Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines


[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

KAIST researchers develop box-shaped pressure vessel for storage and transportation of pressurized gases and fluids

March 25, 2014

Scaled-down model of prismatic pressure vessel. Click to enlarge.

Professors Pål G. Bergan and Daejun Chang and of Ocean Systems Engineering at Korea Advanced Institute of Science and Technology (KAIST) have developed a box-type, large-size pressure vessel for the storage and transportation of liquids such as liquefied petroleum gas (LPG), compressed natural gas (CNG), or liquefied natural gas (LNG). The project was sponsored by POSCO, a multinational steel-making company based in Pohang, Republic of Korea.

Pressure vessels have many applications and are widely used within the petrochemical, energy, and other industrial sectors where the transport and storage of many types of pressurized gases and fluids are essential. Pressure vessels must be designed, manufactured, installed, and operated strictly in accordance with the appropriate codes and standards since they can, in cases of leak or rupture, pose considerable health and safety hazards.

More... | Comments (3) | TrackBack (0)

Westport unveils next-generation High Pressure Direct Injection (HPDI 2.0) natural gas system for HD trucks

December 10, 2013

Westport Innovations Inc. unveiled its next generation of high pressure direct injection natural gas technology platform, Westport HPDI 2.0. Westport is now working with seven OEM applications with engine sizes ranging from trucks to trains at various stages of development with the goal of vertically integrated Westport HPDI 2.0 OEM product lines. Westport anticipates first availability of customer products in late 2014 and 2015.

Westport HPDI uses natural gas as the primary fuel in a Diesel (compression ignition) cycle along with a small amount of diesel fuel as an ignition source. Core to the approach is a patented injector with a dual-concentric needle design. This allows small quantities of diesel fuel and large quantities of natural gas to be delivered at high pressure to the combustion chamber. (Earlier post.)

More... | Comments (8) | TrackBack (0)

Wärtsilä introduces new low pressure 2-stroke dual-fuel engine technology; economic and environmental benefits

November 13, 2013

Wärtsilä has successfully conducted full scale testing on gas of its low-speed 2-stroke dual-fuel engine and is now introducing a full new range of engines based on its established and well-proven low pressure technology. The first engine utilizing this technology, the Wärtsilä RT-flex50DF, will be available for delivery in the third quarter of 2014.

Other engines from the company’s new Generation X series will follow and will be available for delivery during 2015 and 2016. The entire portfolio of Wärtsilä 2-stroke engines will be available as low pressure dual-fuel (DF) versions. The economic and environmental benefits of this technology are significant, Wärtsilä notes.

More... | Comments (0) | TrackBack (0)

Royal Academy of Engineering study examines future lower-carbon ship powering options

July 26, 2013

International shipping contributes an estimated 3% of global emissions of CO2. Although the industry has reduced its consumption of fossil fuels by a number of measures such as using increasingly thermally efficient diesel engines in recent decades, the current total fuel oil consumption is in excess of 350 million tonnes per year (about 98.5 billion gallons US).

A new study by an expert working group at the UK’s Royal Academy of Engineering examines a wide range of possibilities for future, lower-emitting and cost-effective ship powering options. The report reviews a range of short-, medium- and long-term technologies and examines the advantages and limitations of systems from solar and wind power, through fuel cells to nuclear propulsion. One of the key takeaways is that an integrated systems engineering approach is required to achieve effective improvements in efficiency and reductions in emissions for ships. This integrated approach must embrace all of the elements of naval architecture, marine and control engineering alongside operation practices.

More... | Comments (1) | TrackBack (0)

BASF and Samsung Heavy develop new anti-sloshing, anti-boil-off solution for LNG tankers

July 08, 2013

The BASF/SHI anti-sloshing solution consists of a blanket of blocks of Basotect foam with buoys, which are stitched into Vectran textile covers and connected with Vectran belts. Click to enlarge.

BASF and the South Korean company Samsung Heavy Industries (SHI) have developed a new concept to prevent the sloshing of liquefied natural gas (LNG) during its transport in tankers. The anti-sloshing solution is a kind of blanket consisting of cubes with a volume of one cubic meter, made of the BASF foam Basotect. The open-cell foam made from melamine resin stays flexible even under cryogenic conditions; the ship’s steel tanks must remain cooled to -162 ° C to keep the gas liquid.

More than a quarter of the global production of natural gas in 2011—nearly 331 billion cubic meters—was liquefied and shipped throughout the world in ocean-going tankers. In preparation for transport, the gas is cleaned, liquefied at -162 °C, and then loaded onto tankers that carry liquid cargo. This process reduces 600 cubic meters of gas to one cubic meter of LNG (liquefied natural gas).

More... | Comments (0) | TrackBack (0)

US Maritime Administration to fund projects on reducing emissions from marine vessels, study on LNG bunkering

June 15, 2013

The US Maritime Administration (MARAD) Office of the Environment has issued two funding opportunities; the first (DTMA-91-R-2013-0020) will award up to an estimated $900,000 for up to 2 projects that demonstrate criteria pollutant emissions of carbon emissions reductions from marine vessels through repowering, re-engining, or using alternative fuel/energy.

The second (DTMA-91-R-2013-0009) will award up to $500,000 for a comprehensive study on the issues associated with the bunkering (supplying a ship with fuel) of LNG for marine vessels. One of the largest obstacles to widespread take-up of LNG as ship fuel—and hence its viability as an option to meet ECA (Emission Control Areas) requirements—is the lack of a bunkering infrastructure, according to Lloyd’s Register. (Earlier post.)

More... | Comments (0) | TrackBack (0)

Green Car Congress © 2013 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group