Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Power Generation

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

GMZ Energy announces new, high-power thermoelectric module: TG16-1.0

October 01, 2014

TG16small
TG16. Click to enlarge.

GMZ Energy, a developer of high temperature thermoelectric generation (TEG) solutions, has introduced the TG16-1.0, a new thermoelectric module capable of producing twice the power of the company’s first product, the TG8-1.0. By doubling the power density, GMZ’s new module substantially increases performance while maintaining a minimal footprint.

GMZ has been using TG8 modules in developing vehicular thermoelectric generators for the Bradley Fighting Vehicle (1 kW TEG) as well as to design and to integrate a light-duty vehicle TEG into a Honda Accord as part of a DOE-funded project. (Earlier post.)

More... | Comments (1) | TrackBack (0)

ORNL study finds best current use of natural gas for cars is efficient production of electricity for EVs

September 24, 2014

Curran
Top: Components of well-to-wheels pathway. Middle: WTW efficiency for CNGVs. Bottom: WTW efficiency for EVs. Curran et al. Click to enlarge.

A well-to-wheels analysis of the use of natural gas for passenger vehicles by a team of researchers from Oak Ridge National Laboratory (ORNL) has found that, with a high PTW (pump-to-wheels) efficiency and the potential for high electrical generation efficiency with NGCC (natural gas combined cycle) turbines, natural gas currently is best used in an efficient stationary power application for charging EVs.

However, they also noted, high PTW efficiencies and the moderate fuel economies of current compressed natural gas vehicles (CNGVs) make them a viable option as well. If CNG were to be eventually used in hybrids, the advantage of the electric generation/EV option shrinks. Their open access paper is published in the journal Energy.

More... | Comments (34) | TrackBack (0)

Sandia team reports significant output from MagLIF fusion technique

September 23, 2014

Researchers at Sandia National Laboratories’ Z pulsed-power accelerator have produced a significant output of fusion neutrons, using a method fully functioning for only little more than a year. The experimental work is described in a paper to be published 24 September in Physical Review Letters online. A companion theoretical paper helps explain why the experimental method worked. The combined work demonstrates the viability of the novel approach.

Sandia senior manager Dan Sinars expects the MagLIF (Magnetized Liner Inertial Fusion) technique will be a key piece of Sandia’s submission for a July 2015 National Nuclear Security Administration review of the national Inertial Confinement Fusion Program.

More... | Comments (1) | TrackBack (0)

Rusatom Overseas and CNNC New Energy to partner on floating nuclear power plants

August 03, 2014

Rusatom Overseas, a subsidiary of Russia’s State Atomic Energy Corporation ROSATOM, and CNNC New Energy (China) signed a Memorandum of Intent to cooperate in the development of floating nuclear power plants. The next step in the implementation of the project will be establishment of a joint Chinese-Russian working group. Rusatom is currently building its first floating nuclear plant, the Akademik Lomonosov; the second of the vessel’s two reactors was installed in February.

The Chinese delegation came to St. Petersburg and Moscow on 24-29 July. The delegation visited the Floating NPP Training Center and the Baltic Shipyard and met with the members of the team for the reference floating NPP construction project, and examined the floating power generating unit currently under construction.

More... | Comments (23) | TrackBack (0)

DOE to award $9M to promote consensus on future fossil energy technologies

July 20, 2014

The US Department of Energy’s (DOE) Office of Fossil Energy will award $9 million over five years to organizations to assist it in building domestic and international consensus on future fossil energy technologies (DE-FOA-0001111). The Funding Opportunity Announcement (FOA) anticipates two awards being made: the first for $7 million in the area of Carbon Capture and Storage (CCS) and fossil-fuel-based Clean Energy Systems (CES); the second for $2 million in the area of international oil and natural gas.

One of the key missions of the Office of Fossil Energy is to “ensure the nation can continue to rely on traditional resources for clean, secure and affordable energy while enhancing environmental protection.” In pursuit of this, the Office provides outreach and education to many stakeholders, including the general public, in order to allow them to make educated choices about energy.

More... | Comments (4) | TrackBack (0)

ARPA-E awards $33M to 13 intermediate-temp fuel cell projects; converting gaseous hydrocarbons to liquid fuels

June 19, 2014

The US Advanced Research Projects Agency - Energy (ARPA-E) is awarding $33 million to 13 new projects aimed at developing transformational fuel cell technologies for low-cost distributed power generation. The projects, which are funded through ARPA-E’s new Reliable Electricity Based on ELectrochemical Systems (REBELS) program, are focused on improving grid stability, balancing intermittent renewable technologies, and reducing CO2 emissions using electrochemical distributed power generation systems.

Current advanced fuel cell research generally focuses on technologies that either operate at high temperatures for grid-scale applications or at low temperatures for vehicle technologies. ARPA-E’s new REBELS projects focus on low-cost Intermediate-Temperature Fuel Cells (ITFCs) emphasizing three technical approaches: the production of efficient, reliable ITFCs; the integration of ITFCs and electricity storage at the device level; and the use of ITFCs to convert methane or other gaseous hydrocarbons into liquid fuels using excess energy.

More... | Comments (3) | TrackBack (0)

DOE releases report on water-energy nexus

The US Department of Energy (DOE) released a new report that frames an integrated challenge and opportunity space around the water-energy nexus for DOE and its partners and lays the foundation for future efforts.

Present day water and energy systems are tightly intertwined. Water is used in all phases of energy production and electricity generation. Energy is required to extract, convey, and deliver water of appropriate quality for diverse human uses. Recent developments have focused national attention on these connections.

More... | Comments (0) | TrackBack (0)

EPA proposes rule for nationwide 30% cut in GHG from existing power plants by 2030 relative to 2005

June 02, 2014

The US Environmental Protection Agency (EPA) released the already widely-discussed (albeit without much detail) “Clean Power Plan” proposal, which mandates a national average 30% cut in greenhouse gas emissions from existing power plants from 2005 levels by 2030. Power plants accounted for 32% (2,064 million metric tons of CO2 equivalent) of all domestic greenhouse gas emissions in the United States in 2012, according to the EPA.

Specifically, the EPA is proposing state-specific rate-based goals for carbon dioxide emissions from the power sector, as well as emission guidelines for states to use in developing plans to attain the state-specific goals. Each state’s goal is different, because each state has a unique mix of emissions and power sources to plug in to each part of the formula. The Clean Power Plan broadly proposes:

More... | Comments (25) | TrackBack (0)

GM reduced energy intensity and carbon intensity per vehicle in 2013

May 20, 2014

In 2013, GM reduced the energy-intensity per vehicle manufactured 3.5% from 2012, down to an average 2.22 MW/vehicle from 2.30 MW, according to the company’s just released 2013 sustainability report. GM has set a target of 1.97 MW/vehicle for 2020, a reduction of 20% from the 2010 baseline of 2.47 MW.

The carbon intensity (CI) per vehicle dropped to 0.87 tonnes CO2e/vehicle in 2013, down 1.1% from 0.88 tonnes in 2012. The 2020 target is 0.74 tonnes CO2e, down 20% from the 2010 baseline of 0.93 tonnes. (CI includes all manufacturing and non-manufacturing CO2e emissions reported in the Carbon Disclosure Project (CDP) Scope 1 & 2 categories (earlier post), normalized by vehicle production. These data include data from some GM JVs.)

More... | Comments (1) | TrackBack (0)

UC Riverside opening Sustainable Integrated Grid Initiative; integration of solar energy, battery storage and electric and hybrid vehicles

May 15, 2014

SIGI-graphic
Schematic of the “New Grid Testbed” components, including renewable energy generation, energy storage, smart distribution and electric transportation Click to enlarge.

The University of California, Riverside is opening its Sustainable Integrated Grid Initiative to research the integration of: intermittent renewable energy, such as photovoltaic solar panels; energy storage, such as batteries; and all types of electric and hybrid electric vehicles. It is the largest renewable energy project of its kind in California.

The first two years of operation is supported by a $2-million contract from the South Coast Air Quality Management District, awarded in January 2012. Construction of the initial testbed platform was also supported by an additional $10 million in contributions from UC Riverside and private partners. The testbed, which is located at UC Riverside’s Bourns College of Engineering Center for Environmental Research and Technology (CE-CERT), includes:

More... | Comments (7) | TrackBack (0)

Toyota Central R&D developing free-piston engine linear generator; envisioning multi-FPEG units for electric drive vehicles

April 22, 2014

Fpeg_nav_top
Toyota’s FPEG features a hollow step-shaped piston, combustion chamber and gas spring chamber. Click to enlarge.

A team at Toyota Central R&D Labs Inc. is developing a prototype 10 kW Free Piston Engine Linear Generator (FPEG) featuring a thin and compact build, high efficiency and high fuel flexibility. Toyota envisions that a pair of such units (20 kW) would enable B/C-segment electric drive vehicles to cruise at 120 km/h (75 mph). The team presented two papers on the state of their work at the recent SAE 2014 World Congress in Detroit.

The FPEG consists of a two-stroke combustion chamber, a linear generator and a gas spring chamber. The piston is moved by the combustion gas, while magnets attached to the piston move within a linear coil, thereby converting kinetic energy to electrical energy. The main structural feature of the Toyota FPEG is a hollow circular step-shaped piston, which Toyota calls “W-shape”. The smaller-diameter side of the piston constitutes a combustion chamber, and the larger-diameter side constitutes a gas spring chamber.

More... | Comments (12) | TrackBack (0)

IPCC: GHG emissions accelerating despite mitigation efforts; major institutional and technological change required to keep the heat down

April 13, 2014

Ipcc1
Decomposition of the decadal change in total global CO2 emissions from fossil fuel combustion by four driving factors; population, income (GDP) per capita, energy intensity of GDP and carbon intensity of energy. WG III Summary for Policymakers. Click to enlarge.

The UN Intergovernmental Panel on Climate Change (IPCC) released a policymaker’s summary of Working Group III’s (WG III) latest report showing that despite a growing number of climate change mitigation policies, annual anthropogenic GHG emissions grew on average by 1.0 giga tonne carbon dioxide equivalent (GtCO2eq) (2.2%) per year from 2000 to 2010 compared to 0.4 GtCO2eq (1.3%) per year from 1970 to 2000. Total anthropogenic GHG emissions were the highest in human history from 2000 to 2010 and reached 49 (±4.5) GtCO2eq/yr in 2010. The global economic crisis 2007/2008 only temporarily reduced emissions.

The increase in anthropogenic emissions comes directly from energy supply (47%); industry (30%); transport (11%); and buildings (3%) sectors, the WG reported with medium confidence. Globally, economic and population growth continue to be the most important drivers of increases in CO2 emissions from fossil fuel combustion.

More... | Comments (27) | TrackBack (0)

Sandia Labs project team building fuel cell cold ironing system for deployment at Port of Honolulu in 2015

February 25, 2014

A Sandia National Laboratories project team, including a number of industry partners, is designing and building a cold-ironing fuel cell system that will be deployed in the Port of Honolulu in 2015. The work comes on the heels of last year’s study and analysis that confirmed the viability of hydrogen fuel cells to provide auxiliary power to docked or anchored ships. (Earlier post.)

Hydrogen researchers at Sandia National Laboratories joined with several partners in the follow-up project, which will result in a portable, self-contained hydrogen fuel cell unit that can float on a barge, sit on a dock or be transported to wherever it’s needed to provide electrical power. The unit will fit inside a 20-foot shipping container and will consist of four 30-kilowatt fuel cells, a hydrogen storage system and power conversion equipment.

More... | Comments (3) | TrackBack (0)

M5BAT 5MW storage system integrates multiple battery technologies

February 24, 2014

The E.ON Energy Research Center at RWTH Aachen University, E.ON electric utility company, battery manufacturers Exide and beta-motion and inverter manufacturer SMA Solar Technology AG (SMA) have joined forces to build the first multi-technology, modular large-scale 5MW battery storage system.

The unique feature of the M5BAT (Modular Multimegawatt, Multitechnology Medium-Voltage Battery Storage System) storage system lies in its modular design, which combines different battery technologies for optimal use. It consists of lithium-ion batteries to meet short-term demand; high-temperature batteries to supply power for several hours; and lead-acid batteries when the average discharge time is one hour or less.

More... | Comments (0) | TrackBack (0)

Sumitomo installs first large-scale power system using used EV batteries

February 08, 2014

Sumitomo Corporation has developed and installed the first large-scale power storage system which utilizes used batteries collected from electric vehicles. This commercial scale storage system, built on Yume-shima Island, Osaka, will begin operating in February 2014.

Sumitomo Corporation created the joint venture company, 4R Energy Corporation, in collaboration with Nissan Motor Co., Ltd. in September 2010, to address the secondary use of EV lithium-ion batteries. (Earlier post.) The used EV batteries that will be recycled into this large-scale storage system have been recovered and have gone through thorough inspection and maintenance at 4R, to confirm safety and performance. This prototype system (600kW/400kWh) consists of sixteen used EV batteries.

More... | Comments (29) | TrackBack (0)

ARPA-E awarding $30M to 12 hybrid solar projects; conversion and storage

February 07, 2014

The US Department of Energy (DOE) Advanced Research Projects Agency - Energy (ARPA-E) is awarding $30 million in funding to 12 projects through its Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS) program, which is aimed at developing new hybrid solar energy converters and hybrid energy storage systems that can deliver low-cost, high-efficiency solar energy on demand. (Earlier post.)

Under the FOCUS program, projects will develop advanced solar converters that turn sunlight into electricity for immediate use, while also producing heat that can be stored at low cost for later use as well as innovative storage systems that accept both heat and electricity from variable solar sources.

More... | Comments (4) | TrackBack (0)

CMU researchers find controlled charging of PHEVs can cut cost of integration into electricity system by 54-73%; higher benefits with wind power

January 24, 2014

In a new study published in the journal Applied Energy, Carnegie Mellon University (CMU) researchers found that controlled charging of plug-in hybrid electric vehicles (PHEVs) reduces the costs of integrating the vehicles into an electricity system by 54–73% depending on the scenario.

More specifically, controlled charging can cut the cost of integrating PHEVs approximately in half. The magnitude of these savings is ~5% to 15% higher in a system with 20% wind penetration compared to a system with no wind power, and the savings are 50–60% higher in a system that requires capacity expansion.

More... | Comments (19) | TrackBack (0)

Sen. Baucus draft for energy tax reform focuses on clean production of electricity and fuels; repeals plug-in vehicle credits

December 19, 2013

Senate Finance Committee Chairman Max Baucus (D-Mont.) introduced the latest in a series of discussion drafts to overhaul the US tax code. This new staff discussion draft focuses energy tax policy on stimulating domestic, clean production of electricity and transportation fuels, which account for 68% of energy consumed in the US. It also would repeal a number of current tax incentives, including those for plug-in electric vehicles and fuel cell vehicles.

Under current law, there are 42 different energy tax incentives, including more than 12 preferences for fossil fuels; 10 different incentives for renewable fuels and alternative vehicles; and 6 different credits for clean electricity. Of the 42 different energy incentives, 25 are temporary and expire every year or two, and the credits for clean electricity alone have been adjusted 14 times since 1978. If Congress continues to extend current incentives, they will cost nearly $150 billion over 10 years.

More... | Comments (54) | TrackBack (0)

EIA: light duty vehicle energy consumption to drop 25% by 2040; increased oil production, vehicle efficiency reduce US oil and liquid imports

December 16, 2013

Aeo-1
Energy consumption by light-duty vehicles in the United States, AEO2013 and AEO2014, 1995-2040 (quadrillion Btu). LDV energy consumption declines in AEO2014 Reference case from 16.0 quadrillion Btu in 2012 to 12.1 quadrillion Btu in 2040, compared with 13.0 quadrillion Btu in 2040 in the AEO2013 Reference case. Source: EIA. Click to enlarge.

Reflecting slow growth in travel and accelerated vehicle efficiency improvements, US light-duty vehicle (LDV, cars and light trucks) energy use will decline sharply between 2012 and 2040, according to the US Energy Information Administration’s (EIA’s) Annual Energy Outlook 2014 (AEO2014) Reference case released today.

AEO2014 includes a new, detailed demographic profile of driving behavior by age and gender as well as new lower population growth rates based on updated Census projections. As a result, annual increases in vehicle miles traveled (VMT) in LDVs average 0.9% from 2012 to 2040, compared to 1.2% per year over the same period in AEO2013. The rising fuel economy of LDVs more than offsets the modest growth in VMT, resulting in a 25% decline in LDV energy consumption decline between 2012 and 2040 in the AEO2014 Reference case.

More... | Comments (6) | TrackBack (0)

ExxonMobil Outlook: 35% growth in energy demand by 2040; hybrids to account for ~50% of new vehicle sales

December 15, 2013

Light-duty-fleet-by-type-chart_full
By 2040, hybrids are expected to account for about 35% of the global light-duty vehicle fleet, up from less than 1% in 2010. Hybrids are expected to account for about half of global new-car sales by 2040. Source: ExxonMobil. Click to enlarge.

Driven by increasing population, urbanization and rising living standards, the world will require some 35% more energy in 2040, according to ExxonMobil’s annual forecast report: Outlook for Energy: A View to 2040. Anticipated population growth will reach nearly 9 billion in 2040 from about 7 billion today, and the global economy is projected to double—at an annual growth rate of nearly 3%—largely in the developing world.

Demand for energy in non-OECD nations will grow by about two-thirds, accounting for essentially all of the increase in global energy use. ExxonMobil projects that meeting future energy demand will be supported by more efficient energy-saving practices and technologies; increased use of less-carbon-intensive fuels such as natural gas, nuclear and renewables; as well as the continued development of technology advances to develop new energy sources. Without the projected gains in efficiency, global energy demand could have risen by more than 100%.

More... | Comments (48) | TrackBack (0)

ARPA-E to award up to $30M for intermediate-temperature fuel cell systems for distributed generation; exploring storage and power-to-fuels

November 25, 2013

The US Department of Energy (DOE) Advanced Research Projects Agency - Energy (ARPA-E) will award up to $30 million to fund a new program focused on the development of transformational electrochemical technologies to enable low-cost distributed power generation. ARPA-E anticipates making approximately 12-18 awards under this FOA, with individual awards varying between $250,000 and $10 million. (DE-FOA-0001026)

ARPA-E’s Reliable Electricity Based on ELectrochemical Systems (REBELS) program will develop fuel cell devices that operate in an intermediate temperature range (ITFCs) (200-500 °C) in an attempt to 1) create new pathways to achieve an installed cost to the end-user of less than $1,500/kW at moderate production volumes; and 2) create new fuel cell functionality to increase grid stability and integration of renewable energy technologies such as wind and solar.

More... | Comments (7) | TrackBack (0)

Clariant supplying SNG catalyst for methanation unit in Audi’s new “Power-to-Gas” plant

October 21, 2013

Clariant, a global provider of specialty chemicals, has supplied a proprietary CO2-SNG (synthetic natural gas) catalyst for the methanation unit of Audi’s new power-to-gas facility in Werlte, Germany. (Earlier post.)

The “e-gas plant” was started up in June this year and is part of Audi’s sustainability initiative. The plant, which can convert six megawatts of input power, will utilize renewable electricity for electrolysis, producing oxygen and hydrogen, the latter which could one day power fuel-cell vehicles. Because there is not yet a widespread hydrogen infrastructure, however, the hydrogen is reacted with CO2 in a methanation unit to generate renewable synthetic methane, or Audi e-gas.

More... | Comments (28) | TrackBack (0)

Green Car Congress © 2014 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group