Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Methanol

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

LLNL 3-D printed biocatalytic polymer turns methane to methanol at room temperature and pressure

June 15, 2016

Lawrence Livermore National Laboratory scientists have combined biology and 3-D printing to create the first reactor that can continuously produce methanol from methane at room temperature and pressure.

Methane monooxygenases (MMOs), found in methanotrophic bacteria, are selective catalysts for methane activation and conversion to methanol under mild conditions; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), the researchers created a biocatalytic polymer material that converts methane to methanol. They embedded the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and the direct printing of micron-scale structures with controlled geometry. The enzymes retain up to 100% activity in the polymer construct.

More... | Comments (3)

USC team develops highly efficient catalyst system for converting CO2 to methanol; 79% yield from CO2 captured from air

February 03, 2016

Researchers at Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, have developed a highly efficient homogeneous Ru-based catalyst system for the production of methanol (CH3OH) from CO2 and H2 in an ethereal solvent (initial turnover frequency = 70 h−1 at 145 °C).

In a paper published in the Journal of the American Chemical Society, they reported demonstrating for the first time that CO2 captured from air can be directly converted to CH3OH in 79% yield using the new homogeneous catalytic system.

More... | Comments (6)

EERC working with Fuel Cell Energy on $3.5M ARPA-E project for electrochemical cell to convert natural gas to methanol

August 29, 2015

The University of North Dakota Energy & Environmental Research Center (EERC) is working with FuelCell Energy, Inc., an integrated stationary fuel cell manufacturer, to develop a durable, low-cost, and high-performance electrochemical cell to convert natural gas and other methane-rich gas into methanol, a major chemical commodity with worldwide applications in the production of liquid fuels, solvents, resins, and polymers.

The US Department of Energy Advanced Research Projects Agency (ARPA-E) awarded $3,500,000 to the project, led by Fuel Cell Energy, as part of its REBELS (Reliable Electricity Based on ELectrochemical Systems) program. (Earlier post.) The project is directed at developing an intermediate-temperature fuel cell that would directly convert methane to methanol and other liquid fuels using advanced metal catalysts.

More... | Comments (8)

Tsinghua studies on alcohol-gasoline dual fuel engines show fuel efficiency and particle number benefits

August 10, 2015

Researchers at Tsinghua University in China are studying the effects of Dual-Fuel Spark Ignition (DFSI) combustion fueled with different alcohols and gasoline. In one paper, published in the journal Fuel, they investigated the use of alcohols–gasoline DFSI Combustion for knock suppression and high fuel efficiency using a gasoline engine with high compression ratio.

In a second paper, also published in Fuel, they systematically compared the stoichiometric alcohol–gasoline and gasoline–alcohol DFSI combustion for engine particle number (PN) reduction (and fuel economy improvement), also using a high compression ratio gasoline engine.

More... | Comments (0)

Argonne team finds copper cluster catalyst effective for low-pressure conversion of CO2 to methanol with high activity

August 07, 2015

Researchers at Argonne National Laboratory have identified a new material to catalyze the conversion of CO2 via hydrogenation to methanol (CH3OH): size-selected Cu4 clusters—clusters of four copper atoms each, called tetramers—supported on Al2O3 thin films.

In a study published in the Journal of the American Chemical Society, the team measured catalytic activity under near-atmospheric reaction conditions with a low CO2 partial pressure, and investigated the oxidation state of the clusters using in situ grazing incidence X-ray absorption spectroscopy. Results indicated that size-selected Cu4 clusters are the most active low-pressure catalyst for catalytic conversion of CO2to methanol; Density functional theory calculations revealed that Cu4 clusters have a low activation barrier for the conversion. The results suggest, they concluded, that small copper clusters may be excellent and efficient catalysts for the recycling of released CO2.

More... | Comments (0)

Geely invests in Carbon Recycling Intl.; vehicles fueled by methanol from CO2, water and renewable energy

July 08, 2015

Zhejiang Geely Holding Group (Geely Group) will invest a total of US$45.5 million in Carbon Recycling International (CRI). The investment consists of an initial investment and additional purchases of CRI equity over a 3-year period. Geely Group will become a major shareholder of CRI and will gain representation on the company’s Board of Directors.

CRI, founded in 2006 in Reykjavik, Iceland, is developing technology to produce renewable methanol from clean energy and recycled CO2 emissions. Geely Group and CRI intend to collaborate on the deployment of renewable methanol fuel production technology in China and explore the development and deployment of 100% methanol-fueled vehicles in China, Iceland and other countries. The companies say they a vision for a larger role for methanol as a clean and sustainable fuel worldwide.

More... | Comments (0)

Green Car Congress © 2016 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group