Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Solar fuels

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Molecular shuttle speeds up hydrogen production by the photocatalytic splitting of water

August 15, 2014

In their latest experiments with semiconductor nanocrystals as light absorbers, physicists led by Professor Jochen Feldmann (Ludwig-Maximilians-Universität München, LMU Munich), in collaboration with a team of chemists under the direction of Professor Andrey Rogach (City University of Hong Kong), have succeeded in significantly increasing the yield of hydrogen produced by the photocatalytic splitting of water.

The crucial innovation, reported in the latest issue of the journal Nature Materials, is the use of a so-called molecular shuttle to markedly improve the mobility of charge carriers in their reaction system.

More... | Comments (7) | TrackBack (0)

DOE awards $100M in 2nd funding round for 32 Energy Frontier Research Centers

June 24, 2014

The US Department of Energy (DOE) is awarding $100 million in the second round of funding for Energy Frontier Research Centers (EFRCs); research supported by this initiative will enable fundamental advances in energy production, storage, and use.

The 32 projects receiving funding were competitively selected from more than 200 proposals. Ten of these projects are new while the rest received renewed funding based both on their achievements to date and the quality of their proposals for future research.

More... | Comments (1) | TrackBack (0)

Study suggests energy and GHG impacts of synthetic hydrocarbon fuels from CO2 are greater than impacts of existing hydrocarbon fuels

June 06, 2014

Synthetic fuel production from fuel-combustion-based energy and CO2 (top) and from atmospheric CO2 using solar electricity (bottom). Credit: ACS, van der Giesen et al. Click to enlarge.

Researchers at the Institute of Environmental Sciences at Leiden University, The Netherlands) have concluded that the energy demand and climate impacts of using CO2 to produce synthetic hydrocarbon fuels by using existing technologies can be greater than the impacts of existing hydrocarbon fuels. Their quantitative lifecycle assessment of the environmental merits of liquid hydrocarbon fuels produced from CO2, water and energy compared to alternative fuel production routes is published in the ACS journal Environmental Science & Technology.

In their study, the researchers evaluated five hypothetical production routes using different sources of CO2 and energy. The team undertook the work specifically to investigate four general arguments that have been proposed in support of such fuels:

More... | Comments (22) | TrackBack (0)

SOLAR-JET project demonstrates solar-driven thermochemical conversion of CO2 and water to jet fuel

April 28, 2014

SOLAR-JET concentrated thermochemical reactor. Red arrow indicates ceria reduction (oxygen evolution); blue arrow indicates oxidation (fuel production). Click to enlarge.

The EU-funded SOLAR-JET project has demonstrated the production of aviation kerosene from concentrated sunlight, CO2 captured from air, and water. The process has also the potential to produce any other type of fuel for transport applications, such as diesel, gasoline or pure hydrogen in a more sustainable way.

SOLAR-JET (Solar chemical reactor demonstration and Optimization for Long-term Availability of Renewable JET fuel) uses sunlight in a concentrated solar reactor to convert CO2 and water to syngas (a mixture of hydrogen and CO), which is then processed in a Fischer-Tropsch reactor to aviation kerosene.

More... | Comments (10) | TrackBack (0)

New mesoporous crystalline Si exhibits increased rate of H2 production; potential use in Li-ion batteries also

April 11, 2014

Scheme of Mesoporous Silicon
Schematic of mesoporous silicon Image: Donghai Wang/Penn State. Click to enlarge.

Researchers at Penn State have devised a new process for the bottom-up synthesis of mesoporous crystalline silicon materials with high surface area and tunable primary particle/pore size via a self-templating pore formation process.

The nanosized crystalline primary particles and high surface areas enable an increased rate of photocatalytic hydrogen production from water and extended working life. These advantages also make the mesoporous silicon a potential candidate for other applications, such as optoelectronics, drug delivery systems and even lithium-ion batteries. A paper on their work is published in Nature Communications.

More... | Comments (0) | TrackBack (0)

JCAP hybrid photocathode material shows promising performance in conversion of solar energy to hydrogen

March 09, 2014

A new study by Berkeley Lab researchers at the Joint Center for Artificial Photosynthesis (JCAP) shows that nearly 90% of the electrons generated by a new hybrid photocathode material designed to store solar energy in hydrogen are being stored in the target hydrogen molecules (Faradaic efficiency).

Gary Moore, a chemist and principal investigator with Berkeley Lab’s Physical Biosciences Division, led an efficiency analysis study of the material he and his research group have developed for catalyzing the production of hydrogen fuel from sunlight. (Earlier post.) This material, a p-type (100) gallium phosphide (GaP) semiconductor functionalized with molecular hydrogen-producing cobaloxime catalysts via polymer grafting, has the potential to address one of the major challenges in the use of artificial photosynthesis to make renewable solar fuels.

More... | Comments (56) | TrackBack (0)

Israeli company reports successful stage 1 testing of solar CO2-to-fuels technology

January 26, 2014

Israel-based NewCO2Fuels (NCF), a subsidiary of GreenEarth Energy Limited in Australia, reported completion of stage 1 testing of its proof-of-concept system for the conversion of CO2 into fuels using solar energy. NewCO2Fuels was founded in 2011 to commercialize a technology developed by Prof. Jacob Karni’s laboratory at the Weizmann Institute of Science.

In passing the Stage 1 testing, NCF demonstrated technology that successfully dissociates CO2 into CO and oxygen in a heating environment, simulating the industrial waste heat sources that will be used as one of two energy sources in the commercial product. Importantly, the company said, the dissociation rate of the system was increased by a factor of 200 and the cost was reduced by a factor of 34, relative to the original dissociation apparatus demonstrated in 2010 at the laboratories of the Weizmann Institute of Science in Israel.

More... | Comments (25) | TrackBack (0)

NSF/DOE partnership to award up to $18M for H2 production via advanced solar water-splitting technologies; separate DOE solicitation

November 14, 2013

A National Science Foundation and US Department of Energy (DOE) partnership on hydrogen production via solar water-splitting will award (NSF 14-511) up to $18 million to support the discovery and development of advanced materials systems and chemical processes for direct photochemical and/or thermochemical water splitting for application in the solar production of hydrogen fuel.

NSF and DOE are jointly funding this program solicitation issued by the NSF Chemical, Bioengineeering, Environmental and Transport Systems (CBET) Division; NSF expects to make 3 to 5 awards, each of up to 3-years duration. The DOE Fuel Cell Technologies Office also issued a separate solicitation for work a broader range of hydrogen production technologies. (DE-FOA-0000826)

More... | Comments (3) | TrackBack (0)

Duke team develops new core-shell copper nanowire catalyst for efficient water oxidation for solar fuels

October 25, 2013

A transparent film of copper nanowires was transformed into an electrocatalyst for water oxidation by electrodeposition of Ni or Co onto the surface of the nanowires. Chen et al. Click to enlarge.

A team led by Benjamin J. Wiley at Duke University has introduced a new electrocatalyst for water oxidation consisting of a conductive network of core-shell nanowires that is just as efficient as conventional metal oxide films on indium tin oxide (ITO) and a great deal more transparent and robust. A paper on their work is published in the journal Angewandte Chemie.

Water oxidation (2H2O → O2 + 4e- + 4H+) is a key step for converting solar energy into chemical fuels. Nickel and cobalt oxides are attractive anode materials for the oxidation of water because they are readily available and demonstrate high catalytic activity. For use in photoelectric synthesis cells, in which chemical conversions are driven by light, the oxides are typically electrodeposited onto ITO substrates. ITO is used because of its high transmittance and low sheet resistance.

More... | Comments (26) | TrackBack (0)

Green Car Congress © 2013 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group