Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Materials

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

BASF and Floatility partner on ultra-lightweight solar-powered electric scooter: 12kg e-floater

March 26, 2015

BASF and Floatility have partnered for the development of an ultra-lightweight and solar-powered electric scooter. Weighing less than 12 kilograms (26.5 lbs) and consisting of more than 80% composite and plastic materials from BASF, the scooter will give commuters the sensation of floating and thus has been named ‘e-floater’. The e-floater is designed to bridge the gap on the last mile between home or city center and the nearest public transport.

BASF will provide versatile plastic materials and support the project with its extensive development capabilities. Molding multiple parts to create complex shapes with plastic materials enables design freedom and the streamlined construction of the ‘e-floater’.

More... | Comments (1) | TrackBack (0)

DOE announces conditional commitment for $259M loan to Alcoa for automotive aluminum production

The US Department of Energy (DOE) announced a conditional commitment for a $259-million loan to Alcoa Inc. If finalized, the loan would support the company’s Alcoa, Tennessee, manufacturing facility (Tennessee Operations), where the company will produce high-strength aluminum for North American automakers looking to lightweight their vehicles. (Earlier post.)

This conditional commitment is the first issued by the Department under the Advanced Technology Vehicles Manufacturing (ATVM) loan program since Secretary Moniz announced a number of improvements to the program last year, and is the first step toward issuing a final loan to Alcoa.

More... | Comments (0) | TrackBack (0)

Cadillac CT6 mixed-material body structure saves 90 kg over predominantly steel construction

March 15, 2015

Cadillac will use an advanced mixed-material approach for the lightweight body structure of the upcoming CT6 range-topping full-size sedan, which will debut 31 March at the New York International Auto Show. The structure is aluminum-intensive, but the new Cadillac also includes 13 different materials customized for each area of the car to advance driving dynamics, fuel economy and cabin quietness; the mixed material approach saved 90 kg (198 pounds) compared to a predominately steel construction.

Sixty-four percent of the CT6 body structure is aluminum, including all exterior body panels. Thirteen complex high-pressure die cast components make up the lower structure of the CT6 body, along with aluminum sheets and extrusions. The vehicle underbody uses steel close-out panels on the lower structure to create a bank vault-quiet cabin without the added weight of extensive sound-deadening material, often used to compensate for aluminum panels in the occupant compartment.

More... | Comments (3) | TrackBack (0)

Penn and ExxonMobil researchers uncover mechanisms behind performance of major antiwear additive in lubricants

March 13, 2015

One of the main modern antiwear lubricant additives is zinc dialkyldithiophosphate (ZDDP)—widely used in automotive lubricants—which forms crucial antiwear tribofilms at sliding interfaces. However, despite its importance in prolonging machinery life and reducing energy use, the mechanisms governing its tribofilm growth are not well-understood. This limits the development of replacements with better performance and catalytic converter compatibility.

Now, in a study published in the journal Science, researchers from the University of Pennsylvania and ExxonMobil, have uncovered the mechanisms governing the growth of ZDDP antiwear tribofilms at sliding interfaces. The study provides a way forward for scientifically testing new anti-wear additives. Being able to pinpoint the level of stress at which they begin to break down and form tribofilms allows researchers to compare various properties in a more rigorous fashion.

More... | Comments (1) | TrackBack (0)

New diamine-appended MOFs can capture CO2 for half or less of the energy cost of current materials

March 12, 2015

UC Berkeley chemists have developed a new material that can efficiently capture CO2 and then release it at lower temperatures than current carbon-capture materials, potentially cutting by half or more the energy currently consumed in the process.

The material, a metal-organic framework (MOF) modified with nitrogen compounds called diamines, can be tuned to remove carbon dioxide from the room-temperature air of a submarine, for example, or the 100-degree (Fahrenheit) flue gases from a power plant. A paper elucidating the mechanism of what the researchers are calling “phase-change” adsorbents is published in the journal Nature.

More... | Comments (11) | TrackBack (0)

Sub-micrometer carbon spheres as oil additives reduce engine friction up to 25%

March 06, 2015

Researchers at Purdue University have shown that adding ultra-smooth submicrometer carbon spheres to motor oil can reduce friction and wear typically seen in engines by up to 25%. The researchers also have shown how to potentially mass-produce the spheres, making them hundreds of times faster than previously possible using ultrasound to speed chemical reactions in manufacturing.

In a paper in the ACS journal Advanced Materials & Interfaces, they reported that the new lubricant composition—3% carbon spheres suspended in a reference SAE 5W30 engine oil—exhibited a substantial reduction in friction and wear (10 to 25%) compared to the neat oil, without change in the viscosity. Friction reduction was dependent on the sliding speed and applied load, and maximum reduction was achieved at the highest sliding speed in the boundary lubrication regime.

More... | Comments (1) | TrackBack (0)

NanoSteel expands material capabilities for additive manufacturing powder portfolio

March 04, 2015

The NanoSteel Company (earlier post) has expanded its additive manufacturing (AM) material capabilities to support metal 3D printing of complex high-hardness parts and the ability to customize properties layer-by-layer through gradient material design. The company’s targeted markets for its AM powder portfolio are tool & die, energy, auto, and agriculture.

In September 2014, Nanosteel announced the expansion of the company’s engineered powders business into additive manufacturing. By leveraging the uniform metal matrix microstructures in the laser-sintering process, the company was able to build a crack-free, fully dense bulk sample. The company then leveraged this breakthrough in AM wear materials to print a bearing and impeller using the powder bed fusion process.

More... | Comments (0) | TrackBack (0)

POSTECH researchers develop new high-strength, lightweight steel

February 27, 2015

Researchers at Pohang University of Science and Technology (POSTECH) in South Korea have developed a new type of steel with improved tensile strength and lightness. In their approach, they effectively utilized a brittle intermetallic compound (B2) that metallurgists usually try to suppress by modifying B2 morphology and dispersion in the steel matrix.

The specific tensile strength and ductility of the developed steels improve on those of the lightest and strongest metallic materials known, titanium alloys, the researchers said. The results, reported in a paper in the journal Nature, demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels.

More... | Comments (1) | TrackBack (0)

Magna unveiling lightweight plug-in hybrid sportscar at Geneva show

Global automotive supplier Magna International Inc. will debut MILA Plus, an two-seat plug-in hybrid sports car, at the upcoming Geneva Motor Show. The lightweight (1,520 kg, 3,351 lb) concept vehicle, the latest member of the MILA family of concept vehicles (earlier post), offers an all-electric range of 75 km with reduced CO2 emissions of 32g/km.

System power output is 200 kW (272 hp), with 580 N·m of peak torque. The MILA Plus accelerates from 0-100 km/h in 4.9s; electric acceleration from 0-80 km/h takes 3.6s. The performance of the three-cylinder gasoline engine is enhanced by the addition of two electric motors—one between the internal combustion engine and transmission to drive the rear axle, and one on the electric front axle. This arrangement results in an electric all-wheel-drive system which transmits more torque to the road and results in improvement of vehicle maneuverability and dynamics.

More... | Comments (2) | TrackBack (0)

Lux: carbon fiber to go mainstream in automobiles by 2025

February 22, 2015

Driven by a faster-than-expected pace of technology development, carbon-fiber reinforced plastics (CFRPs) will be poised to gain widespread adoption for automotive lightweighting by 2025, according to a new report from Lux Research, “Scaling Up Carbon Fiber: Roadmap to Automotive Adoption.”

Advances already underway in fiber, resin and composite part production will lead to a $6 billion market for automotive CFRPs in 2020, more than double Lux’s earlier projection. (Earlier post.) Even this figure is dwarfed by the full potential for CFRPs in automotive if they can become affordable enough for use in mainstream vehicles, Lux posits.

More... | Comments (5) | TrackBack (0)

Ricardo and Albany Engineering Composites to explore use of advanced aerospace composites in automotive; 3D composites

February 09, 2015

Aerospace composite supplier Albany Engineered Composites (AEC) and automotive engineering and consulting company Ricardo have entered into a collaborative partnership to provide composite body, chassis and other structural components to the automotive industry.

Albany Engineered Composites has demonstrated expertise in the advanced design and manufacturing of composite parts noted for their impact and damage tolerance in the aerospace market. Under the terms the agreement, Ricardo and AEC will jointly explore the use of AEC technologies such as 3D composites for providing the stiffness, strength, durability and energy absorption necessary to lightweight applications such as crash structures. Often these structures are made of metal and are difficult to replace with a lighter weight material while still maintaining performance requirements.

More... | Comments (1) | TrackBack (0)

Lintec licenses UTD carbon nanotube technology, opens center to spur commercialization

Lintec of America has licensed novel fabrication methods for carbon nanotube (CNT) macrostructures, including sheets, yarns and ribbons, developed at the University of Texas at Dallas (UTD) by Dr. Ray Baughman, the Robert A. Welch Distinguished Chair in Chemistry, and his colleagues at the University’s Alan G. MacDiarmid NanoTech Institute, which he directs.

Lintec has trademarked the technology as DryDraw and cSilk, and is forming the Nano-Science and Technology Center (NSTC) in Richardson, TX, to focus on scaling up the manufacturing and commercialization of nano-engineered applications.

More... | Comments (0) | TrackBack (0)

Extensive materials genome modeling study suggests best adsosrbent materials for natural gas storage already designed; 70% of ARPA-E target

February 03, 2015

Using a materials genome approach, a collaboration between EPFL, the University of California at Berkeley, Rice University, the Georgia Institute of Technology, Northwestern University, Lawrence Berkeley National Laboratory, and the Korea Advanced Institute of Science and Technology has searched for high-performance adsorbent materials to store natural gas in a vehicular fuel tank.

In their study, published in the RSC journal Energy & Environmental Science, they simulated more than 650,000 designs for nanoporous materials. They found that the best candidates for natural gas storage have already been designed—but that those best materials meet only 70% of the Advanced Research Projects Agency - Energy (ARPA-E) targets for natural gas storage on vehicles. (Earlier post.)

More... | Comments (0) | TrackBack (0)

Rice, Minnesota scientists use predictive modeling to identify optimized zeolites to aid ethanol, petroleum production

January 23, 2015

Scientists at Rice University and the University of Minnesota have identified, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ​ethanol from fermentation broths and the hydroisomerization of alkanes with 18–30 carbon atoms encountered in petroleum refining.

The results, presented in a paper published in Nature Communications, demonstrate that predictive modeling of synthetic zeolites—a technique pioneered by Rice bioengineer Michael Deem—and data-driven science can be applied to solve some of the most challenging problems facing industries that require efficient ways to separate or catalyze materials.

More... | Comments (0) | TrackBack (0)

DOE to award $55.8M for advanced vehicle technologies; $35M for fuel cell and hydrogen

January 22, 2015

US Energy Secretary Ernest Moniz announced a new Vehicle Technologie program-wide funding opportunity (DE-FOA-0001201) for $55.8 million. DOE also announced up to $35 million to advance fuel cell and hydrogen technologies, including enabling the early adoption of fuel cell applications, such as light duty fuel cell electric vehicles. This new funding opportunity announcement will be available in early February.

The Vehicle Technologies funding is targeted at a wide range of research, development, and demonstration projects that aim to reduce the price and improve the efficiency of plug-in electric, alternative fuel, and conventional vehicles. Topics addressed include: advanced batteries (including manufacturing processes) and electric drive R&D; Lightweight materials; Advanced combustion engine and enabling technologies R&D; and Fuels technologies (dedicated or dual-fuel natural gas engine technologies).

More... | Comments (2) | TrackBack (0)

UQM Technologies granted patent on permanent magnet electric motor design using non-rare earth magnets

January 20, 2015

UQM Technologies Inc. has been granted a US patent (8,928,198, “Brushless PM machine construction enabling low coercivity magnets”) for an electric and hybrid electric vehicle motor design using non-rare earth magnets. The patent covers the unique magnet geometry and the method of manufacturing the motor.

The majority of electric and hybrid electric vehicles produced today use permanent magnet (PM) motors with rare-earth magnet materials because of the high coercivity of the rare earth materials. Coercivity is a measure of the reverse field needed to drive magnetization to zero after being saturated—i.e., it is a measure of the resistance to demagnetization. The new UQM design enables the use of low coercivity magnets, such as Aluminum Nickel Cobalt (AlNiCo) or Iron Cobalt Tungsten (FeCoW), in PM machines.

More... | Comments (2) | TrackBack (0)

EPA, ECOS and Motor Vehicle Industry Associations to sign memorandum of understanding (MOU) for the reduction of copper in brake pads

On Wednesday 21 January, representatives of the US Environment Protection Agency (EPA), the Environmental Council of the States (ECOS) and motor vehicle industry associations will sign a Memorandum of Understanding (MOU) between the agency and the motor vehicle industry for the reduction of copper in brake pads. The signing will take place in conjunction with the SAE 2015 Government/Industry Meeting.

The MOU will provide the motor vehicle industry with consistent copper reduction guidelines, eliminate disparate state regulations and create a level playing field for brake product manufacturers. The MOU is the result of a collaborative effort between the regulatory agency and the motor vehicle industry.

More... | Comments (0) | TrackBack (0)

Researchers suggest hybrid graphene oxide/cellulose microfibers could supersede carbon fibers

January 16, 2015

Researchers from Nanjing Forestry University and the University of Maryland have designed high-performance microfibers by hybridizing two-dimensional (2D) graphene oxide (GO) nanosheets and one-dimensional (1D) nanofibrillated cellulose (NFC) fibers. The resulting well-aligned, strong microfibers have the potential to supersede carbon fibers due to their low cost, the team suggests in an open access paper published in the journal NPG Asia Materials.

The hybrid microfibers are much stronger than microfibers composed of 1D NFC or 2D GO alone. In their paper, they reported that experimental results and molecular dynamics simulations reveal the synergistic effect between GO and NFC: the bonding between neighboring GO nanosheets is enhanced by NFC because the introduction of NFC provides the extra bonding options available between the nanosheets.

More... | Comments (5) | TrackBack (0)

Johnson Controls displays 40% lighter CAMISMA seat prototype at NAIAS; planned availability in 2019

January 15, 2015

1417423511033
CAMISMA seat prototype is 40% lighter than conventional seats. Click to enlarge.

Johnson Controls and its partners are working to reduce the use of metals in vehicle seat structures by replacing them with multi-material systems in the CAMISMA (carbon-amide-metal-based interior structure using a multi-material system approach) research project. (Earlier post.)

The company is displaying the CAMISMA seat prototype, which achieves a more than 40% weight reduction against conventionally manufactured seat structures without compromising safety properties, at the 2015 North American International Auto Show (NAIAS) in Detroit. Johnson Controls received this year’s CLEPA (European Association of Automotive Suppliers) Innovation Award in the “Green” category for this work. According to the jury, the project represents an “outstanding, future-oriented solution for sustainable carbon dioxide reduction.

More... | Comments (1) | TrackBack (0)

Ford puts the pedal down on performance … but not with electric drive technology right now

January 14, 2015

Image_1-1
The new Ford GT on display in the Ford stand at NAIAS. Click to enlarge.

In December, Ford President and CEO Mark Fields said Ford would focus on five key areas of innovation, one of them being performance. He said that more than 12 new performance vehicles would be introduced through 2020. (Earlier post.) At the North American International Auto Show (NAIAS) in Detroit this week, Ford delivered first proof of that focus with the reveal of the new Ford GT carbon-fiber supercar, as well as the new F-150 Raptor based on the new aluminum F-150 and the Shelby GT350R Mustang.

The stunning Ford GT—which received the EyesOn Design Award at NAIAS for best production vehicle—serves as a technology showcase for top EcoBoost engine performance, aerodynamics and lightweight carbon fiber construction. Beginning production late next year, the GT will the road in select global markets in honor of the 50th anniversary of Ford GT race cars placing 1-2-3 at the 1966 24 Hours of Le Mans. However, unlike today’s hybrid drive Le Mans racers, or the new Acura NSX hybrid supercar, also revealed at NAIAS (earlier post), the GT—nor any of the other Ford performance vehicles unveiled at NAIAS—makes no use of electric drive technology.

More... | Comments (14) | TrackBack (0)

ASG life-cycle study finds aluminum Ford F-150 “Best Full-size Truck of 2015” from environmental and economic perspective

According to the latest annual life-cycle study from the Automotive Science Group (ASG), the all-new lightweight aluminum 2015 Ford F-150 leads the full-size light-duty truck competition in all environmental and economic performance areas; accordingly, ASG selected the F-150 as its Best Full-size Truck of 2015. According to ASG and the principles of ecological economics, environmental and economic considerations are equally important in determining a vehicle’s overall value. ASG’s proprietary vehicle rating platform—the Automotive Performance Index—analyzes both performance areas for a comprehensive vehicle assessment. ASG’s 2015 Study assessed 225 light-duty truck models.

Although the gasoline-fueled F-150 with 2.7L EcoBoost delivers 22 mpg (10.68 l/100 km) combined—1 mpg shy of RAM’s EcoDiesel—the F-150’s life-cycle environmental and economic performance “leaves RAM and others in the dust,” according to ASG. According to ASG, the 2015 F-150 holds the smallest life-cycle carbon footprint and lowest cost of ownership of any full-size truck in the North American market today. Ford has produced a lightweight aluminum-intensive truck that costs less and performs better than its conventional truck counterparts over the vehicle’s life-cycle, says Colby Self, managing director of ASG.

More... | Comments (1) | TrackBack (0)

Local Motors 3D printing a Strati at NAIAS; announces two micro-factories to open

January 13, 2015

Local Motors is 3D printing and assembling a Strati—the first 3D-printed car—live from the show floor at the North American International Auto Show (NAIAS). (Earlier post.)

The design was chosen in May 2014 from more than 200 submitted to Local Motors by the company’s online co-creation community after launching a call for entries. The winning design was submitted by Michele Anoè who was awarded a cash prize plus the opportunity to see his design brought to life. Less than a year after the original design was chosen, Local Motors will premiere a mid-model refresh, which began its inaugural print on Monday, 12 January on the show floor during NAIAS.

More... | Comments (0) | TrackBack (0)

University of Tennessee to head $250M advanced composites manufacturing institute; Ford, Honda and Volkswagen members

January 09, 2015

The Department of Energy and a consortium of 122 companies, nonprofits, and universities led by the University of Tennessee-Knoxville will invest more than $250 million—$70 million in federal funds and more than $180 million in non-federal funds—to launch a Manufacturing Innovation Institute for Advanced Composites—the fifth institute to be awarded of the eight national institute competitions launched earlier (earlier post).

The new Institute for Advanced Composites Manufacturing Innovation (IACMI), announced today by President Obama, will focus on advanced fiber-reinforced polymer composites that combine strong fibers with tough plastics to yield materials that are lighter and stronger than steel. While advanced composites are used in selective industries such as aircraft, satellites and cars, these materials remain expensive, require large amounts of energy to manufacture and are difficult to recycle. IACMI is dedicated to overcoming these barriers by developing low-cost, high-production, energy-efficient manufacturing and recycling processes for composites applications.

More... | Comments (0) | TrackBack (0)

ARPA-E issues $125M open solicitation for energy R&D; transportation and stationary applications

January 07, 2015

The US Department of Energy (DOE) Advanced Research Projects Agency - Energy (ARPA-E) has issued a $125-million open Funding Opportunity Announcement (FOA). OPEN 2015 (DOE-FOA-0001261) will support the development of potentially disruptive new technologies in all areas of energy research and development, for both transportation and stationary applications.

OPEN 2015 is the third open funding solicitation issued by the agency. Open solicitations ensure that ARPA-E does not miss opportunities to support potentially transformational projects outside the scope of existing ARPA-E programs. The projects selected under OPEN 2015 will pursue novel approaches to energy innovation and support the development of potentially disruptive new technologies across the full spectrum of energy applications.

More... | Comments (0) | TrackBack (0)

ORNL teams embeds crown ethers in graphene for increased performance; potential for separations, sensors, batteries, biotech & more

December 28, 2014

Image
This sheet of graphene contains an array of crown ethers that can strongly bind select guest ions or molecules. Image credit: ORNL. Click to enlarge.

A team led by the Department of Energy’s Oak Ridge National Laboratory has discovered a way to increase significantly the selectivity and binding strength of crown ethers by embedding them within a rigid framework of graphene. The results, published in Nature Communications, may enable broader use of crown ethers in diverse applications. Their strong, specific electrostatic binding may advance sensors, chemical separations, nuclear-waste cleanup, extraction of metals from ores, purification and recycling of rare-earth elements, water purification, biotechnology, energy production in durable lithium-ion batteries, catalysis, medicine and data storage.

Ethers are simple organic molecules in which an oxygen atom bridges two carbon atoms. When linked together in crown-shaped large molecular rings, they have the ability selectively to incorporate various atoms or molecules within the cavity formed by the ring. The size and shape of the cavity formed within a crown ether molecule confers selectivity for complementary ions and small molecules that fit it, like a lock and key. Crown ethers come in different sizes, so they can accommodate ions of different diameters.

More... | Comments (2) | TrackBack (0)

Rice U team uses new computational methodology to identify high capacity MOFs for on-board natural gas storage

December 18, 2014

Researchers from Rice University, Lawrence Berkeley National Laboratory and UC Berkeley have developed a computational methodology to support the experimental exploration of potential high-capacity metal organic frameworks (MOFs) for use in on-board storage of natural gas. The advantages to using MOFs as a storage medium are many and start with increased capacity over the heavy, high-pressure cylinders in current use.

In a paper in the ACS Journal of Physical Chemistry C, they report identifying 48 materials with higher predicted deliverable capacity (at 65 bar storage, 5.8 bar depletion, and 298 K) than MOF-5—the currently best available for the natural gas storage application. The best material identified by the researchers has a predicted deliverable capacity 8% higher than that of MOF-5.

More... | Comments (1) | TrackBack (0)

New high-entropy alloy is as light as aluminum, stronger than titanium alloys

December 11, 2014

Tmrl_a_985855_f0004_c
Ashby plot of strength vs. density for engineering materials. (Yield strength for metals and polymers, tear strength for elastomers, compressive strength for ceramics, and tensile strength for composites.) The low-density HEA is indicated with the star. Youssef et al. Click to enlarge.

Researchers from North Carolina State University and Qatar University have developed a new high-entropy alloy that has a higher strength-to-weight ratio that they say is unmatched by any other metallic material. The researchers used mechanical alloying to combine lithium, magnesium, titanium, aluminum and scandium to make a low-density, nanocrystalline alloy (Al20Li20Mg10Sc20Ti30) with an estimated strength-to-weight ratio that is significantly higher than other nanocrystalline alloys and is comparable to ceramics. An open access paper on their work is published in the journal Materials Research Letters.

High-entropy alloys (HEAs) are a new class of multi-component alloy systems in which the design of the alloys is based not on adding to a single base element, but on choosing elements that will form solid solutions when mixed at near-equiatomic concentrations. (Earlier post.) HEAs

More... | Comments (3) | TrackBack (0)

Consultancy looks to aggressive weight reduction in major powertrain components for CO2 savings; metal and polymer matrix composites

UK automotive engineering consultancy Drive System Design (DSD) suggests the next breakthrough in CO2 emissions reduction will come from more aggressive weight reduction in major powertrain components. Analysis by the company has identified both near-term and medium-term solutions for the manufacture of items such as transmission casings using advanced composite materials, but favors modern hybrid materials such as metal and polymer matrix composites (MMCs and PMCs) over conventional carbon composite solutions.

Continual pressure on the automotive industry to reduce carbon emissions is leading to weight reduction initiatives throughout the vehicle. Currently, several of the heaviest individual components in the powertrain, such as the main casings for the transmission, are still metal (e.g., aluminum alloys, magnesium alloys and iron) castings despite the widespread use of lighter materials elsewhere on the vehicle.

More... | Comments (0) | TrackBack (0)

New Mazda bio-based engineering plastic features high-quality finish without paint; suitable for exterior parts

December 10, 2014

Mazda Motor Corporation, in conjunction with Mitsubishi Chemical Corporation, has developed a new bio-based engineering plastic that can be used for exterior design parts for automobiles. The new plastic will help Mazda to reduce its impact on the environment in a number of ways.

As the plastic is made from plant-derived materials, its adoption will help to curb the use of petroleum resources and reduce carbon dioxide emissions. Furthermore, the material can be dyed and emissions of volatile organic compounds associated with the painting process reduced. Dyed parts made from the bio-based engineering plastic feature a finish of higher-quality than can be achieved with traditional painted plastic. The deep hue and smooth, mirror-like finish of the surface make the newly-developed plastic suitable for external vehicle parts with a high design factor.

More... | Comments (4) | TrackBack (0)

Alcoa unveils major advance in aluminum manufacturing technology; new Micromill targeting future automotive aluminum products

December 06, 2014

Alcoa_Micromill_Overview_01-low
Alcoa’s Micromill has a much smaller footprint than conventional direct casting technology, and produces automotive aluminum alloys with 40% greater formability and 30% greater strength. Click to enlarge.

Alcoa has developed new manufacturing technology—the Micromill—that will produce what the company says is the most advanced aluminum sheet on the market. The Micromill will enable the next-generation of automotive aluminum products, and equip Alcoa to capture growing demand from automakers for lighter-weight, yet durable and formable materials.

The Alcoa-patented Micromill process significantly changes the microstructure of the metal, allowing the production of an aluminum alloy for automotive applications that has 40% greater formability and 30% greater strength than the incumbent aluminum used today while meeting stringent automotive surface quality requirements. The Alcoa Micromill technology and the differentiated metal it will produce are covered by more than 130 patents around the world.

More... | Comments (7) | TrackBack (0)

EnerG2 and BASF in strategic partnership to improve and scale-up carbon materials for supercaps and start-stop PbA batteries

November 18, 2014

EnerG2, a Seattle-based company manufacturing advanced carbon materials for next-generation energy storage devices (earlier post), and BASF have entered a strategic partnership to collaborate to improve and to scale-up the production of EnerG2’s proprietary carbon materials for use in supercapacitor electrodes and as a performance additive in start-stop lead-acid batteries.

Engineered carbons enhance storage performance by providing higher voltage and energy in supercapacitors and by significantly increasing the charging rate of lead-acid batteries at a partial-state-of-charge. EnerG2’s patented carbon technology platform enables large-scale production of carbon materials that surpass the limitations of the carbons traditionally used in energy storage.

More... | Comments (2) | TrackBack (0)

DOE reports progress on development of hydrogen storage technologies

November 17, 2014

The US Department of Energy (DOE) Fuel Cell Technologies Office’ (FCTO) 2014 Hydrogen and Fuel Cells Program Annual Progress Report (earlier post)—an annual summary of results from projects funded by DOE’s Hydrogen and Fuel Cells Program—described a number of advances in the field of hydrogen storage.

The DOE Hydrogen Storage sub-program has developed a dual strategy. For the near-term, the focus is on improving performance and lowering the cost of high-pressure compressed hydrogen storage systems. For the long-term, the effort is on developing advanced cold/cryo-compressed and materials-based hydrogen storage system technologies.

More... | Comments (1) | TrackBack (0)

Vanderbilt/ORNL team discovers new form of crystalline order that could be attractive for thermoelectric applications

A team of researchers from Vanderbilt University and Oak Ridge National Laboratory (ORNL) has discovered an entirely new form of crystalline order that simultaneously exhibits both crystal and polycrystalline properties, which they describe as “interlaced crystals.”

The interlaced crystal arrangement has properties that could make it ideal for thermoelectric applications. The discovery of materials with improved thermoelectric efficiency could increase the efficiency of electrical power generation, improve automobile mileage and reduce the cost of air conditioning. Writing in the journal Nature Communications, the researchers reported finding this unusual arrangement of atoms while studying nanoparticles made from the semiconductor copper-indium sulfide (CIS), which is being actively studied for use in solar cells.

More... | Comments (0) | TrackBack (0)

Federal-Mogul expands powertrain materials portfolio for more efficient heavy-duty diesel engines

November 16, 2014

News_3689_2_original
A heavy-duty exhaust valve guide with thermal deformation and temperature color scaling demonstrates high side load at high temperatures in contact with the exhaust gas. Federal-Mogul is developing powertrain materials to address conditions such as these. Source: Federal-Mogul. Click to enlarge.

Federal-Mogul Holdings Corporation’s Powertrain Division has expanded its range of high performance materials for valve guides, seats and turbocharger bushings that support the commercial vehicle industry’s drive towards more efficient engines. Providing superior wear resistance at elevated temperatures, the new materials use Federal-Mogul’s well-proven powder metal (PM) technology to add other benefits, such as greater corrosion resistance and mechanical strength, depending upon the application.

Downsized, heavily turbocharged engines with high levels of aftertreatment such as particulate filter systems and selective catalytic reduction (SCR) run hotter than their predecessors, explained Frank Zwein, Federal-Mogul’s global application engineering director, Valve Seats and Guides.

More... | Comments (1) | TrackBack (0)

DSM wins SPE Automotive Innovation Award for bio-based EcoPaXX integrated crankshaft cover for Volkswagen Group diesels

November 14, 2014

1387284842087
EcoPaXX crankshaft cover. Click to enlarge.

A lightweight multi-functional crankshaft cover in Royal DSM’s EcoPaXX high-performance polyamide 410 was top in the Powertrain category at the Society of Plastics Engineers Automotive Division Innovation Awards Competition and Gala in Detroit. The 70% bio-based EcoPaXX is made principally from topical castor beans and is 100% carbon neutral from cradle to gate. Castor oil is obtained from the Ricinus Communis plant, which grows in tropical regions on relatively poor soil, and does not compete with the food-chain.

The EcoPaXX crankshaft cover is produced by DSM’s automotive component specialist partner KACO in Germany for the latest generation of MDB-4 TDI diesel engines developed by the Volkswagen Group. The engines are fitted to various car models made by VW, Audi, Seat and Škoda. Dr. Lutz Wohlfarth from Volkswagen, and Marcio Lima from KACO were both at the Gala in Detroit to collect the SPE award.

More... | Comments (0) | TrackBack (0)

Volkswagen outlines a range of near-term technologies for reducing fuel consumption and emissions; stop-start 2.0, 10-speed DSG

November 11, 2014

Volkswagen presented its latest technologies for reducing fuel consumption and CO2 emissions—which includes the first 10-speed dual-clutch gearbox (DSG)—in an Innovation Workshop for the media at the Ehra-Lessien test track facility near Wolfsburg.

Volkswagen AG has set the goal of becoming the world’s most sustainable carmaker by the year 2018. Compared to baseline figures for 2010, the Group wants to reduce energy and water consumption, waste generation and emissions (including CO2 emissions) by 25% in all of its business areas. (I.e., VW’s “Strategy 2018”, earlier post.) To achieve this, the Volkswagen brand—the highest volume brand of the Group—is counting on electric mobility (zero-emission and plug-in hybrid models); on continually more fuel-efficient combustion engines and gearboxes; progressive lightweight design; aerodynamics; and efficiency “in every conceivable area”.

More... | Comments (1) | TrackBack (0)

New Unipiston clutch piston technology in series production; enables better fuel economy

November 06, 2014

Federal-Mogul Powertrain’s new high-modulus injection-molded Unipiston clutch pistons are now in series production at the company’s facility in Chivasso, Italy. The technology was a 2013 Automotive News PACE Award Winner in the process category.

Unipiston is a one-piece, rubber-to-metal bonded piston that hydraulically engages clutches to activate the gearshift. The compact one-piece design reduces the number of leak paths while improving reliability and simplifying assembly, and allows transmission designers more flexibility, including increased clutch apply pressures, higher rotational clutch speeds, and larger diameter clutches. This flexibility enables transmissions with additional clutches to be packaged in a smaller space, while providing improved fuel economy, reduced emissions and enhanced vehicle performance.

More... | Comments (0) | TrackBack (0)

Rice University researchers create dual-purpose edge-oriented MoS2 film for energy storage, hydrogen catalysis

November 03, 2014

1013_EDGE-1-rn
A new material developed at Rice University based on molybdenum disulfide (MoS2) exposes as much of the edge as possible, making it efficient as both a catalyst for hydrogen production and for energy storage. Courtesy of the Tour Group. Click to enlarge.

The Rice lab of chemist James Tour has turned molybdenum disulfide’s two-dimensional form into a edge-oriented nanoporous film that can catalyze the production of hydrogen or be used for energy storage as part of a supercapacitor device.

The versatile chemical compound, classified as a dichalcogenide, is inert along its flat sides; however, previous studies determined the material’s edges are highly efficient catalysts for hydrogen evolution reaction (HER), a process used in fuel cells to pull hydrogen from water. Tour and his colleagues found a cost-effective way to create flexible films of the material that maximize the amount of exposed edge and have potential for a variety of energy-oriented applications. A paper on the research appears in the journal Advanced Materials.

More... | Comments (12) | TrackBack (0)

Mercedes-Benz wins MATERIALICA awards for diesel passenger car steel pistons and CFRP struts

October 25, 2014

Mercedes-Benz received two MATERIALICA Design and Technology Awards at the MATERIALICA 2014 trade fair for materials applications, surface technology and product engineering in Munich. The first was for the new steel pistons for diesel engines (earlier post), the second for high-strength carbon-fiber reinforced plastic (CFRP) struts.

The MATERIALICA Award 2014 comprised five categories: Material; Surface & Technology; Product; CO2 Efficiency; and Student. The MATERIALICA Design + Technology Award focuses on product and technological developments in all sectors which implement a successful bundling of competencies.

More... | Comments (1) | TrackBack (0)

GMZ Energy develops new thermoelectric material with lower raw material costs, higher power output; Hafnium-free p-type half-Heusler

October 21, 2014

Researchers at GMZ Energy, a provider of nano-structured thermoelectric generation (TEG) power solutions for mobile and stationary waste-heat recovery (earlier post), with their colleagues at the University of Houston and Bosch, have developed a new Hafnium-free p-type half-Heusler material which offers substantially lower raw material cost than conventional half-Heusler materials. The material also features enhanced performance and mechanical strength due to GMZ’s patented nanostructuring process.

As presented in a paper published in the RSC journal Energy & Environmental Science, the new material improves thermoelectric power output compared to a conventional Hafnium-based product. Further, by replacing the costly Hafnium element with GMZ’s proprietary formulation, the overall cost-per-watt of the TEG is lowered. Cost reduction is beneficial for vehicle and industrial waste heat recovery applications, the developers noted in their paper.

More... | Comments (0) | TrackBack (0)

NIMS team develops new magnetic compound with lower neodymium content

October 20, 2014

A research group led by Dr. Kazuhiro Hono at Japan’s National Institute for Materials Science (NIMS) has synthesized a new magnetic compound which requires a lower amount of rare earth element than the currently used neodymium iron boron compound.

The ratio of neodymium, iron and nitrogen in the new compound (NdFe12N is 1:12:1). Its neodymium concentration is 17% of the entire mass compared to 27% for the neodymium iron boron compound known as Nd2Fe14B, the main component used in the strongest permanent magnets. Furthermore, the intrinsic hard magnetic properties of the new material were found to be superior to those of Nd2Fe14B.

More... | Comments (0) | TrackBack (0)

Industry report says steel can deliver weight savings to meet CAFE targets; aluminum growth in LDVs to peak around 2018

October 06, 2014

Steel can easily deliver the weight savings required to meet federally mandated fuel economy targets for most vehicles, according to a new 300-page analysis by the steel-industry information service World Steel Dynamics: “AutoBody Warfare: Aluminum Attack.” The report, based on WSD’s independent consultation with steel, aluminum and automotive experts, is formally being presented to steel executives today at the worldsteel Annual Conference in Moscow.

The report, say the authors, comes in the context of the “high-stakes contest” between the world’s leading steel and aluminum companies instigated by the rise in the US Government’s CAFE standards. Aluminum companies are in an “ebullient mood”, WSD says, due in part to the aluminum-bodied 2015 Ford F-150 (earlier post) and an Aluminum Association report, authored by the Ducker Worldwide consulting group, forecasting that by 2025 three-in-four pickup trucks will have an all-aluminum body. (Earlier post.)

More... | Comments (0) | TrackBack (0)

Aleris to invest $350M to upgrade Kentucky aluminum rolling mill for anticipated growth in automotive demand

September 25, 2014

Aleris will invest $350 million to upgrade capabilities at its aluminum rolling mill in Lewisport, Kentucky. The investment positions Aleris to meet anticipated significant growth in North American automotive demand as the industry pursues broader aluminum use for the production of lighter, more fuel-efficient vehicles. Aleris is currently a leading supplier to the European premium auto industry, which has led the transition to aluminum driven by tighter emissions standards.

The company expects to begin construction on the project this fall, with a goal of shipping automotive body sheet material to customers by early 2017. When fully operational, the new facility will allow for the production of 480 million pounds of aluminum auto body sheet annually.

More... | Comments (0) | TrackBack (0)

ArcelorMittal develops two steel solutions to reduce weight of pickups; exploring applications in PHEVs

September 18, 2014

ArcelorMittal, the world’s largest steel and mining company, has created two sets of steel solutions to reduce the average weight of pick-ups, following on from the award-winning launch of its S-in motion catalogue for standard, C-segment cars. ArcelorMittal has refined and extended these innovations to help meet the specific challenges facing the North American light truck market.

The first set uses currently available advanced high strength steels and press-hardenable steel grades such as Usibor 1500 and Ductibor 500 and can reduce weight by up to 174 kg (384 lbs) or 23% of the combined weight of a pick-up’s cab, box, frame and closures, compared with a modern (2014) baseline vehicle.

More... | Comments (2) | TrackBack (0)

Europe launches 7-year, €1B R&D program for new metals: “Metallurgy Europe”

September 15, 2014

Metallurgy europe
Program overview of Metallurgy Europe as presented in a 2012 position paper from the ESF. Click to enlarge.

European industry has launched Metallurgy Europe, a 7-year, €1-billion ($1.3-billion) R&D program in the field of metals research and manufacturing. The program was recently been selected as a new Eureka Cluster, and it will integrate the efforts of more than 170 companies and laboratories from across 20 countries.

Some of the largest engineering companies in Europe have joined forces, including Airbus Group; BP; Siemens; Daimler; Rolls-Royce; BMW; Thales; AvioAero; PSA Group; BAE Systems; Philips; Ruag; Sener; Bombardier; OHB Systems; Linde Group; ESI; Rolex; Richemont; ArcelorMittal; Sandvik; Bruker; SKF; Johnson Matthey; Tata Steel; GKN; Boston Scientific; ThyssenKrupp; Outokumpu; Haldor Topsøe and Fiat. More than 60 small and medium-sized companies are also teaming up.

More... | Comments (1) | TrackBack (0)

Researchers propose new class of high-temperature alloy; eutectic high-entropy alloys with both high ductility and high strength

August 29, 2014

High-entropy alloys (HEAs), which represent an emerging effort in materials science and engineering, are multi-principal-element (at least four) alloys that are promising for high-temperature applications due to their high resistance to softening at elevated temperatures and sluggish diffusion kinetics.

However, HEAs so far have either high strength or high ductility; achieving both has been a challenge. Further, the inferior castability and compositional segregation of HEAs have been obstacles for commercialization. Now, researchers in China are proposing a new strategy for designing high-entropy alloys using the eutectic alloy concept to accomplish both attributes. As reported in a paper in Nature’s open access journal Scientific Reports, an eutectic high-entropy alloy (EHEA) showed an “unprecedented” combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700 °C.

More... | Comments (0) | TrackBack (0)

Johnson Controls invests in IHU-TUT project to combine aluminum and steel in laser-welded tailored tubes for seats

August 27, 2014

Johnson Controls is investing in a German automotive research project working to combine steel and aluminum in laser-welded tailored tubes for use in seats for the first time. The result could be a 10 to 20 percent reduction in weight, which would be beneficial for fuel and emissions balance.

Tailored tubes are already used to a great extent in the large series production of vehicle seats, but in this project, they consist of steel and aluminum of various wall thicknesses. As part of the research project “Hydroforming of laser-brazed tailored hybrid tubes of a steel-aluminum blend for automotive lightweight construction” (Innenhochdruckumformen laserstrahlgelöteter Tailored Hybrid Tubes aus Stahl-Aluminium-Mischverbindungen für den automobilen Leichtbau, IHU-TUT), which runs until 31 January 2016, the project partners are researching the opportunity to make use of the significant weight advantages of aluminum by combining it with steel in the hollow components.

More... | Comments (0) | TrackBack (0)

DOE awards $17M for vehicle technologies; batteries, PEEM, engines, materials, fuel

August 21, 2014

The US Department of Energy (DOE) is awarding $17.6 million in 14 cooperative agreements with small businesses and institutions of higher education to develop and to deploy efficient and environmentally friendly highway transportation technologies that will help reduce petroleum use in the United States. The awards made under an Incubator Funding Opportunity Announcement (DE-FOA-0000988) issued in January. (Earlier post.)

The newly selected projects are in five areas: energy storage; power electronics and electric motors (PEEM); advanced combustion engines; materials technologies, and fuels and lubricant technologies. Awardees are:

More... | Comments (0) | TrackBack (0)

3rd generation Audi TT reduces full lifecycle GHGs by 11% compared to predecessor

August 18, 2014

Audi1
Lifecycle greenhouse gas emissions for 2nd and 3rd generation TTs. Click to enlarge.

Audi’s new third-generation TT reduces life-cycle greenhouse gas emissions by 11% compared to its predecessor. This results in a reduction of around 5.5 tonnes of GHGs—CO2, methane, nitrous oxide and halogenated organic emissions—over its entire lifecycle. At the same time, Audi has increased the power output in the new TT by up to 14%.

A number of technologies have contributed towards the positive life cycle assessment of the Audi TT, including lightweight construction. Using an intelligent combination of materials, Audi engineers have, for the second time in a row, succeeded in reducing the car’s unladen weight.

More... | Comments (1) | TrackBack (0)

DOE to award more than $55M to 31 projects for plug-in and efficient vehicle technologies; Delphi receives $10M to further GDCI

August 14, 2014

The US Department of Energy (DOE) is awarding more than $55 million to 31 new projects to accelerate research and development of vehicle technologies that will improve fuel efficiency and reduce costs under a program-wide funding opportunity announced in January. (DE-FOA-0000991, earlier post.) These new projects are aimed at meeting the goals and objectives of the President’s EV Everywhere Grand Challenge (19 projects), as well as improvements in other vehicle technologies such as powertrains, fuel, tires and auxiliary systems (12 projects).

The largest single award ($10 million) goes to Delphi Automotive Systems to further the development of its Gasoline Direct-Injection Compression Ignition (GDCI) low-temperature combustion technology (earlier post) that provides high thermal efficiency with low NOx and PM emissions. The largest number of awards (9) in a single area of interest goes to developing beyond Li-ion battery technologies.

More... | Comments (0) | TrackBack (0)

Jaguar Land Rover Special Operations reveals new lightweight E-type

August 12, 2014

Jag_LWE_Image_120814_04_LowRes
Jaguar Land Rover Special Operations’ new Lightweight E-type. Click to enlarge.

Jaguar Land Rover Special Operations unveiled its new Lightweight E-type—the first recreation to come from Jaguar Heritage, which operates within the Jaguar Land Rover Special Operations division. Only 6 will be built. Car Zero has been completed and, on 14 August, will be revealed at the opening reception to the Pebble Beach Automotive weekend. Jaguar announced in May 2014 that it would recreate six new Lightweights, each built by Jaguar Heritage, part of Jaguar Land Rover’s new Special Operations division.

In recreating the Lightweight, Jaguar Heritage has drawn on Jaguar’s engineering and design resources, including the company’s aluminum body technology. The specification includes an aluminum bodyshell with doors, trunklid, hardtop and hood also in aluminum. The six-cylinder XK engine mirrors the original power units, with an aluminum block, wide-angle aluminum cylinder head and dry sump lubrication.

More... | Comments (4) | TrackBack (0)

Mercedes-Benz to use new steel pistons in V6 diesel of E 350 BlueTEC

August 11, 2014

Mercedes-Benz will replace conventional aluminum pistons with a new generation of steel pistons in the V6 diesel engine of the E 350 BlueTEC in September. Combined with the innovative NANOSLIDE (earlier post) cylinder bore coating technology and the aluminum housing, the advantages of the shift include lower fuel consumption and CO2 emissions.

Mercedes-Benz has already announced the coming use of steel pistons in the OM 626 four-cylinder diesel produced by Renault and applied in the C-Class Estate. (Earlier post.)

More... | Comments (3) | TrackBack (0)

NSF to award up to $22M for advanced materials research; controlling materials properties through design

August 04, 2014

The US National Science Foundation has issued a solicitation (14-591) for up to $22 million in awards under its Designing Materials to Revolutionize and Engineer our Future (DMREF) program.

DMREF is the primary program by which NSF participates in the Materials Genome Initiative (MGI) for Global Competitiveness. (Earlier post.) MGI aims to deploy advanced materials at least twice as fast as possible today, at a fraction of the cost. DMREF seeks to promote activities that significantly accelerate materials discovery and development by building the fundamental knowledge base needed to progress towards designing and making materials with specific and desired functions or properties from first principles.

More... | Comments (1) | TrackBack (0)

NIST study suggests severe corrosion in underground gasoline storage tanks may require component replacement sooner than expected; 500K USTs in US

July 30, 2014

Retrieve.cfm
Optical micrographs of severe corrosion on steel alloy samples exposed to ethanol and acetic acid vapors—conditions typical of underground gasoline storage tanks—after 355 hours, 643 hours, and 932 hours. Source: NIST. Click to enlarge.

In recent years, field inspectors in nine states have reported many rapidly corroding underground gasoline storage tank (UST) components such as sump pumps. These incidents are generally associated with use of gasoline-ethanol blends and the presence of bacteria, Acetobacter aceti, which convert ethanol to acetic acid, a component of vinegar. Corrosion can result in failures, leaks and contamination of groundwater, a source of drinking water.

Following up on the inspectors’ findings, a National Institute of Standards and Technology (NIST) laboratory study has demonstrated severe corrosion—rapidly eating through 1 millimeter of wall thickness per year—on steel alloy samples exposed to ethanol and acetic acid vapors. Based on this finding, NIST researchers suggest gasoline stations may need to replace submersible pump casings, typically made of steel or cast iron, sooner than expected.

More... | Comments (17) | TrackBack (0)

Jaguar: aluminum-intensive XE will feature fuel consumption lower than 4L/100km; structure is 75% aluminum

July 29, 2014

Jaguar-xe_aluminium_-infographic_29071
The aluminum body of the XE. Click to enlarge.

In the second of four technology previews leading up to the introduction of the new Jaguar XE on 8 September, Jaguar outlined its extensive use of aluminum in the new model. Designed around Jaguar’s modular vehicle architecture, the XE is the only car in the class to use an aluminum-intensive monocoque, with lightweight aluminum accounting for 75% of the structure.

The new aluminum-intensive SE will be paired with engines from the new Ingenium family of efficient diesel and gasoline engines (earlier post)—powertrains specifically designed and calibrated to complement reduced-weight vehicles. Jaguar projects that the resulting XE will achieve fuel consumption of less that 4.0 l/100 km (59 mpg US) on the NEDC combined cycle (subject to certification) and CO2 emissions of less than 100 g/km.

More... | Comments (10) | TrackBack (0)

SABIC’s polycarbonate rear window in Ford MMLV reduces window weight by 35%; improved thermal insulation

July 17, 2014

Among the technologies Ford incorporated into its drivable multi-material lightweight vehicle (MMLV) (earlier post) is an advanced polycarbonate (PC) glazing solution from SABIC’s Innovative Plastics business that makes possible a 35% weight reduction compared to the same window on a 2013 model year Ford Fusion production vehicle. The weight savings total 7.4 pounds (3.36 kg), even though the rear window is more than one millimeter thicker than the production glass window it replaces. The PC material has approximately half the density of glass.

The advanced PC solution used in the concept’s rear window combines LEXAN resin, a PC material characterized by its light weight, high optical clarity and impact resistance, with EXATEC E900 plasma coating for glass-like scratch and UV resistance. (The LEXAN plasma-coated windows are also used in Volkswagen’s ultra-efficient XL1 plug-in hybrid, earlier post.)

More... | Comments (1) | TrackBack (0)

Alcoa unveils first aluminum alloy fan blade forging for jet engines; $1.1B supply agreement w/ Pratt & Whitney

July 14, 2014

02
Click to enlarge.

Under a new 10-year, $1.1-billion agreement, Alcoa will supply key parts for Pratt & Whitney’s jet engines, including the forging for the first aluminum fan blade for jet engines. The forging was developed for Pratt & Whitney’s PurePower engines using an advanced aluminum alloy and a proprietary manufacturing process. Also for the PurePower engines, Alcoa is developing a fan blade forging using its most advanced aluminum-lithium alloy.

Under the $1.1 billion deal, Alcoa will supply components for Pratt & Whitney’s PurePower PW1000G, V2500, GP7000 and several other regional jet and military engines. The unique Geared Turbofan architecture of the PurePower engine allows for aluminum alloys to be used in the Pratt & Whitney designed fan blades, making the engine lighter, as well as more fuel and cost efficient.

More... | Comments (2) | TrackBack (0)

Bio-inspired gradient structure approach for delivering stronger, tougher metals

July 12, 2014

Drawing inspiration from the structure of bones and bamboo, researchers at the Chinese Academy of Sciences (CAS) and North Carolina State University have found that by gradually changing the internal structure of metals to a gradient structure (GS), they can make stronger, tougher materials that can be customized for a wide variety of applications—from body armor to automobile parts.

In a pair of open access papers, one published in the Proceedings of the National Academy of Sciences (PNAS), the other in Materials Research Letters, the researchers, led by Yuntian Zhu at NC State and Xiaolei Wu at CAS, report that gradient structures in engineering materials such as metals produce an intrinsic synergetic strengthening, which is much higher than the sum of separate gradient layers; the gradient structure renders a unique extra strain hardening, which leads to high ductility.

More... | Comments (1) | TrackBack (0)

Researchers develop efficient technique to develop new materials with desired coefficient of friction

July 11, 2014

Researchers at Japan’s National Institute for Materials Science (NIMS) have developed a highly efficient method for developing friction materials with a desired frictional property. Using the new method, it would be possible to find the appropriate crystal preferred orientation for coatings with the desired value of the coefficient of friction.

The method, described in a paper in the journal Tribology Letters, could thus significantly accelerate the development of materials that have a friction coefficient suited to the purpose of use, such as low-friction materials for reducing energy loss and high-friction materials required for high-performance brakes.

More... | Comments (0) | TrackBack (0)

European consortium investigating graphene-based materials for lightweight cars; energy-efficient and safe vehicles

June 30, 2014

The University of Sunderland (UK), working with a consortium of five other research partners from Italy, Spain and Germany, has been selected for funding by the €1-billion (US$1.4-billion) Graphene Flagship research initiative in Europe (earlier post) for their iGCAuto proposal. The researchers will explore the properties of graphene to determine how it behaves when used to enhance advanced composite materials used in the production of cars. The other partners are Centro Ricerche FIAT (Italy); Fraunhofer ICT (Germany); Interquimica (Spain); Nanesa S.r.l. (Italy); and Delta-Tech S.p.A. (Italy).

As part of the work, a novel graphene-based polymer material will be investigated, modeled, and designed to enhance both vehicle and occupant safety while remaining very light. This material will provide benefits such as improved strength, dimensional stability, and superior durability.

More... | Comments (1) | TrackBack (0)

LLNL/MIT team creates ultralight, ultrastiff metamaterials; possible applications for automotive and aerospace

June 20, 2014

Image
The new materials designed with additive manufacturing techniques exhibit high stiffness and low density, occupying a previously unpopulated area (upper left) of the Ashby material selection chart for Young’s modulus (stiffness) vs. density. The octet truss structure recently fabricated by Livermore researchers is a stretch-dominated lattice. Source: LLNL Click to enlarge.

Researchers at Lawrence Livermore National Laboratory and Massachusetts Institute of Technology (MIT) have developed materials with the same weight and density as aerogel (“frozen smoke”) but with 10,000 times more stiffness using additive micro-manufacturing processes. The research team’s findings are published in an article in the journal Science.

The micro-architected metamaterials maintain a nearly constant stiffness per unit mass density, even at ultralow density. This performance derives from a network of nearly isotropic microscale unit cells with high structural connectivity and nanoscale features, the structural members of which are designed to carry loads in tension or compression, the researchers said. Materials with these properties could someday be used to develop parts and components for aircraft, automobiles and space vehicles.

More... | Comments (3) | TrackBack (0)

The technology behind Ford’s Lightweight Concept Vehicle; prospects for Mach-II with 50% mass reduction difficult

June 18, 2014

Earlier this month, Ford unveiled its Lightweight Concept vehicle, which uses advanced materials to explore future weight-reduction solutions that could improve performance and fuel efficiency while reducing CO2 emissions. The Ford Lightweight Concept reduces the weight of a 2013 Fusion to that of a Ford Fiesta, resulting in a nearly 25% weight reduction. (Earlier post.)

The Ford vehicle is based on the first phase (Mach-I) of work of the DOE-supported Multi-Material Lightweight Vehicles project (Award DE-EE0005574) by Vehma International (an engineering and prototype division within the Cosma International operating unit of Magna) and Ford. The $20.3-million project ($10 million from DOE, $10.3 million from Vehma/Ford) has two main objectives. First, to design and build the “Mach-I” prototype vehicle maintaining donor vehicle architectural space and using commercially available or demonstrated materials and processes while delivering a 22% reduction compared to the baseline vehicle. The result of this is reflected in the Ford concept.

More... | Comments (19) | TrackBack (0)

Washington State/Boeing SOFC shows promise for aviation and automotive applications

June 17, 2014

Kwon
MoO2-based SOFC using a fuel mixture consisting of n-dodecane, CO2 and air. Kwon 2013. Click to enlarge.

Researchers at Washington State University, with colleagues at Kyung Hee University and Boeing Commercial Airplanes, have been developing liquid hydrocarbon/oxygenated hydrocarbon-fueled solid oxide fuel cells (SOFCs) for aviation (the “more electric” airplane) and other transportation applications, such as in cars. These fuel cells first internally—i.e., no external reformer—reform a complex liquid hydrocarbon fuel into carbon fragments and hydrogen, which are then electrochemically oxidized to produce electrical energy without external fuel processors. The SOFCs feature a MoO2 (molybdenum dioxide) anode with an interconnecting network of pores that exhibit excellent ion- and electron-transfer properties.

In a new paper in the journal Energy Technology, the team reports that this novel fuel cell, when directly fueled with a jet-A fuel surrogate (an n-dodecane fuel mixture), generated an initial maximum power density of 3 W cm-2 at 750 °C and maintained this high initial activity over 24 h with no coking. The addition of 500 ppm of sulfur into the fuel stream did not deactivate the cell.

More... | Comments (19) | TrackBack (0)

Ducker: automotive aluminum content to hit explosive growth from 2015 to 2025; 50 years of uninterrupted growth “guaranteed”

June 10, 2014

Ducker1
NA aluminum sheet demand for auto body and closure parts. Click to enlarge.

By 2025, more than 75% of all new pickup trucks produced in North America will be aluminum-bodied, according to a survey of automakers conducted by global consulting and research firm Ducker Worldwide and commissioned by The Aluminum Association’s Aluminum Transportation Group (ATG). The study surveyed all major automakers and forecasts that Ford, General Motors and Fiat Chrysler will become the biggest users of aluminum sheet in the next decade.

It also forecasts that the number of vehicles with complete aluminum body structures will reach 18% of North American production, from less than 1% today. Vehicle segments revealed as emerging aluminum content leaders are pickup trucks, sport-utility vehicles (SUVs) and both mid-sized and full-size sedans.

More... | Comments (4) | TrackBack (0)

Chrysler/McMaster lightweight materials project focusing on door side impact beam; Al and Mg casting

June 04, 2014

In October 2013, Chrysler entered a $3.9-million research project supported by the Canadian government to explore ways to leverage the weight-saving properties of aluminum and magnesium alloys for vehicle production. (Earlier post.) The primary academic partner in the project is McMaster University in Ontario, with Ryerson University and CANMET, an agency of Natural Resources Canada, as other partners in the project.

In an update on the progress of the project, Steve Logan, responsible for Advanced Lightweight Programs in Chrysler’s Materials Engineering Group, said that the team is looking at components for body and chassis, and specifically focusing on a door side impact beam.

More... | Comments (0) | TrackBack (0)

Ford introduces Lightweight Concept vehicle to showcase ongoing light-weighting and advanced materials work; nearly 25% weight reduction

FordLightweightConcept-3
Ford Lightweight Concept. Click to enlarge.

Ford Motor Company unveiled its Lightweight Concept vehicle, which uses advanced materials to explore future weight-reduction solutions that could improve performance and fuel efficiency while reducing CO2 emissions. The Ford Lightweight Concept reduces the weight of a 2013 Fusion to that of a Ford Fiesta, resulting in a nearly 25% weight reduction.

The vehicle represents the latest phase of Ford’s research into developing sustainable technology solutions that are affordable for consumers and can be produced in large volumes across the product lineup. This research has also led to the significant weight reduction of up to 700 pounds (318 kg) in the all-new F-150 through the use of high-strength steel and aluminum. (Earlier post.)

More... | Comments (4) | TrackBack (0)

IBM Research discovers new class of industrial polymers; cheaper, lighter, stronger and recyclable thermosets for aerospace, automotive and others

May 16, 2014

F1.large
The IBM-led researchers show that the formation of a trifunctional cross-link point through reaction of a diamine and paraformaldehyde leads to a thermally stable and mechanically ductile thermoset. Low pH triggers the reversal of the thermoset architecture to the corresponding monomers. Credit: K. Zhang/Virginia Tech. Click to enlarge.

Using a novel computational chemistry hybrid approach, scientists from IBM Research have successfully discovered a new class of polymer materials—the first new class of polymers discovered in more than 20 years—that could potentially transform manufacturing and fabrication in the fields of transportation, aerospace, and microelectronics. The new family, formed by condensation of paraformaldehyde with bisanilines, can form hard thermoset polymers or, when more oxygenated, produce self-healing gels.

Developed by combining high performance computing with synthetic polymer chemistry, these new materials are the first to demonstrate resistance to cracking; strength higher than bone; and the ability to reform to their original shape (self-healing), all while being completely recyclable back to their starting material—strong acid digestion allows the recovery of the bisaniline monomers.

More... | Comments (5) | TrackBack (0)

BMW and SGL to triple production capacity at Moses Lake carbon fiber plant with $200M expansion; world’s largest carbon fiber plant

May 09, 2014

Carbonisation
A production line for carbon fiber takes the PAN precursor through two stages (stabilization/oxidation and carbonization) and then to winding. Source: SGLACF. Click to enlarge.

Due to the high demand for carbon fiber in automotive production, SGL Automotive Carbon Fibers, a joint venture between the BMW Group and the SGL Group, will triple the capacity of the carbon fiber plant in Moses Lake, Washington. SGL and BMW made the announcement at the groundbreaking ceremony for the planned site expansion. The expansion will be funded by an investment of US$200 million, on top of the previously invested US$100 million.

The site expansion, scheduled to be completed by early 2015, will make the plant in Moses Lake the world’s largest carbon fiber plant. At present, the Moses Lake plant operates two production lines, exclusively for BMW i, with an annual output of approx. 3,000 tons of carbon fiber. The expansion of the site in Moses Lake will make it possible for the BMW Group to apply carbon fiber material also in other model series in the future, at competitive costs and in large quantities.

More... | Comments (9) | TrackBack (0)

Ames Lab researchers observe rare-earth-like magnetic properties in iron

April 29, 2014

Scientists at the Department of Energy’s Ames Laboratory have observed magnetic properties typically associated with those observed in rare-earth elements in iron, albeit at cryogenic temperatures. These properties are observed in a new iron-based compound that does not contain rare earth elements, when the iron atom is positioned between two nitrogen atoms.

The discovery opens the possibility of using iron to provide both the magnetism and permanence in high-strength permanent magnets, such as those used in direct-drive wind turbines or electric motors in hybrid cars. The results appeared in Nature Communications.

More... | Comments (0) | TrackBack (0)

Magnesium alloy VSC Machine successfully begins trial operation at GM China Advanced Technical Center

April 04, 2014

20140403_ATC
Magnesium alloy VSC machine. Click to enlarge.

The GM China Advanced Technical Center (ATC) in Shanghai announced the operation of its magnesium alloy Vertical Squeeze Casting (VSC) machine—the first designed for developing next-generation magnesium castings. GM said that this achievement marks a breakthrough in its lightweight materials research.

Squeeze casting is a process in which molten metal is introduced to casting cavities with minimum turbulence and then solidifies under very high pressure (typically above 100 MPa) within closed dies. The absence of turbulent metal flow, aided by the high applied pressure, can suppress gas porosity, notes Ohio State University Professor Alan Luo in a 2013 review of magnesium casting technologies.

More... | Comments (1) | TrackBack (0)

Heat-conducting polymer cools hot electronic devices at 200 °C; potential for automotive applications

March 31, 2014

70905_web
Scanning electron microscope image shows vertical polythiophene nanofiber arrays grown on a metal substrate. The arrays contained either solid fibers or hollow tubes, depending on the diameter of the pores used to grow them. Credit: Virendra Singh. Click to enlarge.

A team led by researchers from Georgia Tech have used an electropolymerization process to produce aligned arrays of polymer nanofibers that function as a thermal interface material able to conduct heat 20 times better than the original polymer. (Polymer materials are usually thermal insulators because the amorphous arrangement of the molecular chains reduces the mean free path of heat-conducting phonons.) The modified material can reliably operate at temperatures of up to 200 °C.

The new thermal interface material could be used to draw heat away from electronic devices in servers, automobiles, high-brightness LEDs and certain mobile devices. The material is fabricated on heat sinks and heat spreaders and adheres well to devices, potentially avoiding the reliability challenges caused by differential expansion in other thermally-conducting materials. A report on the work is published in the journal Nature Nanotechnology.

More... | Comments (0) | TrackBack (0)

Green Car Congress © 2015 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group