Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Simulation

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Argonne VERIFI researchers applying GSA to investigate combustion engine parameters; seeking cleaner and more efficient engines

July 18, 2014

Researchers at Argonne National Laboratory, as part of the new Virtual Engine Research Institute and Fuels Initiative (VERIFI) (earlier post), are using global sensitivity analysis (GSA)—a specific form of uncertainty analysis which breaks down the uncertainty into constitute parts—to investigate a number of parameters in the internal combustion process. By gaining a better understanding of how these parameter uncertainties affect outcomes, the VERIFI researchers, along with colleagues at the University of Connecticut, are seeking to create cleaner and more efficient engines.

The parameters being investigated include the relationships between the diameter of the nozzle in the fuel injector; the dynamics of the fuel spray; the proportion of fuel to air in the combustion chamber; and the exhaust products. In an SAE paper presented at the World Congress this year, the researchers described the results of the first demonstration of GSA for engine simulations.

More... | Comments (0) | TrackBack (0)

IBM launches $3B, 5y research initiative on chip grand challenges; 7nm and beyond and post-silicon

July 11, 2014

IBM is investing $3 billion over the next 5 years in two broad research and early stage development programs to push the limits of chip technology needed to meet the emerging demands of cloud computing and “Big Data” systems. Bandwidth to memory, high speed communication and device power consumption are becoming increasingly challenging and critical in these areas, just as the underlying chip technology is facing numerous significant physical scaling limits.

The first research program is aimed at so-called “7 nanometer and beyond” silicon technology that will address serious physical challenges that are threatening current semiconductor scaling techniques and will impede the ability to manufacture such chips. The second is focused on developing alternative technologies for post-silicon era chips using entirely different approaches, which IBM scientists and other experts say are required because of the physical limitations of silicon based semiconductors.

More... | Comments (2) | TrackBack (0)

EPA selects ANSYS for simulation software to develop advanced test engine

July 09, 2014

DISI-streamtrace-white-angle
Streamlines showing intake process for an SI engine in a FORTE simulation. Source: ANSYS. Click to enlarge.

The US Environmental Protection Agency (EPA) has selected ANSYS simulation solutions to model in-cylinder combustion to develop an advanced test engine that will demonstrate fuel-saving and emissions-reducing technologies. The EPA’s test engine will help establish the feasibility of meeting recently issued fuel standards through improvements to combustion chamber geometries, fuel injection strategies, fuel composition, valve timing and intake conditions.

While physical prototyping and direct tests on real engine hardware can guide engine design, they are very costly and time-intensive. By using ANSYS FORTÉ, the EPA can experiment with engine design in a virtual setting. As a result, its engineers can quickly and inexpensively make multiple design iterations. ANSYS acquired FORTÉ as part of its acquisition of Reaction Design earlier this year. (Earlier post.)

More... | Comments (0) | TrackBack (0)

Caterpillar and Argonne’s VERIFI undertake cooperative virtual engine design, control project; first VERIFI CRADA

July 03, 2014

Low-temperature combustion regimes show great efficiency and emissions potential, but they present optimization and control challenges that must be addressed before they enter the engine mainstream.

Caterpillar Inc. has entered into a Cooperative Research and Development Agreement (CRADA) with Argonne National Laboratory and its recently formed Virtual Engine Research Institute and Fuels Initiative (VERIFI), where experts are developing new engine combustion models that incorporate accurate descriptions of two-phase flows, chemistry, transport phenomena and device geometries to provide predictive simulations of engine and fuel performance.

More... | Comments (0) | TrackBack (0)

Gamma Technologies and Sendyne introducing comprehensive hybrid and EV simulation with integrated battery model

May 14, 2014

Gamma Technologies, in cooperation with Sendyne Corp., is introducing an advanced technology platform for comprehensive electric and hybrid vehicle simulation that combines Gamma’s GT-Suite vehicle simulator with Sendyne’s CellMod CPM and RTSim real-time solver. This new platform provides total electric and hybrid vehicle multi-physics simulation including engine, vehicle, electric machines, cooling, and aftertreatment systems, along with a Compact Physical Model (CPM)-based virtual battery pack.

Total vehicle simulation can reduce time to market, improve performance and cut costs by aiding in the optimization of the power delivery system. In order to ensure high accuracy of complete hybrid powertrain simulations, it is important that models capture the temperature-sensitive behavior of the involved components and the flow of energy between subsystems.

More... | Comments (0) | TrackBack (0)

U Wisc.-Ford team develops more realistic multi-component surrogate diesel models for modeling of low temperature combustion

December 07, 2013

A team from the Engine Research Center at the University of Wisconsin-Madison, Ford Motor, and Ford Forschungszentrum Aachen have developed new multi-component surrogate models for three different diesel fuels, and then examined their fidelity in capturing the characteristics of a diesel engine operated under various conditions, including conventional and low-temperature combustion (LTC) modes.

Fuel and EGR effects were also explored in the two different combustion modes using the developed surrogate models. In a paper published in the ACS journal Energy & Fuels, they reported that the results showed that the combustion trends in conventional combustion are less affected by fuel or EGR changes, while LTC conditions exhibit a much higher sensitivity, thus demanding more realistic fuel models precisely to describe advanced combustion modes.

More... | Comments (0) | TrackBack (0)

GE using Large Eddy Simulation on Sandia’s Red Mesa to lay groundwork for quieter wind turbine blades with better power yield

August 15, 2013

1
Transition of flow to turbulence on a wind-turbine airfoil; isosurfaces of vorticity from a Large Eddy Simulation (LES). Credit: GE Global Research. Click to enlarge.

GE Global Research, the technology development arm of the General Electric Company, recently completed a research project in partnership with Sandia National Laboratories that could significantly affect the design—and thus the noise and power output—of future wind turbine blades.

A 1 decibel quieter rotor design would result in a 2% increase in annual energy yield per turbine. With approximately 240 GW of new wind installations forecasted globally over the next five years, a 2% increase would create 5 GW of additional wind power capacity—enough to power every household in New York City, Boston, and Los Angeles, combined, GE Research noted.

More... | Comments (1) | TrackBack (0)

DynoTRAIN could establish virtual testing as a valid route to rail vehicle certification

August 08, 2013

ImageDyno_projectoutput4
Multi-body simulation of bogies which could be used for virtual certification. Source: TrioTRAIN. Click to enlarge.

A four-year, €5.5-million (US$7.3-million) project that could enable manufacturers of rail vehicles to use virtual testing of trains in order to ensure safety standards throughout Europe while making huge savings on development costs is drawing to a close at the end of next month.

DynoTRAIN received €3.3 million in funding from the European Commission under the 7th Framework Programme. It is part of the TrioTRAIN cluster of projects which aims at further promoting interoperability by increasing virtual certification, thus contributing to the competitiveness of rail. Through the DynoTRAIN project, TrioTRAIN addresses rail vehicle dynamics—one of the most relevant issues for a rail vehicle certification.

More... | Comments (1) | TrackBack (0)

Green Car Congress © 2013 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group