Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search


Lubricating Oils

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Amyris/Cosan JV Novvi introduces 100% renewable Group III and IV base oils

May 27, 2015

Novvi LLC, a joint venture of Amyris, Inc. and Cosan S.A. Industria e Comercio, unveiled two new 100% renewable base oil—the main component of motor oils—products: a renewable polyalphaolefin (PAO) Group IV and a renewable version of its NovaSpec Group III+ base oil. The new base oil products add to Novvi’s growing portfolio of renewable oils.

The Novvi JV was created to develop, produce, market, and distribute high-performance oils and lubricants from renewable sources. Novvi applies Amyris’ synthetic biology platform to produce targeted hydrocarbon molecules from plant sugar and Cosan’s feedstock capabilities and supply and distribution infrastructure.

More... | Comments (0) | TrackBack (0)

Penn and ExxonMobil researchers uncover mechanisms behind performance of major antiwear additive in lubricants

March 13, 2015

One of the main modern antiwear lubricant additives is zinc dialkyldithiophosphate (ZDDP)—widely used in automotive lubricants—which forms crucial antiwear tribofilms at sliding interfaces. However, despite its importance in prolonging machinery life and reducing energy use, the mechanisms governing its tribofilm growth are not well-understood. This limits the development of replacements with better performance and catalytic converter compatibility.

Now, in a study published in the journal Science, researchers from the University of Pennsylvania and ExxonMobil, have uncovered the mechanisms governing the growth of ZDDP antiwear tribofilms at sliding interfaces. The study provides a way forward for scientifically testing new anti-wear additives. Being able to pinpoint the level of stress at which they begin to break down and form tribofilms allows researchers to compare various properties in a more rigorous fashion.

More... | Comments (1) | TrackBack (0)

Sub-micrometer carbon spheres as oil additives reduce engine friction up to 25%

March 06, 2015

Researchers at Purdue University have shown that adding ultra-smooth submicrometer carbon spheres to motor oil can reduce friction and wear typically seen in engines by up to 25%. The researchers also have shown how to potentially mass-produce the spheres, making them hundreds of times faster than previously possible using ultrasound to speed chemical reactions in manufacturing.

In a paper in the ACS journal Advanced Materials & Interfaces, they reported that the new lubricant composition—3% carbon spheres suspended in a reference SAE 5W30 engine oil—exhibited a substantial reduction in friction and wear (10 to 25%) compared to the neat oil, without change in the viscosity. Friction reduction was dependent on the sliding speed and applied load, and maximum reduction was achieved at the highest sliding speed in the boundary lubrication regime.

More... | Comments (1) | TrackBack (0)

Project developing electrically conductive lubricants to protect electric motors from discharges in the bearings

June 12, 2014

The effect of insulating (upper right) and electrically conductive (lower right) lubricants. The insulating lubricant (yellow coating) can cause electrical discharges (red lightning bolts), which can damage the bearing’s raceways. If the lubricant is conductive (green coating), no electrical discharges occur. Source: Bosch. Click to enlarge.

A joint research project, funded by the German Federal Ministry for Education and Research, is investigating the development of ionic-fluid-enhanced electrically conductive lubricants to protect electric motors from the surface damage that can result from electrical discharges in the bearings (electrical discharge machining, or EDM). The initiative was launched to prepare for future vehicles which will require higher voltages than current models.

At present, 12 volts provide all conventional automotive electric systems—from lights and radios to air conditioners—with sufficient power. Within the next few years, the figure may rise to 48 volts to support a growing number of functions. The voltage levels of electric and hybrid vehicles are even higher: these vehicles can require as much as 400 volts. Higher voltage levels result in stronger alternating electric fields in alternators and electric motors, explained Dr. Gerd Dornhöfer, a Bosch scientist taking part in the “SchmiRmaL” project (Switchable intelligent tribological systems with minimal friction losses and maximum lifespan).

More... | Comments (0) | TrackBack (0)

Green Car Congress © 2015 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group