock—within the continental lithosphere (the crust and upper mantle of the earth) produces hydrogen at rates comparable to the oceanic lithosphere (both are ~1011 mol H2/yr).

More... | Comments (5)

DOE awards $14M to advance hydrogen fuel technologies

July 12, 2016

The US Department of Energy (DOE) announced up to $14 million in funding for the advancement of hydrogen fuel technologies. Specifically, these selections include advanced high-temperature water splitting; advanced compression; and thermal insulation technologies.

For cost-competitive transportation, hydrogen must be comparable to conventional fuels and technologies on a per-mile basis in order to succeed in the commercial marketplace. DOE’s current target is to reduce the cost of producing and delivering hydrogen to less than $4 per gallon of gas equivalent (gge) by 2020 and $7/gge for early markets.

More... | Comments (3)

KTH team develops new cost-effective water-splitting electrocatalyst for H2 production

June 27, 2016

Researchers at KTH Royal Institute of Technology in Stockholm have developed a new cost-effective electrocatalyst for water-splitting to produce hydrogen.

The monolayer of nickel–vanadium-layered double hydroxide shows a current density of 27 mA cm−2 (57 mA cm−2 after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. This performance is comparable to those of the best-performing electrocatalysts that are composed of non-precious materials—nickel–iron-layered double hydroxides for water oxidation in alkaline media—the researchers report in an open access paper in Nature Communications.

More... | Comments (13)

Stanford solar tandem cell shows promise for efficient solar-driven water-splitting to produce hydrogen

June 23, 2016

Researchers at Stanford University, with colleagues in China, have developed a tandem solar cell consisting of an approximately 700-nm-thick nanoporous Mo-doped bismuth vanadate (BiVO4) (Mo:BiVO4) layer on an engineered Si nanocone substrate. The nanocone/Mo:BiVO4 assembly is in turn combined with a solar cell made of perovskite.

When placed in water, the device immediately began splitting water at a solar-to-hydrogen conversion efficiency of 6.2%—matching the theoretical maximum rate for a bismuth vanadate cell. Although the efficiency demonstrated was only 6.2%, the tandem device has room for significant improvement in the future, said Stanford Professor Yi Cui, a principal investigator at the Stanford Institute for Materials and Energy Sciences and senior author of an open access paper describing the work published in Scientific Advances.

More... | Comments (15)

USC team develops new robust iridium catalyst for release of hydrogen from formic acid

June 17, 2016

A team of researchers at the University of Southern California has developed a robust, reusable iridium catalyst that enables hydrogen gas release from neat formic acid. The catalyst works under mild conditions in the presence of air, is highly selective and affords millions of turnover numbers (TONs).

Although other catalysts exist for both formic acid dehydrogenation and carbon dioxide reduction, solutions to date on hydrogen gas release rely on volatile components that reduce the weight content of stored hydrogen and/or introduce fuel cell poisons; this new catalyst does not. An open-access paper on their work is published in the journal Nature Communications.

More... | Comments (1)

Plug Power and HyGear partner to provide small-scale SMR hydrogen production technology to fuel cell system customers

June 10, 2016

Fuel cell system manufacturer Plug Power Inc. and HyGear, supplier of cost-effective industrial gases, are partnering to supply HyGear’s Hy.GEN hydrogen generation technology to Plug Power fuel cell customers globally. The first deployments are scheduled to be installed in the fourth quarter of 2016 at a new site for one of Plug Power’s existing customers.

Hy.GEN is based on small-scale steam methane reforming (SMR). The small scale on-site hydrogen generation systems range from 5 Nm3/h up to 100 Nm3/h, making them suitable for use at industrial sites and hydrogen filling stations. Hy.GEN systems allow the option to use biogas for a “green” hydrogen solution.

More... | Comments (9)

New catalyst system produces H2 and CO2 from formic acid at low temperatures

June 07, 2016

An international team led by researchers at the University of Melbourne has developed a new catalyst system for the efficient removal of CO2 from formic acid (HO2CH), resulting in the production of CO2 and H2 at a low temperature of 70 °C. Other methods for producing hydrogen from formic acid have required high temperatures, and also produce waste products.

The work, described in an open-access paper in Nature Communications marks a new frontier in catalyst design at the molecular level. Such catalysts are formulated to produce highly selective chemical reactions.

More... | Comments (1)

Bochum team engineers artificial hydrogenase for hydrogen production; targeting foundation for industrial manufacturing

June 01, 2016

Researchers at Ruhr-Universität Bochum (RUB) have engineered a hydrogen-producing enzyme in the test tube that works as efficiently as the original. The protein—a hydrogenase from green algae ( [FeFe]-hydrogenase HYDA1 from Chlamydomonas reinhardtii)—is made up of a protein scaffold and a cofactor.

The researchers have been investigating mechanisms of hydrogen biocatalysis for a number of years. In 2013, the team reported developing semi-synthetic hydrogenases by adding the protein’s biological precursor to a chemically synthesized inactive iron complex.

More... | Comments (0)

Researchers report cost-effective synthesis of NiFe-layered double hydroxides nanosheets as efficient OER catalyst

May 31, 2016

A team from Brown University and Lakehead University (Canada) have developed a method for the facile and cost-effective synthesis of NiFe-layered double hydroxides (LDH) nanosheets to serve as efficient catalyst for the oxygen evolution reaction in an alkaline environment.

Compared to previously reported LDH catalysts, the new nanosheets exhibit a much higher oxygen evolution activity. The overpotential of catalytic OER was very low and the Tafel slope (Tafel analysis is a tool for comparing electrocatalytic activity and elucidating the reaction mechanism) was close to that of a commercial RuO2 catalyst. A paper describing their work is published in the journal Electrochemistry Communications.

More... | Comments (0)

Clariant to scale-up catalysts for Gevo’s Ethanol-to-Olefins (ETO) technology; renewable diesel and hydrogen

May 19, 2016

Gevo, Inc. has entered into an agreement with Clariant Corp., one of the world’s leading specialty chemical companies, to develop catalysts to enable Gevo’s Ethanol-to-Olefins (ETO) technology.

Gevo’s ETO technology, which uses ethanol as a feedstock, produces tailored mixes of propylene, isobutylene and hydrogen, which are valuable as standalone molecules, or as feedstocks to produce other products such as diesel fuel and commodity plastics, that would be drop-in replacements for their fossil-based equivalents. ETO is a chemical process, not a biological process as is Gevo’s conversion of biomass to isobutanol.

More... | Comments (0)

Columbia team develops simple, low-cost, scaleable membraneless electrolyzer fabricated with 3D printing for H2 production

May 09, 2016

Researchers at Columbia University are investigating the use of membraneless electrochemical flow cells for hydrogen production from water electrolysis that are based on angled mesh flow-through electrodes.

The devices can be fabricated with as few as three parts (anode, cathode, and cell body), reflecting their simplicity and potential for low-cost manufacture.The researchers used 3D printing to fabricate prototype electrolyzers that they demonstrated to be electrolyte agnostic, modular, and capable of operating with minimal product crossover. An open-access paper describing their work is published in the Journal of the Electrochemical Society.

More... | Comments (1)

Green Car Congress © 2017 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group