Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search


Hydrogen Storage

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

DOE announces $30M in funding for hydrogen and fuel cell technologies

November 18, 2016

The US Department of Energy (DOE) announced approximately $30 million in available funding (DE-FOA-0001647), subject to appropriations, for research and development of low-cost hydrogen production, onboard hydrogen storage, and proton exchange membrane fuel cells to advance the widespread commercialization of fuel cell electric vehicles.

Selected projects will leverage national lab consortia launched under DOE’s Energy Materials Network (EMN) this past year, in support of DOE’s materials research and advanced manufacturing priorities. The EMN consortia have been established to make unique, world-class capabilities at the national laboratories more accessible to industry, facilitating collaborations that will expedite the development and manufacturing of advanced materials for commercial markets.

More... | Comments (22)

DOE FY17 SBIR Phase I Release 2 topics include fuel cells, EV batteries, engines

November 08, 2016

The US Department of Energy (DOE) has announced the 2017 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 topics, including three subtopics focused on hydrogen and fuel cell technologies. The fuel cell subtopics include innovative materials for bipolar plates; liquid organic hydrogen carriers; and emergency hydrogen refuelers.

The Phase I Release 2 topics also include four vehicle subtopics, including electric drive vehicle batteries; SiC device qualification for electric drive vehicle power electronics; fuel efficiency improvement technologies for conventional stoichiometric gasoline direct injection multi-cylinder internal combustion engines; and wide-range high-boost turbocharging system. Further, a technology transfer opportunity is the use of a new Argonne catalyst for reducing NOx.

More... | Comments (1)

Rice University scientists find O-doped boron nitride-graphene hybrid excellent candidate for on-board hydrogen storage

October 25, 2016

Layers of graphene separated by nanotube pillars of boron nitride (PGBN) may be a excellent material for on-board hydrogen storage in vehicles, according to a computational study by a pair of Rice University scientists. The study by Rouzbeh Shahsavari and Farzaneh Shayeganfar appears in the ACS journal Langmuir.

Shahsavari and Shayeganfar studied hydrogen storage capacities of newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN) doped with either oxygen or lithium. Density functional theory and molecular dynamic simulations showed that these lithium- and oxygen-doped pillared structures had improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt% and 40-60 g/L.

More... | Comments (2)

UK, Saudi team shows hydrocarbon wax is a viable, safe medium for on-board hydrogen storage

October 20, 2016

Researchers at the universities of Oxford, Cambridge and Cardiff in the UK, and the King Abdulaziz City for Science and Technology (KACST) in Saudi Arabia have shown that benign, readily-available heavy alkane hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen—sufficient to meet the 7 wt% target set by the US DOE—through microwave-assisted catalytic decomposition.

This discovery, reported in an open-access paper in Scientific Reports, offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a hydrogen fuel cell vehicle. Hydrocarbon wax is the major product of the low temperature Fischer-Tropsch synthesis process from syngas and is currently thermally “cracked” to produce various fuels.

More... | Comments (18)

Sandia study finds high-speed hydrogen-powered ferry and supporting infrastructure in SF Bay feasible

October 06, 2016

A study by two researchers at Sandia National Laboratories has concluded that building and operating a high-speed passenger ferry solely powered by hydrogen fuel cells within the context of the San Francisco Bay is technically feasible, with full regulatory acceptance as well as the requisite associated hydrogen fueling infrastructure.

Funded by the Department of Transportation’s Maritime Administration and led by Sandia, the feasibility study of the SF-Breeze (San Francisco Bay Renewable Energy Electric Vessel with Zero Emissions) brought together the American Bureau of Shipping (ABS), the US Coast Guard, naval architect Elliott Bay Design Group (EBDG), the Port of San Francisco and dozens of other contributors.

More... | Comments (1)

DOE to invest $30M to further H2 and fuel cell technology as industry continues strong growth

The US Department of Energy (DOE) Energy Department (DOE) released a new report showing continued momentum and growth in the fuel cell industry. The 2015 Fuel Cell Technologies Market Report shows that more than 60,000 fuel cells, totaling roughly 300 megawatts (MW), shipped worldwide in 2015. The number of MW shipped grew by more than 65% compared to 2014. 2015 also saw the world’s first fuel cell vehicles for sale.

To further this emerging market, DOE also announced a notice of intent (DE-FOA-0001411) to invest $30 million, subject to appropriations, to advance fuel cell and hydrogen technologies. These projects will leverage national lab consortia launched under DOE’s Energy Materials Network (EMN) this past year (earlier post), and will support the President’s Materials Genome Initiative and advanced manufacturing priorities.

More... | Comments (5)

Researchers discover lower-cost, energy-efficient way to produce alane for hydrogen storage

September 23, 2016

Scientists at the US Department of Energy’s Ames Laboratory, in collaboration with partners from Iowa State University, University of Illinois Urbana-Champaign, University of Wisconsin-Madison, and University of Pittsburgh, have discovered a less-expensive, more energy-efficient way to produce alane—aluminum trihydride (AlH3)—a high-capacity hydrogen source that had widely been considered to be a technological dead-end for use in automotive vehicles.

Although attractive for its high intrinsic capacity (10.1 wt% H2), small heat of formation (∼7 kJ/mol H2), and fast apparent decomposition kinetics, regeneration of spent Al by direct hydrogenation has been impractical due to the extremely high hydrogen equilibrium pressure required (∼7000 bar).

More... | Comments (0)

DOE seeking input on H2@scale: hydrogen as centerpiece of future energy system; 50% reduction in energy GHGs by 2050

September 11, 2016

Earlier this year, The US Department of Energy (DOE) national laboratories identified the potential of hydrogen to decarbonize deeply a multitude of sectors in a proposal termed “H2@Scale”. Preliminary analysis performed by the national laboratories on the H2@Scale concept indicated that nearly a 50% reduction in greenhouse gas emissions is possible by 2050 via such large-scale hydrogen production and use.

The concept sees hydrogen—a flexible, clean energy-carrying intermediate—having the potential to be a centerpiece of a future energy system where aggressive market penetration of renewables (wind and solar) are coupled with renewable hydrogen production to meet society’s energy demands across industrial, transportation, and power generation sectors using clean, renewable resources and processes.

More... | Comments (16)

DOE issues Request for Information on hydrogen infrastructure RD&D

July 28, 2016

The US Department of Energy’s (DOE’s) Fuel Cell Technologies Office (FCTO) has issued a request for information (RFI) (DE-FOA-0001626) to obtain feedback from stakeholders regarding deployment of hydrogen fueling stations, delivery infrastructure, and barriers and activities to pursue in both the near and longer term.

Potential activities would complement existing FCTO activities that address the barriers hydrogen fueling stations face today, including renewable hydrogen fuel cost; station and equipment cost; station reliability and performance; codes and standards development; manufacturing needs; and outreach and training needs.

More... | Comments (4)

DOE announces FY17 SBIR Phase I Release 1 topics; includes fuel cell catalysts and hydrogen delivery

July 21, 2016

The US Department of Energy (DOE) has announced the 2017 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 topics, including two subtopics focused on hydrogen and fuel cell technologies.

The fuel cell subtopic includes novel, durable supports for low-platinum group metal (PGM) catalysts for polymer electrolyte membrane (PEM) fuel cells. The hydrogen delivery subtopic focuses on metal hydride materials for compression. Specific topics are:

More... | Comments (0)

DOE awards $14M to advance hydrogen fuel technologies

July 12, 2016

The US Department of Energy (DOE) announced up to $14 million in funding for the advancement of hydrogen fuel technologies. Specifically, these selections include advanced high-temperature water splitting; advanced compression; and thermal insulation technologies.

For cost-competitive transportation, hydrogen must be comparable to conventional fuels and technologies on a per-mile basis in order to succeed in the commercial marketplace. DOE’s current target is to reduce the cost of producing and delivering hydrogen to less than $4 per gallon of gas equivalent (gge) by 2020 and $7/gge for early markets.

More... | Comments (3)

DOE awarding $13M to advance fuel cell performance and durability and H2 storage technologies

July 07, 2016

The US Department of Energy (DOE) announced more than $13 million in funding for the advancement of hydrogen and fuel cell technologies. These projects, selected through collaborative research consortia, will leverage industry, university and laboratory expertise to accelerate advanced hydrogen storage technologies and fuel cell performance and durability.

In 2016, the Office of Energy Efficiency and Renewable Energy established two collaborative research consortia, each comprising a core team of DOE national laboratories, with plans to add industry and university partners: the Fuel Cell Consortium for Performance and Durability (FC-PAD) and the Hydrogen Materials—Advanced Research Consortium (HyMARC). (Earlier post.)

More... | Comments (0)

DOE issues request for information on a Hydrogen Technology Showcase and Training (HyTeST) station

June 23, 2016

The US Department of Energy’s (DOE’s) Fuel Cell Technologies Office has issued a request for information (RFI) (DE-FOA-0001555) to obtain feedback from stakeholders regarding the construction and benefits of a National Hydrogen Technology Showcase and Training (HyTeST) station.

The facility would serve as a tool for research and development, testing, safety and demonstration training, and outreach for community and commercial early adopters, including station developers, owners, code officials, first responders, operators, investors, and insurers.

More... | Comments (0)

DOE awarding $16M to 54 projects to help commercialize promising energy technology from national labs

June 22, 2016

The US Department of Energy (DOE) announced nearly $16 million in funding to help businesses move promising energy technologies from DOE’s National Laboratories to the marketplace. This first Department-wide round of funding through the Technology Commercialization Fund (TCF) will support 54 projects at 12 national labs involving 52 private-sector partners. Among the selected technologies are a number addressing advanced vehicle and transportation needs.

The TCF is administered by DOE’s Office of Technology Transitions (OTT), which works to expand the commercial impact of DOE’s portfolio of research, development, demonstration and deployment activities. In February of 2016, OTT announced the first solicitation to the DOE National Laboratories for TCF funding proposals. It received 104 applications from across the laboratory system, for projects in two topic areas:

  • Topic Area 1: Projects for which additional technology maturation is needed to attract a private partner; and

  • Topic Area 2: Cooperative development projects between a lab and industry partner(s), designed to bolster the commercial application of a lab developed technology.

All projects selected for the TCF will receive an equal amount of non-federal funds to match the federal investment.

A selected list of transportation-related TCF selections, as well as the Topic Area 2 projects and their private sector partners is below.

Transportation-related TCF Awards
Technology National Lab Partner Funding
Manufacturing Of Advanced Alnico Magnets for Energy Efficient Traction Drive Motors Ames Carpenter Powder Products $325,000
Direct Fabrication of Fuel Cell Electrodes by Electrodeposition of High-performance Core-shell Catalysts Brookhaven $100,000
Nitride-Stabilized Pt Core-Shell Electrocatalysts for Fuel Cell Cathodes Brookhaven $100,000
Enhancing Lithium-Ion Battery Safety for Vehicle Technologies and Energy Storage Idaho $119,005
Vehicle Controller Area Network (CAN) Bus Network Safety and Security System Idaho Mercedes-Benz R&D North America $150,000
Large Area Polymer Protected Lithium Metal Electrodes with Engineered Dendrite-Blocking Ability Lawrence Berkeley $73,831
Cryo-Compressed Hydrogen Tank Technology in an Internal Combustion Engine Application Lawrence Livermore GoTek Energy $431,995
Scaled Production Of High Octane Biofuel From Biomass-Derived Dimethyl Ether NREL Enerkem $740,000
Thermal Management for Planar Package Power Electronics NREL John Deere Electronic Solutions (JDES) $250,000
Assembly Of Dissimilar Aluminum Alloys For Automotive Application PNNL $500,000
Development of Electrolytes for Lithium Ion Batteries in Wide Temperature Range Applications PNNL Farasis Energy, Navitas Systems $375,000
Direct Extruded High Conductivity Copper for Electric Machines Manufactured Using the ShAPE Process PNNL General Motors R&D $600,000
| Comments (0)

USC team develops new robust iridium catalyst for release of hydrogen from formic acid

June 17, 2016

A team of researchers at the University of Southern California has developed a robust, reusable iridium catalyst that enables hydrogen gas release from neat formic acid. The catalyst works under mild conditions in the presence of air, is highly selective and affords millions of turnover numbers (TONs).

Although other catalysts exist for both formic acid dehydrogenation and carbon dioxide reduction, solutions to date on hydrogen gas release rely on volatile components that reduce the weight content of stored hydrogen and/or introduce fuel cell poisons; this new catalyst does not. An open-access paper on their work is published in the journal Nature Communications.

More... | Comments (1)

DOE issues request for information on medium- and heavy-duty fuel cell electric truck targets

June 10, 2016

The US Department of Energy’s (DOE’s) Fuel Cell Technologies Office (FCTO) has issued a request for information (RFI) (DE-FOA-0001600) to obtain feedback and opinions from truck operators, truck and storage tank manufacturers, fuel cell manufacturers, station equipment designers, and other related stakeholders on issues related to medium- and heavy-duty (MD and HD) fuel cell electric truck targets.

The MD/HD market spans multiple weight classes (i.e. class 3-8 or 10,000-80,000+ lbs.) and vocational uses (i.e. delivery van, tractor trailer, flatbed, etc.). Today, MD/HD trucks account for 28% of petroleum use in the US transportation sector, according to the US Energy Information Administration (EIA).

More... | Comments (0)

DOE issues Request for Information on hydrogen storage for onboard vehicle applications

June 08, 2016

The US Department of Energy’s (DOE’s) Fuel Cell Technologies Office (FCTO) has issued a request for information (RFI) (DE-FOA-0001596) to obtain feedback and input from stakeholders on strategies and potential pathways for cost reduction and performance improvements of composite overwrapped pressure vessel (COPV) systems for compressed hydrogen storage for onboard vehicle applications. The purpose of the RFI is to identify future strategic research and development pathways for the DOE to pursue with potential to meet future system cost targets.

Currently, carbon fiber (CF) reinforced polymer (CFRP) composites are used to make COPVs. Type III COPVs have a metallic liner and Type IV COPVs have non-metallic liners. COPVs designed to store hydrogen gas at pressures up to 700 bar are being deployed in fuel cell electric vehicles (FCEVs) currently available on the market.

More... | Comments (0)

New catalyst system produces H2 and CO2 from formic acid at low temperatures

June 07, 2016

An international team led by researchers at the University of Melbourne has developed a new catalyst system for the efficient removal of CO2 from formic acid (HO2CH), resulting in the production of CO2 and H2 at a low temperature of 70 °C. Other methods for producing hydrogen from formic acid have required high temperatures, and also produce waste products.

The work, described in an open-access paper in Nature Communications marks a new frontier in catalyst design at the molecular level. Such catalysts are formulated to produce highly selective chemical reactions.

More... | Comments (1)

Hydrogenious Technologies partners with United Hydrogen Group (UHG) to bring novel LOHC H2 storage system to US market

May 04, 2016

One of Anglo American Platinum’s investments, Hydrogenious Technologies, a German hydrogen storage startup, has launched its first commercial hydrogen storage and logistics system using its innovative Liquid Organic Hydrogen Carrier (LOHC) technology.

Hydrogenious Technologies is a spin-off from the University of Erlangen- Nuremberg (Germany), which also holds a stake in the company, and the Bavarian Hydrogen Center. Instead of storing hydrogen either under high pressure of up to 700 bar or in liquid form at –253 °C, Hydrogenious’ technology catalytically binds and releases the hydrogen molecules to liquid organic hydrogen carriers (LOHCs). (Earlier post.)

More... | Comments (18)

Japanese public-private partnership to test end-to-end H2 supply chain using wind power to begin this fall; 2nd-life hybrid batteries for ESS

March 14, 2016

A Japanese partnership comprising the Kanagawa Prefectural Government; the municipal governments of the cities of Yokohama and Kawasaki; Toyota; Toshiba; and Iwatani announced the forthcoming start of a four-year project to implement and evaluate an end-to-end low-carbon hydrogen supply chain which will use hydrogen produced from renewable energy to power forklifts. (Earlier post.) The project will be carried out at facilities along Tokyo Bay in Yokohama and Kawasaki, with support from Japan’s Ministry of the Environment.

Electricity generated at the Yokohama City Wind Power Plant (Hama Wing) will power the electrolytic production of hydrogen, which will then be compressed, stored, and then transported in a hydrogen fueling truck to four sites: a factory, a vegetable and fruit market, and two warehouses. At these locations, the hydrogen will be used in fuel cells to power forklifts operating in diverse conditions.

More... | Comments (4)

Kawasaki Heavy and Shell to partner on technologies for transporting liquefied hydrogen by sea

The Nikkei reports that Kawasaki Heavy Industries and Royal Dutch Shell will partner to develop technologies for transporting large volumes of liquefied hydrogen by sea.

Kawasaki has already been collaborating with Iwatani and Electric Power Development in hydrogen mass production and transportation. Kawasaki is also currently developing a small test vessel for the marine transportation of liquefied hydrogen. (Earlier post.) The vessel will have a cargo capacity of 2,500 m3, equivalent to that of coastal trading LNG vessels.

More... | Comments (7)

Berkeley Lab team develops new high-performance solid-state H2 storage material: graphene oxide (GO)/Mg nanocrystal hybrid

March 12, 2016

Researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new, environmentally stable solid-state hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets.

This material, protected from oxygen and moisture by the rGO layers, exhibits dense hydrogen storage (6.5 wt% and 0.105 kg H2 per liter in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance.

More... | Comments (20)

First UAV test flight with Cella solid-state hydrogen storage and fuel-cell power system

February 08, 2016

The Scottish Association for Marine Science (SAMS) recently completed a UAV test flight using Cella Energy’s hydrogen-based power system. The system is based on Cella’s solid, nanostructured chemical hydride hydrogen storage material which is capable of releasing large quantities of hydrogen when heated. Cella Energy is a spin-off from STFC’s Rutherford Appleton Laboratory in the UK. (Earlier post.)

Cella designed and built a gas generator using this material, which when combined with a fuel cell, creates electrical power. The complete system—Cella gas generator along with a fuel cell supplied and integrated by Arcola Energy—is considerably lighter than the lithium-ion battery it replaced.

More... | Comments (12)

Researchers find some solid-state hydrogen storage materials could serve as less toxic solid propellants for rockets

January 25, 2016

Researchers in China have found that amine metal borohydride—a novel hydrogen-enriched boron–nitrogen–hydrogen (BNH) hydrogen storage system—has potential as a solid propellant or additive for solid and hybrid rockets.

In a paper in the ACS journal Energy & Fuels, they investigated the combustion properties of two newly developed ethylene diamine aluminum borohydrides (Al(BH4)3·nEDA, n = 3, 2). They found the materials have high combustion heat of 32.20 and 36.90 MJ/kg for Al(BH4)3·3EDA and Al(BH4)3·2EDA, respectively, with ignition delay times of ∼2.0 ms.

More... | Comments (0)

PNNL team scales up ammonia borane slurry for on-board H2 storage for automotive applications

December 26, 2015

A team at Pacific Northwest National Laboratory (PNNL) is scaling up their work on the use of ammonia borane (AB) slurries optimized with an ultrasonic process for automotive hydrogen storage applications. Ammonia borane is an atttractive material for chemical hydrogen storage (CHS) due to its high hydrogen content of 14–16 wt % below 200 °C.

CHS materials release hydrogen at low temperatures but are not easily rehydrided as are metal hydrides, needing instead to use chemical regeneration. In work reported earlier this year (Choi et al.), the PNNL team optimized a model AB slurry in silicone oil, obtaining up to 40 wt % (ca. 6.5 wt % H2) loading. The US Department of Energy (DOE) gravimetric target for on-board hydrogen storage is near 10 wt %. In the current work, reported in the ACS journal Energy & Fuels, the team optimized the slurry production to prepare 50 wt % (ca. 8 wt % H2) AB slurries and proceeded toward making liter-size batches to show scalability.

More... | Comments (7)

DOE releases three reports showing strong growth in US fuel cell and hydrogen technologies market

December 24, 2015

The US Department of Energy (DOE) released three new reports today showcasing strong growth across the US fuel cell and hydrogen technologies market. According to these reports, the United States continues to be one of the world’s largest and fastest growing markets for fuel cell and hydrogen technologies.

With support from the Energy Department, its national laboratories and private industry have already achieved significant advances in fuel cell and hydrogen technologies, resulting in reduced costs and improved performance. These research and development efforts have helped reduce automotive fuel cell costs by more than 50% since 2006 and by more than 30% since 2008. At the same time, fuel cell durability has quadrupled and the amount of expensive platinum needed in fuel cells has decreased by 80 percent in the last decade.

More... | Comments (6)

Purdue, EPFL team propose Hydricity concept for integrated co-production of H2 and electricity from solar thermal energy

December 16, 2015

Researchers from Purdue University and École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland are proposing a new integrated process involving the co-production of hydrogen and electricity from solar thermal energy—a concept they label “hydricity”. They describe their proposal in a paper in the Proceedings of the National Academy of Sciences (PNAS).

The hydricity process entails integrating solar water power (SWP) cycle and solar thermal hydrogen production technologies and a turbine-based hydrogen power cycle with suitable improvements of each for compatibility and beneficial interaction.

More... | Comments (9)

DOE issues $35M funding opportunity for hydrogen and fuel cell technologies

December 11, 2015

The US Department of Energy (DOE) announced up to $35 million in available funding to advance hydrogen and fuel cell technologies (earlier post) to support research and development, early market deployments, and domestic manufacturing. The Department also aims to develop collaborative consortia for fuel cell performance and durability and advanced hydrogen storage materials research to leverage the capabilities of national lab core teams.

The available funding (DE-FOA-0001412) includes hydrogen production, delivery, and storage research and development (R&D); demonstration of infrastructure component manufacturing, and support for Climate Action Champions deploying hydrogen and fuel cell technologies; consortia topics for fuel cell performance and durability and advanced hydrogen storage materials research; and cost and performance analysis for hydrogen production, storage, and fuel cells.

More... | Comments (1)

Green Car Congress © 2016 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group