Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Power Electronics

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

New Fairchild automotive SuperFET II MOSFETs and HV Rectifiers for power electronics in electrified vehicles

April 01, 2015

Fairchild, a leading global supplier of high-performance power semiconductor solutions, has introduced the automotive-qualified SuperFET II MOSFET and High Voltage Rectifier product families, both of which enable cleaner and smarter vehicles overall and are suited for increasing the power ratings of onboard chargers and DC-to-DC converters used in hybrid, plug-in hybrid and all-electric vehicles.

“A chief goal for plug-in hybrid and electric vehicle manufacturers is keeping on-board battery chargers and DC-DC converters as light and small as possible while increasing power levels. With the broad portfolio of new SuperFET II MOSFETs and High Voltage Rectifiers, Fairchild is enabling manufacturers to maximize efficiency, power density and reliability of these units, which is key to reducing their size and weight and is of course in line with the environmental, economic and energy benefits inherent in electric vehicle development,” said Fabio Necco, Director, Hybrid and Electric Vehicle Segment at Fairchild.

More... | Comments (5) | TrackBack (0)

DOE to award up to $20M to advance high-speed industrial motors and drives

March 20, 2015

The US Department of Energy (DOE) will award up to $20 million to spur the development of high-speed industrial motors and drives, using high power-density designs and integrated power electronics to increase efficiency. Individual awards may vary between $3 million and $5 million, not including the recipient cost share.

The Energy Department plans to select four to six projects, through the Next Generation Electric Machines: Megawatt Class Motors funding opportunity (DE‐FOA‐0001208), that demonstrate the benefits of using wide bandgap (WBG) variable-speed drives. These projects are expected to target a 30% reduction in system losses and a 50% reduction in size for megawatt-scale motor and drive systems used in the chemical and petroleum refining industries; natural gas infrastructure; and general industry compressor applications such as HVAC systems, refrigeration, and wastewater pumps.

More... | Comments (0) | TrackBack (0)

Renault boosts ZOE EV’s range by almost 15% to 149 miles with new motor unit

March 04, 2015

CHR3169
The new R240 motor unit with integrated PEC. Click to enlarge.

Renault has extended the range of its battery-electric ZOE to 149 miles (240 kilometers)—a boost of 19 miles (31 km), or 14.6%—in the New European Driving Cycle (NEDC) by using a new lighter and more compact R240 electric motor and an optimized electronic management system. (Earlier post.)

The R240 is a synchronous electric motor with rotor coil, with a power output of 65 kW and torque of 220 N·m (162 lb-ft). It also features a built-in Chameleon charger (earlier post) which allows faster charging at home (3 kW and 11 kW). The R240 is an all-Renault motor, designed by Renault engineers at the Technocentre R&D facility outside Paris and at the Cléon plant where the motor is made—close to Flins, where the ZOE is produced.

More... | Comments (13) | TrackBack (0)

ESKAM finishing electric drive axle module for commercial vehicles, new production technologies; vehicle testing this year

February 02, 2015

Blickpunkt_ESKAM_Achse_1_310
Electric drive axle module with two motors and integrated power electronics. Groschopp AG. Click to enlarge.

The ESKAM (Electric Scalable Axle Module, Elektrische SKalierbare AchsantriebsModule) consortium in Germany, sponsored by the German Federal Ministry of Education and Research (BMBF), is completing the development of an optimized electric drive axle module for commercial vehicles, consisting of two motors, transmissions and power electronics. All components fit neatly and compactly into a shared housing, which is fitted in the vehicle using a special frame construction also developed by the project engineers.

The individual modules developed by the various partners are complete, as are new manufacturing techniques developed by the partners. The consortium is now putting the individual parts together to make a demonstrator. After that, they want to fit the axle module into a real vehicle for testing by the end of 2015.

More... | Comments (11) | TrackBack (0)

Toyota beginning on-road testing of new SiC power semiconductor technology; hybrid Camry and fuel cell bus

January 29, 2015

20150129_01_03_s
SiC PCU under the hood of the Camry hybrid test vehicle. Click to enlarge.

Toyota will begin the on-road testing of silicon carbide (SiC) power semiconductors in Japan this year, using a Camry hybrid prototype and a fuel cell bus. The tests will evaluate the performance of the SiC technology, which could lead to significant efficiency improvements in hybrids and other electric-drive vehicles. (Earlier post.)

Power semiconductors are found in power control units (PCUs), which are used to control motor drive power in hybrids and other vehicles with electric powertrains. PCUs play a crucial role in the use of electricity, supplying battery power to the motors during operation and recharging the battery using energy recovered during deceleration. At present, power semiconductors account for approximately 20% of a vehicle’s total electrical losses; raising the efficiency of the power semiconductors is a promising way to increase powertrain efficiency.

More... | Comments (34) | TrackBack (0)

DOE to award $55.8M for advanced vehicle technologies; $35M for fuel cell and hydrogen

January 22, 2015

US Energy Secretary Ernest Moniz announced a new Vehicle Technologie program-wide funding opportunity (DE-FOA-0001201) for $55.8 million. DOE also announced up to $35 million to advance fuel cell and hydrogen technologies, including enabling the early adoption of fuel cell applications, such as light duty fuel cell electric vehicles. This new funding opportunity announcement will be available in early February.

The Vehicle Technologies funding is targeted at a wide range of research, development, and demonstration projects that aim to reduce the price and improve the efficiency of plug-in electric, alternative fuel, and conventional vehicles. Topics addressed include: advanced batteries (including manufacturing processes) and electric drive R&D; Lightweight materials; Advanced combustion engine and enabling technologies R&D; and Fuels technologies (dedicated or dual-fuel natural gas engine technologies).

More... | Comments (2) | TrackBack (0)

Lux Research: GaN-on-Si will dominate the GaN power electronics market for the next decade, reaching $1B by 2024

December 22, 2014

Emerging materials such as gallium nitride (GaN) and silicon carbide (SiC) look to displace silicon in power electronic applications. While silicon and SiC (SiC-on-SiC) come in only one flavor, GaN comes in many different variants, including GaN-on-Si, GaN-on-SiC, and GaN-on-GaN. In a new report, Lux Research forecasts that the total market for GaN power electronics overall will grow at 32% CAGR, reaching $1.1 billion by 2024, or more than 5% of the total market share.

Each variety of GaN has advantages and disadvantages while also being better suited to different power electronics applications. For example, Lux notes, while GaN-on-Si offers price benefits over the other GaN types, GaN-on-SiC can offer benefits of efficient high-temperature operation.

More... | Comments (0) | TrackBack (0)

DOE issues FY 2015 SBIR/STTR Release 2 funding opportunity, including hydrogen fuel cells, electric drive batteries

December 09, 2014

The US Department of Energy (DOE) has issued its FY 2015 Phase I Release 2 Funding Opportunity Announcement (DE-FOA-0001227) for the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs. Technical topics for this FOA—which span the range of DOE interests from fossil to nuclear to renewable and low-carbon energies—include two hydrogen- and fuel-cell-related topics: fuel cell-battery electric hybrid trucks and in-line quality control devices for polymer electrolyte membrane (PEM) fuel cells.

Also included are electric drive vehicle batteries, power electronics, on-board reformers, and advanced crank and ignition mechanisms for combustion engines.

More... | Comments (2) | TrackBack (0)

First look at all-new Voltec propulsion system for 2G Volt; “the only thing in common is a shipping cap”

October 29, 2014

Tipm1
Cutaway of the new power electronics unit, which is much smaller than in gen 1, and which is now integrated into the drive unit housing. The power electronics and the motors use separate cooling: water for the PE and ol for the motor unit. Click to enlarge.

The second-generation Volt, which makes its world debut in about 10 weeks at the North American International Auto Show in Detroit, features a clean-sheet, all-new Voltec propulsion system—new battery, new electric drive unit, new power electronics and new range-extending engine. At an introductory media briefing on the new powertrain held at the Warren Transmission Plant in Michigan, where the new drive unit will be built, Larry Nitz, GM Executive Director, Transmission and Electrification, noted that the only common part between the gen 1 and gen 2 drive units was a little yellow plastic intra-plant shipping cap for the manual selector.

The battery cells, with a tweaked NMC/LMO chemistry from LG, increase storage capacity by 20% volumetrically when compared to the original cell. The drive unit features a large number of changes: new roles for the two motors, two clutches instead of three, and a smaller power electronics unit integrated into the housing among them. (No more big orange high-voltage cables underneath the hood.) The new direct-injected 1.5 liter engine with cooled EGR features a high compression ratio and is optimized to function in its range extender role.

More... | Comments (41) | TrackBack (0)

Siemens integrates EV motor and inverter in single housing; common cooling and SKiN

October 17, 2014

IM2014100062CO_300dpi
Siemens has developed a solution for integrating an electric car's motor and inverter in a single housing. Click to enlarge.

Siemens has developed a solution for integrating an electric car’s motor and inverter in a single housing. The motor and the inverter, part of the power electronics which converts the battery’s direct current into alternating current for the motor, have up to now been two separate components. The new integrated drive unit saves space, reduces weight, and cuts costs.

The solution’s key feature is the use of a common cooling system for both components. This ensures that the inverter’s power electronics don’t get too hot despite their proximity to the electric motor, and so prevents any reduction in output or service life.

More... | Comments (11) | TrackBack (0)

ORNL team uses 3D printing and WBG semiconductors to make smaller, more powerful inverter (update w/ metrics)

October 15, 2014

2014-inverter-P05004_hr
Prototype inverter. Click to enlarge.

Using 3-D printing and novel silicon carbide (SiC) wide band gap (WBG) semiconductors, researchers at the Department of Energy’s Oak Ridge National Laboratory (ORNL) have created a prototype power inverter for electric vehicles that achieves a much higher power density than currently available along with a significant reduction in weight and volume—almost meeting, and in terms of efficiency, beating, DOE’s 2020 targets.

The prototype stems from a two-year $1.45-million DOE-funded project to integrate wide bandgap (WBG) technology and novel circuit architectures with advanced packaging to reduce cost, improve efficiency, and increase power density.

More... | Comments (4) | TrackBack (0)

DOE awards $17M for vehicle technologies; batteries, PEEM, engines, materials, fuel

August 21, 2014

The US Department of Energy (DOE) is awarding $17.6 million in 14 cooperative agreements with small businesses and institutions of higher education to develop and to deploy efficient and environmentally friendly highway transportation technologies that will help reduce petroleum use in the United States. The awards made under an Incubator Funding Opportunity Announcement (DE-FOA-0000988) issued in January. (Earlier post.)

The newly selected projects are in five areas: energy storage; power electronics and electric motors (PEEM); advanced combustion engines; materials technologies, and fuels and lubricant technologies. Awardees are:

More... | Comments (0) | TrackBack (0)

Lux: future use of wide bandgap materials in power electronics will reduce EV cost

August 12, 2014

268724_EEPR_Graphicwithouttitle_8-12-14
Power savings in plug-in vehicles versus total savings per car. Source: Lux. Click to enlarge.

Using wide bandgap (WBG) materials such as silicon carbide (SiC) and gallium nitride (GaN)s for power electronics can improve efficiency and thereby reduce the high cost of battery packs, according to a new report from Lux Research. In the new report “Silicon vs. WBG: Demystifying Prospects of GaN and SiC in the Electrified Vehicle Market,” Lux projects that SiC will be adopted in electric vehicles in 2020.

As silicon struggles to meet higher performance standards, WBG materials are benefiting critically from evolving battery economics. As an extreme example (because of the very large battery pack), Lux notes that on Tesla Model S, a 20% power savings could result in gains of more than $6,000 in battery cost—8% of the vehicle’s cost.

More... | Comments (2) | TrackBack (0)

Google and IEEE launch $1M challenge for downsized inverters

July 28, 2014

Google and the IEEE have launched the Littlebox Challenge—an open competition to design and build a small kW-scale inverter with the highest power density (of at least 50 W/in3, or 3.05 kW/L) in an enclosure of less than 40 in3 in volume (0.66L). The winning inverter, which will receive a $1-million prize, will be the unit which achieves the highest power density while meeting the required specifications under testing for 100 hours. In the event of a tie on volume, efficiency will be used to determine the grand prize winner. The grand prize winner will be announced sometime in January, 2016.

Google and IEEE are emphasizing size reduction in their challenge, without targeting a specific application area such as automotive. As a few points of comparison, the Bosch INVCON 2.3 inverter used in the Fiat 500e has a volume of about 5 liters, while the motor inverter used in the 2010 Prius drivetrain has a volume of about 5.4L (according to a DOE deconstruction.) The peak power density of the 2010 Prius motor inverter is 11.1 kW/L (while the peak PD for the Lexus 600h 6.4-liter unit reaches up to 17.2 kW/L.)

More... | Comments (3) | TrackBack (0)

Consortium successfully runs silicon carbide multiport DC-DC converter in EV

July 11, 2014

100714-prodrive-a
Silicon Carbide multiport DC-DC converter fitted to the Tata Vista EV. Click to enlarge.

A consortium led by motorsport and technology company Prodrive has successfully run a silicon carbide-based multiport DC-DC converter in an electric car. The converter controls power flow between multiple energy sources and has been able to achieve efficiency of 98.7%, while increasing power density and reducing the size and weight of the converter when compared to silicon-based systems.

A key aspect of the converter is the use of silicon carbide devices. These operate at a much higher frequency than equivalent silicon components—at 75 kHz in the test vehicles—with a significant reduction in switching losses. This has resulted in a significant reduction in the size of the magnetic components and has enabled the converter to achieve an efficiency of 98.7%, a gravimetric power density of 10.5 kW/kg and a volumetric power density of 20 kW/liter.

More... | Comments (30) | TrackBack (0)

Toyota and Denso develop SiC power semiconductor for power control units; targeting 10% improvement in hybrid fuel efficiency

May 20, 2014

Toyota3
Toyota intends to leverage the benefits of high frequency and high efficiency of SiC power semiconductors to enable PCU downsizing of 80%. Click to enlarge.

Toyota Motor Corporation, in collaboration with Denso Corporation (Denso) and Toyota Central R&D Labs., Inc. (Toyota CRDL), has developed a silicon carbide (SiC) power semiconductor for use in automotive power control units (PCUs). Toyota will begin test driving vehicles fitted with the new PCUs on public roads in Japan within a year.

Compared to silicon, SiC power semiconductors lose 1/10 the power and drive frequency can be increased by a factor of ten. This enables the coil and capacitor, which account for approximately 40% of the size of the PCU, to be reduced in size. Through use of SiC power semiconductors, Toyota aims to improve hybrid vehicle (HV) fuel efficiency by 10% under the Japanese Ministry of Land, Infrastructure, Transport and Tourism’s (MLIT) JC08 test cycle and reduce PCU size by 80% compared to current PCUs with silicon-only power semiconductors.

More... | Comments (23) | TrackBack (0)

Coritech Services orders Ideal Power’s bi-directional battery converters for DoD vehicle-to-grid program

May 09, 2014

Ideal Power Inc., developer of a power conversion technology called Power Packet Switching Architecture (PPSA), received a purchase order for ten of its PPSA-enabled 30 kW battery converters from Coritech Services, a provider of custom engineering solutions for a variety of applications including electric vehicle charging. Coritech intends to install the battery converters in its bi-directional electric vehicle charging system for use in Vehicle-to-Grid (V2G) applications for the Department of Defense (DoD).

A new approach to electronic power converters, PPSA has a 100% indirect power transfer compared to direct power transfer from conventional power converters. All the energy runs through, and is temporarily stored in, a high-frequency AC link consisting of an inductor and capacitor.

More... | Comments (3) | TrackBack (0)

Siemens and BAIC form JV to produce high efficiency electric powertrain systems for NEVs

April 21, 2014

Siemens AG and Beijing Automotive Industry Holding Co., Ltd. (BAIC), one of the major Chinese carmakers, signed a joint venture agreement at the 2014 Beijing International Automotive Exhibition and outlined their plan to utilize Siemens’ electric drive train components in a range of BAIC new energy vehicles (NEVs).

The JV, Beijing Siemens Automotive E-Drive System Co., Ltd., will manufacture components for the electric drivetrain including power-electronics and electric motors. The new electric drivetrains consist of a safer and higher power density inverters and highly energy efficient motors. Prototype and small volume production will start in 2014, followed by mass production in a new Beijing-based factory in 2015. The production volume is planned to be more than 100,000 units per year with upside potential.

More... | Comments (1) | TrackBack (0)

First “MotorBrain” prototype shown; lightweight electric motor system with no rare earth metals

April 11, 2014

DSC_0245_S
MotorBrain prototype. Integrated unit is on the left, the motor core is at the right. Click to enlarge.

The four partners in the European research project ”MotorBrain”—Infineon Technologies, Siemens, the Institute of Lightweight Engineering and Polymer Technology at the Technische Universität (Technical University) Dresden and ZF Friedrichshafen—are presenting their first prototype of a lightweight electric motor system that requires no rare earth metals.

The €36-million (US$50-million) MotorBrain effort is one of the largest single European research projects in the area of electromobility. The MotorBrain prototype integrates the motor, gear drive and inverter. The prototype is three-quarters the size of models from 2011, the year when MotorBrain began; the prototype now being presented could fit in a conventional-sized laptop or notebook backpack.

More... | Comments (15) | TrackBack (0)

3-year, $75.7M eRamp power electronics research project launches at Infineon

April 02, 2014

The three-year research project “eRamp”, intended to strengthen and expand Germany and Europe as centers of expertise for the manufacture of power electronics, launched at Infineon Technologies in Dresden. Twenty-six research partners from six countries are participating. Infineon, a global market leader in power semiconductors, is leading the €55-million (US$75.7-million) project.

Power electronics—the electronic components and their power semiconductors—help keep the loss of electrical energy as low as possible and help minimize power consumption in a wide variety of applications, including hybrid and electric drive systems. eRamp research activities will focus on the rapid introduction of new production technologies and further exploration of chip packaging technologies for power semiconductors.

More... | Comments (8) | TrackBack (0)

Green Car Congress © 2015 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group