Boeing HorizonX invests in lithium-metal rechargeable battery startup Cuberg

Boeing has invested in Berkeley, Calif.-based Cuberg, Inc., a startup founded by former Stanford University researchers developing next-generation battery technology for potential aerospace and industrial applications. Cuberg developed an advanced lithium metal rechargeable battery cell that is designed to be a drop-in solution to existing large-scale battery manufacturing processes. It... Read more →


Lithium metal—with its high theoretical capcity and low electrochemical potential—is an ideal anode for Li-ion batteries, and is the material of choice for advanced batteries such as Li-sulfur and Li-O2. However, dendritic growth on the anode leads to an unstable solid electrolyte interphase, volume fluctuation, and even shorting of the... Read more →


A team of researchers led by scientists at the US Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have designed an active polyelectrolyte binder (PEB) that actively regulates key ion transport processes within a lithium-sulfur battery, and have also shown how it functions on a molecular level. The new... Read more →


Researchers in China are proposing a new strategy to retard dendrite formation on Li metal anodes in high-capacity Li-ion batteries. In a paper published in the ACS journal Nano Letters, they describe trapping Li within hollow silica microspheres with a carbon nanotube core to suppress dendrite growth. Such an electrode... Read more →


Researchers at the University of California, Riverside’s Bourns College of Engineering have developed a technique to create high performance lithium-ion batteries utilizing sulfur and silicon electrodes. Reported in an open-access paper in the journal Scientific Reports, this sulfur-silicon full cell (SSFC) battery architecture gradually integrates controlled amounts of pure lithium... Read more →


U of Waterloo team develops low-cost approach to stabilize Li metal anodes

Researchers at the University of Waterloo (Canada) have developed a low-cost and scalable approach that tackles the stabilization of Li metal electrodes by forming a single-ion-conducting and stable protective surface layer in vivo. They use a rationally designed electrolyte additive complex that reacts with the Li surface to form the... Read more →


A team in China has used graphene microsheets (GMs)—prepared from microcrystalline graphite minerals by an electrochemical & mechanical approach—as a special conductive support for sulfur for the cathode of a lithium-sulfur battery. The graphene microsheets feature excellent conductivity and low-defect, small sheet sizes of <1 μm2 and ≤ 6 atomic... Read more →


Rice University team finds asphalt-lithium metal anode enables faster charging, resistance to dendrite formation; Li-S test cell The Rice lab of chemist James Tour has developed anodes comprising porous carbon made from asphalt that showed exceptional stability after more than 500 charge-discharge cycles. A high-current density of 20 milliamps per... Read more →


Researchers at Cornell led by Professor Lyndon Archer, in collaboration with Professor Ravishankar Sundararaman at Rensselaer Polytechnic, have demonstrated a new technique for enabling the use of high-capacity lithium metal anodes in rechargeable batteries. In a paper in the journal Angewandte Chemie the team shows that the indium (In) coatings... Read more →


alpha-En Corporation and Argonne partner on Li metal anodes for EV batteries; $750K award from DOE

alpha-En Corporation, a company that has developed a patent-pending process to produce high-purity thin-film lithium metal anodes and associated products sustainably, will receive an award of $750,000 from the US Department of Energy’s Office of Technology Transition Technology Commercialization Fund (TCF). This funding will be used to commercialize Argonne National... Read more →


Researchers in Sweden and Italy have devised a simple strategy to address the issues currently hampering commercialization of high-energy density Li-sulfure batteries, including limited practical energy density, life time and the scaling-up of materials and production processes. In a paper in the Journal ChemSusChem they report that using a novel... Read more →


DOE awarding $19.4M to 22 advanced vehicle technologies projects; Mercedes-Benz, GM Li-S battery projects

The US Department of Energy (DOE) is awarding $19.4 million to 22 new cost-shared projects to accelerate the research of advanced battery, lightweight materials, engine emission control technologies, and energy efficient mobility systems (EEMS). Among the awardees are Mercedes-Benz Research & Development North America and GM, with separate projects on... Read more →


Ricardo develops new model-based EV battery control technology; evaluating new cell chemistries

Ricardo has developed a new Battery Management System (BMS) for EVs that is scalable to a wide range of applications. The new BMS enhances the use of advanced model-based control methods to optimize the performance of both existing and next-generation cell chemistries. One of the most significant impediments to an... Read more →


By mimicking fibrinolysis, a biological self-healing process, researchers at China’s Tsinghua University have developed a self-healing sulfur microparticle (SMiP) cathode. In a paper in the Journal of the American Chemical Society, the researchers report that the SMiP cathode attained an optimized capacity (∼3.7 mAh cm−2), with almost no decay after... Read more →


Researchers at the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), with colleagues from Humboldt-Universität zu Berlin and University of Potsdam, have fabricated a nanomaterial made from nanoparticles of a titanium oxide compound (Ti4O7) for use as a cathode material in lithium-sulfur batteries. The highly porous nanomaterial features high storage capacity... Read more →


Rice University scientists have used a seamless graphene-carbon nanotube (GCNT) electrode to store lithium metal reversibly and with complete suppression of dendrite formation. The GCNT-Li capacity of 3351 mAh g-1GCNT-Li approaches that of bare Li metal (3861 mAh g-1Li)—indicating the low contributing mass of GCNT—while yielding a practical areal capacity... Read more →


Materials researchers of the Paul Scherrer Institute PSI in Switzerland have, in collaboration with the Université Grenoble Alpes (France), developed a simple method that can improve the performance of lithium-sulfur batteries by 25-30%. In a study published in the journal Nature Energy, the team reported that the additional of silicon... Read more →


Researchers at France-based battery major Saft, along with colleagues at Université Paris Est, have, for the first time, used a nanocomposite metal hydride as the anode in a complete solid-state battery with a sulfur cathode and LiBH4 electrolyte. The cell shows a high reversible capacity of 910 mAh g−1 with... Read more →


Researchers from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories, all members of the DOE’s Joint Center for Energy Storage Research (JCESR), have significantly improved the performance of Li-sulfur batteries under lean electrolyte conditions by using a soft PEO10LiTFSI polymer swellable gel as a nanoscale reservoir to trap the... Read more →


A team of researchers at the University of California, Riverside has developed an approach to addressing the vexing problem of dendrite formation that hobbles the use of high energy density lithium-metal anodes in advanced recyclable batteries. The new universal strategy, described in a paper in the ACS journal Chemistry of... Read more →


Researchers at Yale University developed an ultrathin functionalized dendrimer–graphene oxide composite film that can be applied to virtually any sulfur cathode in a Li-sulfur (Li-S) battery system to alleviate capacity fading over battery cycling without compromising the energy or power density of the entire battery. Sulfur electrodes coated with the... Read more →


Researchers at Pacific Northwest National Laboratory (PNNL) have found that adding a small, optimal amount (0.05M) of LiPF6 (lithium hexafluorophosphate) as an additive in LiTFSI–LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. A paper on their work is published in the journal Nature... Read more →


A team of engineers led by John Goodenough, professor in the Cockrell School of Engineering at The University of Texas at Austin and co-inventor of the lithium-ion battery, has developed a new strategy for a safe, low-cost, all-solid-state rechargeable sodium or lithium battery cell that has the required energy density... Read more →


One of the major issues hobbling the commercialization of high energy-density lithium-sulfur batteries is the “polysulfide shuttle”—the shuttling of polysulfide ions between the cathode and anode. The polysulfide shuttle is a major technical issue that limits the electrical performance and cycle life of this type of battery. Addressing this polysulfide... Read more →


Lithium-sulfur batteries are one of the most promising alternatives for next-generation high-energy-density batteries; however, one of the main obstacles to widespread commercialization that still needs to be addressed is the polysulfide shuttle mechanism between the two electrodes. The polysulfide shuttle—the migration of lithium polysulfides formed during charge and discharge from... Read more →


Researchers from China and Australia have developed a mechanically robust biopolymer network binder that enabled the preparation of high-loading sulfur electrodes to improve the electrochemical performance of Li-sulfur batteries. The binder supported a high-sulfur-loading electrode of 19.8 mg cm-2 with an ultrahigh areal specific capacity of 26.4 mAh cm-2. The... Read more →


Caltech, CMU researchers measure mechanical properties of Li at small scale; implications for Li metal anode development

Likely next-generation battery chemistries such as Li-sulfur or Li-air envision the use of a Li metal anode coupled with an advanced cathode. However, the use of lithium metal anodes in rechargeable batteries has been restricted due to dendrite growth that can cause short-circuits or explosions. Solid-state electrolytes appear to be... Read more →


Researchers at the University of Texas at Austin have developed a novel electrode for lithium-sulfur batteries that improves cyclic stability and rate capability significantly. In a paper published in the ACS journal Nano Letters, they report using polypyrrole-MnO2 coaxial nanotubes to encapsulate sulfur. MnO2 restrains the shuttle effect of polysulfides... Read more →


A team at the University of Michigan (U-M) has used operando video microscopy to develop a comprehensive understanding of the voltage variations observed during Li metal cycling, which is directly correlated to dendrite growth. Specifically, they observed the evolution of the morphology of the Li electrode through operando high-resolution video... Read more →


Researchers at South China Normal University in Guangzhou have developed a novel composite of sulfur loaded in micropore-rich carbon aerogel (CA-S) for use as a cathode in Li-sulfur batteries. Compared to sulfur loaded in a common carbon material, acetylene black (AB-S), the CA-S exhibited significantly improved cyclic stability and rate... Read more →


A team at Sun Yat-sen University in China has developed new high-performance, stable cathode for Li-S batteries consisting of a 3D activated carbon fiber matrix (ACFC) and sulfur. The structured 3D foldable sulfur cathode (ACFC-S) delivers a reversible capacity of about 979 mAh g−1 at 0.2C; a capacity retention of 98%... Read more →


Researchers at MIT have carried out the most detailed analysis yet of lithium dendrite formation from lithium anodes in batteries and have found that there are two entirely different mechanisms at work. While both forms of deposits are composed of lithium filaments, the way they grow depends on the applied... Read more →


DOE HPC4Mfg program funds 13 projects to advance US manufacturing; welding, Li-S batteries among projects

A US Department of Energy (DOE) program designed to spur the use of high performance supercomputers to advance US manufacturing has funded 13 new industry projects for a total of $3.8 million. Among the projects selected are one by GM and EPRI of California to improve welding techniques for automobile... Read more →


Inspired by the structure of ant nests, researchers at Lawrence Berkeley National Laboratory have devised a novel Li–S electrode featuring increased sulfur loading and sulfur/inactive-materials ratio to improve life and capacity. In a paper in the ACS journal Nano Letters, the team reports that the efficient capabilities of the ant-nest... Read more →


A team at the University of Maryland have synthesized a mixed conducting nanocomposite sulfur electrode that consists of different nanoparticles with distinct properties of lithium storage capability, mechanical reinforcement, and ionic and electronic conductivities. As described in a paper published in the ACS journal Nano Letters, the new nanocomposite serves... Read more →


At its TecDay event in Stuttgart, Daimler said it will invest more than €7 billion (US$7.9 billion) in green technologies in the next two years alone. Shortly, smart will be the only automaker worldwide to offer its entire model range both powered by internal combustion engines or operating on battery... Read more →


Researchers at Hunan University, China, have developed a new strategy to suppress the diffusion of polysulfides into the electrolyte in Li-Sulfur batteries, resulting in improved performance. As described in a paper in the Journal of Power Sources, the research tea used hydrophilic carbon paper anchored by hierarchically porous cobalt disulfides... Read more →


OXIS Energy and Lithium Balance partner on Li-sulfur battery system for China e-scooter market; targeting spring 2018

Li-sulfur battery developer OXIS Energy UK (earlier post) and Lithium Balance of Denmark are partnering to build a prototype Lithium-sulfur battery system primarily for the e-scooter market in China. Lithium Balance is a battery management expert which has supplied its BMS systems for Li-ion based e-scooters for a decade. The... Read more →


Researchers from University of Western Ontario, Lawrence Berkeley National Laboratory (LBNL), and Canadian Light Sources (CLS) have developed a safe and durable high-temperature Li-sulfur battery using universal conventional carbon–sulfur (C-S) electrodes with a molecular layer deposited (MLD) alucone (aluminum oxide polymeric film) coating. The MLD alucone-coated C−S electrodes demonstrate stabilized... Read more →


Researchers from Hunan University and Changsha University in China have designed 3D hierarchical porous nitrogen-doped aligned carbon nanotubes (HPNACNTs) with well-directed 1D conductive electron paths as scaffold to load sulfur for use as a high-performance cathode in Li-S batteries. A paper on their work is published in the Journal of... Read more →


Researchers at Beihang University in Beijing have developed a new Li-sulfur battery using honeycomb-like sulfur copolymer uniformly distributed onto 3D graphene (3D cpS-G) networks for a cathode material and a 3D lithiated Si-G network as anode. In a paper published in the RSC journal Energy & Environmental Science, they reported... Read more →


PNNL study identifies one of the mechanisms behind Li-sulfur battery capacity fade; the importance of electrolyte anion selection

Researchers at Pacific Northwest National Laboratory (PNNL) investigating the stability of the anode/electrolyte interface in Li-Sulfur batteries have found that Li-S batteries using LiTFSI-based electrolytes are more stable than those using LiFSI-based electrolytes. In their study, published in the journal Advanced Functional Materials, they determined that the decreased stability is... Read more →


Lithium-metal anodes are favored for use in next-generation rechargeable Li-air or Li-sulfur batteries due to a tenfold higher theoretical specific capacity than graphite (3,860 mAh/g vs. 372 mAh/g); light weight and lowest anode potential. However, safety issues resulting from dendrite formation and instability caused by volume expansion have hampered development... Read more →


Researchers from Texas A&M and Purdue have developed a new cathode material for Li-S batteries based on what they call carbon compartments (CCs)—conductive 3D carbon mesostructures that possess macro- and meso-pores that allow for high loading of sulfur nanoparticles and enhanced electrolyte-sulfur contact. Fabricated using a scalable, single-step, and inexpensive... Read more →


DOE announces $58M in funding for advanced vehicle technologies

US Energy Secretary Ernest Moniz used the Washington DC Auto show as the venue to announce $58 million in funding for vehicle technology advancements. (Earlier post.) (DE-FOA-0001384: Fiscal Year (FY) 2016 Vehicle Technologies Program Wide Funding Opportunity Announcement) DOE also released a report highlighting the successes of itsAdvanced Technology Vehicles... Read more →


Researchers at The Pennsylvania State University have synthesized highly crumpled nitrogen-doped graphene (NG) sheets with ultrahigh pore volume (5.4 cm3) and large surface area (1158 m2/g), which enable strong polysulfide adsorption and high sulfur content for use as a cathode material in Li-sulfur batteries. The wrinkled graphene sheets are interwoven... Read more →


New hybrid polymer-glass electrolyte for solid-state lithium batteries

Scientists at the US Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of North Carolina at Chapel Hill have developed a novel electrolyte for use in solid-state lithium batteries that overcomes many of the problems that plague other solid electrolytes while also showing signs of being... Read more →


ORNL, Solid Power sign exclusive license for lithium-sulfur battery technology

The Department of Energy’s Oak Ridge National Laboratory and Solid Power Inc. of Louisville, Colo., have signed an exclusive agreement licensing lithium-sulfur materials for next-generation batteries. Solid Power licensed a portfolio of ORNL patents relating to lithium-sulfur compositions that will enable development of more energy-dense batteries. ORNL’s proof-of-concept battery research... Read more →


Researchers at the University of Cambridge have developed a working laboratory demonstrator of a lithium-oxygen battery which has very high energy density, is more than 90% efficient, and, to date, can be recharged more than 2000 times, showing how several of the problems holding back the development of these devices... Read more →


Report: Bosch buying solid-state Li-ion battery company Seeo

Quartz today reported that Bosch has agreed to acquire Berkeley Lab solid-state Li-ion battery spinoff Seeo. Seeo’s cell design couples a solid lithium metal anode with a conventional porous lithium iron phosphate cathode and Seeo’s nanostructured solid polymer electrolyte (“DryLite”). The electrolyte is entirely solid-state with no flammable or volatile... Read more →