A team of researchers from institutions in China and the US report the design of a negatively charged graphene composite separator for the effective suppression of the polysulfide shuttling effect in Li-sulfur batteries. The negatively charged 3D porous structure effectively inhibits the translocation of negatively charged polysulfide ions to enable... Read more →


Although Li metal anode are a promising enabler for high-energy-density next-generation battery systems, practical applications are severely hindered by low efficiency and potential safety hazards, largely due to the high reactivity of metallic Li toward liquid electrolytes. Now, a team of researchers at Stanford University has demonstrated the use of... Read more →


Purdue engineers have used upcycled low-density polyethylene (LDPE) plastic to boost the lifespan of lithium-sulfur batteries. They first prepared porous sulfonated carbon (PSC) from LDPE plastic via microwave-promoted sulfonation. The microwave process not only boosts the sulfonation reaction of LDPE but also induces huge amounts of pores within the sulfonated... Read more →


The “classic” high-energy capacity Lithium-sulfur battery is predicated on the use of a sulfur-based cathode and a Lithium-metal anode. Among the issues hampering the commercialization of this attractive technology are the safety and performance issues associated with the use of the lithium-metal anode. Accordingly, a number of different approaches have... Read more →


Researchers at Tsinghua University in China have used ultrathin and lightweight molybdenum sulfide (MoS2)/carbon nanotube (CNT) interlayers to trap polysulfides in high-performance lithium–sulfur (Li–S) batteries. A paper on their work is published in the Journal of Power Sources. An electrode with the MoS2/CNT interlayer delivers an attractive specific capacity of... Read more →


Lignosulfonate, a sulfonated carbon waste material, is a major by-product in the papermaking industry. Researchers at Rensselaer Polytechnic Institute (RPI) have now developed a method to use this cheap and abundant waste byproduct to build a components for lithium-sulfur batteries. Reported in an open-access paper published in the RSC journal... Read more →


Researchers at The University of Texas at Dallas have used two-dimensional (2D) MoS2 (molybdenum disulfide) as a protective layer for Li-metal anodes, greatly improving the performances of Li–S batteries. In a paper in the journal Nature Nanotechnology, the researchers report that such a use of MoS2 results in stable Li... Read more →


Dendritic growth of lithium (Li) on lithium metal anodes has hobbled the practical application of Li-metal batteries, despite their theoretical benefits such as high capacity and low redox potential. Now, researchers at the University of Illinois at Chicago, with colleagues at Texas A&M University, have used a 3D conformal graphene... Read more →


Lithium-metal batteries are among the most promising candidates for high-density energy storage technology, but uncontrolled lithium dendrite growth, which results in poor recharging capability and safety hazards, currently is hindering their commercial potential. Now, researchers at Arizona State University, with colleagues at Rice University, have used a 3-dimensional layer of... Read more →


Aerotec, a Brazilian Private Equity fund, will invest £3.75 million (US$5.2 million) in Li-Sulfur battery company OXIS Energy. The investment is Aerotec’s first international venture. Established in 2005, OXIS Energy has developed, and continues to advance, an innovative Lithium Sulfur (Li-S) battery chemistry. With considerably higher energy density, OXIS’ batteries... Read more →


Researchers from Shinshu University in Japan have developed a method to suppress the growth of lithium dendrites in Li-S and Li-air batteries. As reported in a paper in the RSC journal Physical Chemistry Chemical Physics, they used magnesium bis(trifluoromethanesulfonyl)amide [Mg(TFSA)2] as an electrolyte additive to suppress the growth of Li... Read more →


Boeing HorizonX invests in lithium-metal rechargeable battery startup Cuberg

Boeing has invested in Berkeley, Calif.-based Cuberg, Inc., a startup founded by former Stanford University researchers developing next-generation battery technology for potential aerospace and industrial applications. Cuberg developed an advanced lithium metal rechargeable battery cell that is designed to be a drop-in solution to existing large-scale battery manufacturing processes. It... Read more →


Lithium metal—with its high theoretical capcity and low electrochemical potential—is an ideal anode for Li-ion batteries, and is the material of choice for advanced batteries such as Li-sulfur and Li-O2. However, dendritic growth on the anode leads to an unstable solid electrolyte interphase, volume fluctuation, and even shorting of the... Read more →


A team of researchers led by scientists at the US Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have designed an active polyelectrolyte binder (PEB) that actively regulates key ion transport processes within a lithium-sulfur battery, and have also shown how it functions on a molecular level. The new... Read more →


Researchers in China are proposing a new strategy to retard dendrite formation on Li metal anodes in high-capacity Li-ion batteries. In a paper published in the ACS journal Nano Letters, they describe trapping Li within hollow silica microspheres with a carbon nanotube core to suppress dendrite growth. Such an electrode... Read more →


Researchers at the University of California, Riverside’s Bourns College of Engineering have developed a technique to create high performance lithium-ion batteries utilizing sulfur and silicon electrodes. Reported in an open-access paper in the journal Scientific Reports, this sulfur-silicon full cell (SSFC) battery architecture gradually integrates controlled amounts of pure lithium... Read more →


U of Waterloo team develops low-cost approach to stabilize Li metal anodes

Researchers at the University of Waterloo (Canada) have developed a low-cost and scalable approach that tackles the stabilization of Li metal electrodes by forming a single-ion-conducting and stable protective surface layer in vivo. They use a rationally designed electrolyte additive complex that reacts with the Li surface to form the... Read more →


A team in China has used graphene microsheets (GMs)—prepared from microcrystalline graphite minerals by an electrochemical & mechanical approach—as a special conductive support for sulfur for the cathode of a lithium-sulfur battery. The graphene microsheets feature excellent conductivity and low-defect, small sheet sizes of <1 μm2 and ≤ 6 atomic... Read more →


Rice University team finds asphalt-lithium metal anode enables faster charging, resistance to dendrite formation; Li-S test cell The Rice lab of chemist James Tour has developed anodes comprising porous carbon made from asphalt that showed exceptional stability after more than 500 charge-discharge cycles. A high-current density of 20 milliamps per... Read more →


Researchers at Cornell led by Professor Lyndon Archer, in collaboration with Professor Ravishankar Sundararaman at Rensselaer Polytechnic, have demonstrated a new technique for enabling the use of high-capacity lithium metal anodes in rechargeable batteries. In a paper in the journal Angewandte Chemie the team shows that the indium (In) coatings... Read more →


alpha-En Corporation and Argonne partner on Li metal anodes for EV batteries; $750K award from DOE

alpha-En Corporation, a company that has developed a patent-pending process to produce high-purity thin-film lithium metal anodes and associated products sustainably, will receive an award of $750,000 from the US Department of Energy’s Office of Technology Transition Technology Commercialization Fund (TCF). This funding will be used to commercialize Argonne National... Read more →


Researchers in Sweden and Italy have devised a simple strategy to address the issues currently hampering commercialization of high-energy density Li-sulfure batteries, including limited practical energy density, life time and the scaling-up of materials and production processes. In a paper in the Journal ChemSusChem they report that using a novel... Read more →


DOE awarding $19.4M to 22 advanced vehicle technologies projects; Mercedes-Benz, GM Li-S battery projects

The US Department of Energy (DOE) is awarding $19.4 million to 22 new cost-shared projects to accelerate the research of advanced battery, lightweight materials, engine emission control technologies, and energy efficient mobility systems (EEMS). Among the awardees are Mercedes-Benz Research & Development North America and GM, with separate projects on... Read more →


Ricardo develops new model-based EV battery control technology; evaluating new cell chemistries

Ricardo has developed a new Battery Management System (BMS) for EVs that is scalable to a wide range of applications. The new BMS enhances the use of advanced model-based control methods to optimize the performance of both existing and next-generation cell chemistries. One of the most significant impediments to an... Read more →


By mimicking fibrinolysis, a biological self-healing process, researchers at China’s Tsinghua University have developed a self-healing sulfur microparticle (SMiP) cathode. In a paper in the Journal of the American Chemical Society, the researchers report that the SMiP cathode attained an optimized capacity (∼3.7 mAh cm−2), with almost no decay after... Read more →


Researchers at the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), with colleagues from Humboldt-Universität zu Berlin and University of Potsdam, have fabricated a nanomaterial made from nanoparticles of a titanium oxide compound (Ti4O7) for use as a cathode material in lithium-sulfur batteries. The highly porous nanomaterial features high storage capacity... Read more →


Rice University scientists have used a seamless graphene-carbon nanotube (GCNT) electrode to store lithium metal reversibly and with complete suppression of dendrite formation. The GCNT-Li capacity of 3351 mAh g-1GCNT-Li approaches that of bare Li metal (3861 mAh g-1Li)—indicating the low contributing mass of GCNT—while yielding a practical areal capacity... Read more →


Materials researchers of the Paul Scherrer Institute PSI in Switzerland have, in collaboration with the Université Grenoble Alpes (France), developed a simple method that can improve the performance of lithium-sulfur batteries by 25-30%. In a study published in the journal Nature Energy, the team reported that the additional of silicon... Read more →


Researchers at France-based battery major Saft, along with colleagues at Université Paris Est, have, for the first time, used a nanocomposite metal hydride as the anode in a complete solid-state battery with a sulfur cathode and LiBH4 electrolyte. The cell shows a high reversible capacity of 910 mAh g−1 with... Read more →


Researchers from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories, all members of the DOE’s Joint Center for Energy Storage Research (JCESR), have significantly improved the performance of Li-sulfur batteries under lean electrolyte conditions by using a soft PEO10LiTFSI polymer swellable gel as a nanoscale reservoir to trap the... Read more →


A team of researchers at the University of California, Riverside has developed an approach to addressing the vexing problem of dendrite formation that hobbles the use of high energy density lithium-metal anodes in advanced recyclable batteries. The new universal strategy, described in a paper in the ACS journal Chemistry of... Read more →


Researchers at Yale University developed an ultrathin functionalized dendrimer–graphene oxide composite film that can be applied to virtually any sulfur cathode in a Li-sulfur (Li-S) battery system to alleviate capacity fading over battery cycling without compromising the energy or power density of the entire battery. Sulfur electrodes coated with the... Read more →


Researchers at Pacific Northwest National Laboratory (PNNL) have found that adding a small, optimal amount (0.05M) of LiPF6 (lithium hexafluorophosphate) as an additive in LiTFSI–LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. A paper on their work is published in the journal Nature... Read more →


A team of engineers led by John Goodenough, professor in the Cockrell School of Engineering at The University of Texas at Austin and co-inventor of the lithium-ion battery, has developed a new strategy for a safe, low-cost, all-solid-state rechargeable sodium or lithium battery cell that has the required energy density... Read more →


One of the major issues hobbling the commercialization of high energy-density lithium-sulfur batteries is the “polysulfide shuttle”—the shuttling of polysulfide ions between the cathode and anode. The polysulfide shuttle is a major technical issue that limits the electrical performance and cycle life of this type of battery. Addressing this polysulfide... Read more →


Lithium-sulfur batteries are one of the most promising alternatives for next-generation high-energy-density batteries; however, one of the main obstacles to widespread commercialization that still needs to be addressed is the polysulfide shuttle mechanism between the two electrodes. The polysulfide shuttle—the migration of lithium polysulfides formed during charge and discharge from... Read more →


Researchers from China and Australia have developed a mechanically robust biopolymer network binder that enabled the preparation of high-loading sulfur electrodes to improve the electrochemical performance of Li-sulfur batteries. The binder supported a high-sulfur-loading electrode of 19.8 mg cm-2 with an ultrahigh areal specific capacity of 26.4 mAh cm-2. The... Read more →


Caltech, CMU researchers measure mechanical properties of Li at small scale; implications for Li metal anode development

Likely next-generation battery chemistries such as Li-sulfur or Li-air envision the use of a Li metal anode coupled with an advanced cathode. However, the use of lithium metal anodes in rechargeable batteries has been restricted due to dendrite growth that can cause short-circuits or explosions. Solid-state electrolytes appear to be... Read more →


Researchers at the University of Texas at Austin have developed a novel electrode for lithium-sulfur batteries that improves cyclic stability and rate capability significantly. In a paper published in the ACS journal Nano Letters, they report using polypyrrole-MnO2 coaxial nanotubes to encapsulate sulfur. MnO2 restrains the shuttle effect of polysulfides... Read more →


A team at the University of Michigan (U-M) has used operando video microscopy to develop a comprehensive understanding of the voltage variations observed during Li metal cycling, which is directly correlated to dendrite growth. Specifically, they observed the evolution of the morphology of the Li electrode through operando high-resolution video... Read more →


Researchers at South China Normal University in Guangzhou have developed a novel composite of sulfur loaded in micropore-rich carbon aerogel (CA-S) for use as a cathode in Li-sulfur batteries. Compared to sulfur loaded in a common carbon material, acetylene black (AB-S), the CA-S exhibited significantly improved cyclic stability and rate... Read more →


A team at Sun Yat-sen University in China has developed new high-performance, stable cathode for Li-S batteries consisting of a 3D activated carbon fiber matrix (ACFC) and sulfur. The structured 3D foldable sulfur cathode (ACFC-S) delivers a reversible capacity of about 979 mAh g−1 at 0.2C; a capacity retention of 98%... Read more →


Researchers at MIT have carried out the most detailed analysis yet of lithium dendrite formation from lithium anodes in batteries and have found that there are two entirely different mechanisms at work. While both forms of deposits are composed of lithium filaments, the way they grow depends on the applied... Read more →


DOE HPC4Mfg program funds 13 projects to advance US manufacturing; welding, Li-S batteries among projects

A US Department of Energy (DOE) program designed to spur the use of high performance supercomputers to advance US manufacturing has funded 13 new industry projects for a total of $3.8 million. Among the projects selected are one by GM and EPRI of California to improve welding techniques for automobile... Read more →


Inspired by the structure of ant nests, researchers at Lawrence Berkeley National Laboratory have devised a novel Li–S electrode featuring increased sulfur loading and sulfur/inactive-materials ratio to improve life and capacity. In a paper in the ACS journal Nano Letters, the team reports that the efficient capabilities of the ant-nest... Read more →


A team at the University of Maryland have synthesized a mixed conducting nanocomposite sulfur electrode that consists of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic and electronic conductivities. As described in a paper published in the ACS journal Nano Letters, the new nanocomposite serves... Read more →


At its TecDay event in Stuttgart, Daimler said it will invest more than €7 billion (US$7.9 billion) in green technologies in the next two years alone. Shortly, smart will be the only automaker worldwide to offer its entire model range both powered by internal combustion engines or operating on battery... Read more →


Researchers at Hunan University, China, have developed a new strategy to suppress the diffusion of polysulfides into the electrolyte in Li-Sulfur batteries, resulting in improved performance. As described in a paper in the Journal of Power Sources, the research tea used hydrophilic carbon paper anchored by hierarchically porous cobalt disulfides... Read more →


OXIS Energy and Lithium Balance partner on Li-sulfur battery system for China e-scooter market; targeting spring 2018

Li-sulfur battery developer OXIS Energy UK (earlier post) and Lithium Balance of Denmark are partnering to build a prototype Lithium-sulfur battery system primarily for the e-scooter market in China. Lithium Balance is a battery management expert which has supplied its BMS systems for Li-ion based e-scooters for a decade. The... Read more →


Researchers from University of Western Ontario, Lawrence Berkeley National Laboratory (LBNL), and Canadian Light Sources (CLS) have developed a safe and durable high-temperature Li-sulfur battery using universal conventional carbon–sulfur (C-S) electrodes with a molecular layer deposited (MLD) alucone (aluminum oxide polymeric film) coating. The MLD alucone-coated C−S electrodes demonstrate stabilized... Read more →