Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Solar

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

New mesocrystal photocatalyst enhances light-driven hydrogen production

May 18, 2017

A group of Japanese researchers has developed a novel photocatalyst for increased hydrogen production. The strontium titanate mesocrystal exhibits three times the efficiency for hydrogen evolution compared to conventional disordered systems in alkaline aqueous solution. The mesocrystal also exhibits a high quantum yield of 6.7% at 360 nm in overall water splitting and even good durability up to 1 day.

The discovery was made by a joint research team led by Associate Professor Takashi Tachikawa (Molecular Photoscience Research Center, Kobe University) and Professor Tetsuro Majima (Institute of Scientific and Industrial Research, Osaka University). Their findings were published in the journal Angewandte Chemie International Edition.

More... | Comments (6)

NREL researchers capture excess photon energy to produce solar fuels; higher efficiency water-splitting for H2

April 14, 2017

Scientists at the US Department of Energy’s National Renewable Energy Laboratory (NREL) have developed a proof-of-principle photoelectrochemical cell (PEC) capable of capturing excess photon energy normally lost to generating heat.

Using quantum dots (QD) and a process called Multiple Exciton Generation (MEG), the NREL researchers were able to push the peak external quantum efficiency for hydrogen generation to 114%. The advancement could significantly boost the production of hydrogen from sunlight by using the cell to split water at a higher efficiency and lower cost than current photoelectrochemical approaches. The research is outlined in a paper in Nature Energy.

More... | Comments (10)

NREL sets new world efficiency record for solar hydrogen production: 16.2%

April 13, 2017

Scientists at the US Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) recaptured the record for highest efficiency in solar hydrogen production via a photoelectrochemical (PEC) water-splitting process.

The new solar-to-hydrogen (STH) efficiency record is 16.2%, topping a reported 14% efficiency in 2015 by an international team made up of researchers from Helmholtz-Zentrum Berlin, TU Ilmenau, Fraunhofer ISE and the California Institute of Technology. A paper in Nature Energy outlines how NREL’s new record was achieved. The authors are James Young, Myles Steiner, Ryan France, John Turner, and Todd Deutsch, all from NREL, and Henning Döscher of Philipps-Universität Marburg in Germany. Döscher has an affiliation with NREL.

More... | Comments (4)

Cambridge team demonstrates light-driven photoreforming of unprocessed biomass to H2 at room temperature

March 14, 2017

A team of scientists at the University of Cambridge has reported the light-driven photoreforming of cellulose, hemicellulose and lignin to H2 using semiconducting cadmium sulfide quantum dots in alkaline aqueous solution.

The system operates under visible light, is stable beyond six days and is even able to reform unprocessed lignocellulose, such as wood and paper, under solar irradiation at room temperature, presenting an inexpensive route to drive aqueous proton reduction to H2 through waste biomass oxidation. A paper on their work is published in the journal Nature Energy.

More... | Comments (5)

NSF to award $13M to projects focused on electrochemical and organic photovoltaic systems

February 24, 2017

The US National Science Foundation (NSF) will award more than $13 million to projects in the Energy for Sustainability program. The goal of the Energy for Sustainability program is to support fundamental engineering research that will enable innovative processes for the sustainable production of electricity and fuels, and for energy storage. Processes for sustainable energy production must be environmentally benign, reduce greenhouse gas production, and utilize renewable resources.

The focus of this funding opportunity (PD-17-7644) is on electrochemical energy systems and organic photovoltaics.

More... | Comments (0)

NREL shows graded catalytic-protective layer boosts longevity of high-efficiency photocathodes for renewable hydrogen

January 09, 2017

Researchers at the US Department of Energy’s National Renewable Energy Laboratory (NREL) have developed a method which boosts the longevity of high-efficiency photocathodes in photoelectrochemical water-splitting devices. Their works demonstrates the potential of utilizing a hybridized, heterogeneous surface layer as a cost-effective catalytic and protective interface for solar hydrogen production.

In a paper published in the journal Nature Energy, they show that annealing a bilayer of amorphous titanium dioxide (TiOx) and molybdenum sulfide (MoSx) deposited onto GaInP2 results in a photocathode with high catalytic activity and stability for the hydrogen evolution reaction. The study showed that the annealing results in a graded MoSx/MoOx/TiO2 layer that retains much of the high catalytic activity of amorphous MoSx but with stability similar to crystalline MoS2.

More... | Comments (0)

Tesla and Panasonic to manufacture solar cells and modules in Buffalo, NY; 1GW by 2019

December 27, 2016

Tesla and Panasonic finalized an agreement to begin the manufacturing of photovoltaic (PV) cells and modules at the Buffalo, NY factory. These high-efficiency PV cells and modules will be used to produce solar panels in the non-solar roof products. When production of the solar roof begins, Tesla will also incorporate Panasonic’s cells into the many kinds of solar glass tile roofs that Tesla will be manufacturing.

As part of the agreement, Panasonic will cover required capital costs in Buffalo and Tesla is making a long-term purchase commitment from Panasonic. The collaboration extends the established relationship between Tesla and Panasonic, which includes the production of electric vehicle and grid storage battery cells at the Tesla Gigafactory.

More... | Comments (5)

On the road to solar fuels and chemicals

In a new paper in the journal Nature Materials (in an edition focused on materials for sustainable energy), a team from Stanford University and SLAC National Accelerator Laboratory has reviewed milestones in the progress of solid-state photoelectrocatalytic technologies toward delivering solar fuels and chemistry.

Noting the “important advances” in solar fuels research, the review team also noted that the largest scientific and technical milestones are still ahead. Following their review, they listed some of the scientific challenges they see as the most important for the coming years.

More... | Comments (13)

Hydrogen from sunlight, but as a dark reaction; time-delayed photocatalytic H2 production

December 09, 2016

A team at the Max Planck Institute for Solid State Research, Germany, and collaborators at ETH Zurich and the University of Cambridge, have developed a system that enables time-delayed photocatalytic hydrogen generation—essentially, an artificial photosynthesis system that can operate in the dark. A paper on their work is published in the journal Angewandte Chemie International Edition.

The system uses a carbon nitride-based material that can harvest and store sunlight as long-lived trapped electrons for redox chemistry in the dark. More specifically, the system comprises a partially anionic, cyanamide-functionalized heptazine polymer, which, in the presence of an appropriate electron donor, forms a radical species under irradiation that has a lifetime of more than 10 hours. This ultra-long-lived radical can reductively produce hydrogen in the presence of a hydrogen evolution catalyst in the dark on demand.

More... | Comments (13)

Nissan and Eaton broaden xStorage Home energy storage portfolio; 10-year xStorage Buildings deal with Amsterdam ArenA

November 30, 2016

Nissan and power management leader Eaton are broadening their portfolio of xStorage Home residential energy storage solutions—which can use second-life EV batteries—by introducing a range of six product configurations, giving consumers greater choice to meet their energy needs. This announcement comes as pre-orders of xStorage Home begin today in the United Kingdom, Norway and Germany with other European markets to follow in the coming months.

Nissan and Eaton also announced a 10-year deal with Amsterdam ArenA—home of Ajax Football Club and world-famous entertainment venue—to provide back-up power to the arena from second-life Nissan LEAF batteries. The 55,000-seat stadium has hosted numerous high profile concerts and sporting events over the years.

More... | Comments (1)

BMW Digital Charging Service optimizes charging and integrates electric vehicles into the energy market

November 28, 2016

BMW i is expanding its engagement in electric mobility with the new BMW Digital Charging Service (DCS)—an intelligent service for predictive, convenient, cost-effective and green power-optimized charging. The Digital Charging Service optimizes charging technology for BMW i and BMW iPerformance vehicles and will be extended in a later phase to other brands. Pilot markets for the new service are Germany and the Netherlands in early 2017, subsequently more countries will follow.

After activation, the service carries out the charging process fully independently and autonomously. The BMW Digital Charging Service is based on two core functions: tariff- and solar-optimized vehicle charging.

More... | Comments (0)

Stanford team sets record for solar-to-hydrogen efficiency of solar water splitting: >30%

November 02, 2016

Researchers at Stanford University have demonstrated solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen (STH) efficiency of more than 30%—a new record. The prior record was 24.4%. An open-access paper on their work is published in the journal Nature Communications.

The system consists of two polymer electrolyte membrane electrolyzers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolyzers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolyzers to optimize the system efficiency. The results, the researchers said, demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.

More... | Comments (2)

Swiss team develops effective and low-cost solar water-splitting device; 14.2% solar-to-hydrogen efficiency

August 25, 2016

Using commercially available solar cells and none of the usual rare metals, researchers at the Swiss Center for Electronics and Microtechnology (CSEM) and École Polytechnique Fédérale de Lausanne (EPFL) have designed an intrinsically stable and scalable solar water splitting device that is fully based on earth-abundant materials, with a solar-to-hydrogen conversion efficiency of 14.2%.

The prototype system is made up of three interconnected, new-generation, crystalline silicon solar cells attached to an electrolysis system that does not rely on rare metals. The device has already been run for more than 100 hours straight under test conditions. The method, which surpasses previous efforts in terms of stability, performance, lifespan and cost efficiency, is published in the Journal of The Electrochemical Society.

More... | Comments (41)

Lux: Total is leading example of oil supermajor expanding into solar plus storage and distributed generation

August 09, 2016

France-based Total is the first oil supermajor aggressively to enter new areas of business including solar plus storage and distributed generation, notes Lux Research in a new report: “Superpower Darwinism: What Big Oil Can and Cannot Do About Total’s Billion-Dollar Battery Move.”

Even though viable battery companies have become harder and more expensive to buy since Total’s $1-billion acquisition of Saft (earlier post), the oil supermajors—BP, Chevron, ConocoPhillips, Exxon Mobil, Royal Dutch Shell and Total—have cash piles ranging from $5 billion to $30 billion each, despite shrinking profits since 2012 and uncertainty about timing of the eventual recovery of oil prices.

More... | Comments (10)

Tesla acquiring SolarCity in $2.6B all-stock deal; expected close of transaction in Q4

August 01, 2016

Tesla and SolarCity reached agreement for the automaker’s purchase of the solar company in an all-stock deal valued at $2.6 billion—slightly less than the original $2.8-billion proposal made by Tesla just over a month ago. (Earlier post.) SolarCity will operate as a wholly-owned subsidiary of Tesla.

The all-stock transaction is valued based on the 5-day volume-weighted average price of Tesla shares as of 29 July 2016. Under the agreement, SolarCity stockholders will receive 0.110 Tesla common shares per SolarCity share, valuing SolarCity common stock at $25.37 per share based on the 5-day volume weighted average price of Tesla shares as of 29 July2016. The original proposal was an exchange ratio of 0.122x to 0.131x shares of Tesla common stock for each share of SolarCity common stock.

More... | Comments (0)

Rice team develops “antenna-reactor” plasmonic catalysts for increased energy savings and efficiency in catalytic processes

July 24, 2016

Researchers at Rice University’s Laboratory for Nanophotonics (LANP), with colleagues at Princeton University, have developed a new method for uniting light-capturing photonic nanomaterials and high-efficiency metal catalysts, creating an “antenna-reactor” plasmonic catalyst.

By placing a catalytic reactor particle adjacent to a plasmonic antenna, the highly efficient and tunable light-harvesting capacities of plasmonic nanoparticles can be exploited to increase absorption and hot-carrier generation significantly in the reactor nanoparticles. The modularity of this approach provides for independent control of chemical and light-harvesting properties and paves the way for the rational, predictive design of efficient plasmonic photocatalysts, the researchers suggest in their open-access paper, published in Proceedings of the National Academy of Sciences (PNAS).

More... | Comments (0)

Musk’s “Master Plan, Part Deux”; expands Tesla to heavy-duty electric trucks and urban transport; integrated energy generation and storage

July 21, 2016

Elon Musk has, as promised, published his second “master plan,” composed with the help of all-nighters and the Gatsby soundtrack.

Master Plan Part 1—public now for ten years—outlined (1) the creation of an expensive low-volume electric car (Roadster) to fund (2) a medium-volume electric car (Model S, X) at a lower price to create (3) an affordable high volume car (Model 3) and (4) provide solar power. Master Plan v2.0 takes Tesla into integrated energy generation and storage (i.e., Tesla’s acquisition of Solar City, earlier post) as well as into heavy-duty electric vehicles and urban transport.

More... | Comments (14)

Stanford solar tandem cell shows promise for efficient solar-driven water-splitting to produce hydrogen

June 23, 2016

Researchers at Stanford University, with colleagues in China, have developed a tandem solar cell consisting of an approximately 700-nm-thick nanoporous Mo-doped bismuth vanadate (BiVO4) (Mo:BiVO4) layer on an engineered Si nanocone substrate. The nanocone/Mo:BiVO4 assembly is in turn combined with a solar cell made of perovskite.

When placed in water, the device immediately began splitting water at a solar-to-hydrogen conversion efficiency of 6.2%—matching the theoretical maximum rate for a bismuth vanadate cell. Although the efficiency demonstrated was only 6.2%, the tandem device has room for significant improvement in the future, said Stanford Professor Yi Cui, a principal investigator at the Stanford Institute for Materials and Energy Sciences and senior author of an open access paper describing the work published in Scientific Advances.

More... | Comments (15)

Tesla makes ~$2.8B all-stock offer to acquire SolarCity

June 21, 2016

Tesla Motora has made an all-stock offer worth approximately $2.8B to acquire all of the outstanding shares of solar energy provider SolarCity. Subject to completing due diligence, Tesla is proposing an exchange ratio of 0.122x to 0.131x shares of Tesla common stock for each share of SolarCity common stock. This proposal represents a value of $26.50 to $28.50 per share, or a premium of approximately 21% to 30% over the recent closing price of SolarCity’s shares.

Tesla Chairman and CEO Elon Musk is also Chairman of SolarCity; Antonio Gracias, CEO of investor Valor Management Corp., is on both Tesla and SolarCity boards. Musk and Gracias recused themselves from voting on the proposed acquisition at the Tesla Board meeting, and will recuse themselves from the SolarCity Board meeting which will consider the offer.

More... | Comments (6)

Harvard “bionic leaf 2.0” exceeds efficiency of photosynthesis in nature; hydrogen and liquid fuels

June 03, 2016

Researchers at Harvard have created a hybrid water splitting–biosynthetic system based on a biocompatible Earth-abundant inorganic catalyst system to split water into molecular hydrogen and oxygen (H2 and O2) at low driving voltages.

Grown in contact with these catalysts, the bacterium Ralstonia eutropha then consumes the produced H2 to synthesize biomass and fuels or chemical products from low CO2 concentration in the presence of O2. The scalable system has a CO2 reduction energy efficiency of ~50% when producing bacterial biomass and liquid fuel alcohols, scrubbing 180 grams of CO2 per kWh of electricity. Coupling this hybrid device to existing photovoltaic systems would yield a CO2 reduction energy efficiency of ~10%, exceeding that of natural photosynthetic systems, the researchers said in their paper published in the journal Science.

More... | Comments (2)

Green Car Congress © 2017 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group