Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Synthetic Biology

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

J. Craig Venter Institute-led team awarded $10.7M by DOE to boost lipid production in diatoms for next-gen biofuels and bioproducts

October 04, 2017

Scientists led by the J. Craig Venter Institute (JCVI), a not-for-profit genomic research organization, were recently awarded a 5-year, $10.7-million grant by the United States Department of Energy, Office of Science, Biological and Environmental Research (BER), BER Genomic Science Program to optimize metabolic networks in model photosynthetic microalgae, called diatoms. The aim of this work is to substantially increase oil (lipid) production, enabling next-generation biofuels and bioproducts.

Building on prior synthetic biology and diatom research, methodologies will be developed and optimized for introducing and transplanting new biological functions into diatoms—a globally abundant class of algae. Initial modeling exercises will guide targeted genetic manipulations, associated systems biology experiments, and result in iterative network and genome-scale cellular modeling.

More... | Comments (0)

Researchers engineer enzyme surfaces to bind less to lignin; potential cost reduction for cellulosic ethanol production

July 06, 2017

Researchers at Rutgers University-New Brunswick and Michigan State University have devised a way to reduce the amount of enzymes needed to convert biomass into biofuels by designing and genetically engineering enzyme surfaces so they bind less to the lignin in biomass. This potentially could reduce enzyme costs in biofuels production. A paper on their work is published in the journal ACS Sustainable Chemistry & Engineering.

Cellulases (enzymes) deconstruct lignocellulosic biomass for conversion to biofuels such as cellulosic ethanol and biochemicals. However, lignin, an organic polymer in biomass that binds to and strengthens plant fibers, inactivates the cellulase enzymes via non-productive binding interactions. This leads to high enzyme loading requirements—and therefore high deconstruction costs.

More... | Comments (1)

Taiwan team engineers E. coli to produce n-butanol from glycerol

July 05, 2017

Researchers at Feng Chia University in Taiwan have engineered the bacterium Escherichia coli to produce n-butanol from crude glycerol—a byproduct of the production of biodiesel.

In an open-access paper in the journal Biotechnology for Biofuels, they report that under microaerobic conditions, the engineered strain produced 6.9 g/L n-butanol from 20 g/L crude glycerol. The conversion yield and the productivity reached 87% of the theoretical yield and 0.18 g/L/h, respectively. Overall, the team concluded, the technology platform may be useful for the economic viability of glycerol-related industries.

More... | Comments (0)

ExxonMobil and Synthetic Genomics double lipid production in algae species without inhibiting growth

June 20, 2017

ExxonMobil and Synthetic Genomics Inc. reported a breakthrough in their joint research (earlier post) into advanced biofuels involving the modification of an algae strain that more than doubled its oil content without significantly inhibiting the strain’s growth.

Using advanced cell engineering technologies at Synthetic Genomics, the ExxonMobil-Synthetic Genomics research team modified an algae strain to enhance the algae’s oil content from 20% to more than 40%. Results of the research are published in the journal Nature Biotechnology by lead authors Imad Ajjawi and Eric Moellering of Synthetic Genomics.

More... | Comments (1)

U of Illinois researchers develop new capabilities for genome-wide engineering of yeast

May 06, 2017

In a new open-access paper in Nature Communications, University of Illinois at Urbana-Champaign researchers describe how their successful integration of several cutting-edge technologies—creation of standardized genetic components, implementation of customizable genome editing tools, and large-scale automation of molecular biology laboratory tasks—will enhance the ability to work with yeast. The results of their new method demonstrate its potential to produce valuable novel strains of yeast for industrial use, as well as to reveal a more sophisticated understanding of the yeast genome.

The team focused on yeast in part because of its important modern-day applications; yeasts are used to convert the sugars of biomass feedstocks into biofuels such as ethanol and industrial chemicals such as lactic acid, or to break down organic pollutants. Because yeast and other fungi, like humans, are eukaryotes, organisms with a compartmentalized cellular structure and complex mechanisms for control of their gene activity, study of yeast genome function is also a key component of biomedical research.

More... | Comments (1)

Chalmers team engineers synthetic enzymes for bio-production of fuel alternatives

March 09, 2017

Researchers at Chalmers University and their colleagues have engineered synthetic fatty acid synthases (FASs) that enable yeast to produce short/medium-chain fatty acids and methyl ketones for use in fuels and chemicals. A paper on their work is published in the journal Nature Chemical Biology.

FASs normally synthesize long chain fatty acids, but the Chalmers team developed a new method to modify FAS by inserting heterologous enzymes into the FAS reaction compartments to synthesize the medium-chain fatty acids and methyl ketones—components in currently used transportation fuels, said Zhiwei Zhu, post-doc and first author of the study. “In other words: We are now able to produce petrol and jet fuel alternatives in yeast cell factories,” he said.

More... | Comments (0)

Global Bioenergies plans to acquire Dutch start-up Syngip; gaseous carbon feedstocks for renewable isobutene process

December 21, 2016

Global Bioenergies, the developer of a process to convert renewable resources into light olefin hydrocarbons via fermentation (with an initial focus on isobutene) (earlier post), signed a contribution agreement with the shareholders of Syngip B.V. to transfer all Syngip shares to Global Bioenergies S.A. Syngip is a third-generation industrial biotech start-up created in 2014 in the Netherlands that has developed a process to convert gaseous carbon sources such as CO2, CO, and industrial emissions such as syngas, into various valuable chemical compounds.

Syngip has identified a specific micro-organism capable of growing using these gaseous carbon sources as its sole feedstock, and has developed genetic tools to allow the implementation of artificial metabolic pathways into it. Its recent work has been directed to the implementation of metabolic pathways leading to light olefins: major petrochemical molecules, which include isobutene.

More... | Comments (0)

Global Bioenergies reports first production of green isobutene at demo plant

December 15, 2016

Global Bioenergies is now entering the final phase of demonstrating its technology for converting renewable carbon into hydrocarbons. The first trials on the demo plant in Leuna were successfully completed, within schedule, in the fall of 2016 and Global Bioenergies announced first production of green isobutene via fermentation. (Earlier post.)

With a nameplate capacity of 100 tons/year, the demo plant will allow the conversion of various resources (industrial-grade sugar from beets and cane, glucose syrup from cereals, second-generation sugars extracted from wheat straw, bagasse, wood chips…), into high-purity isobutene.

More... | Comments (0)

Synthetic biology startup Lygos closes $13M Series A to target oil-based specialty chemical industry

December 13, 2016

Lygos, Inc., a bio-based specialty chemicals company, closed $13 million in Series A financing led by IA Ventures and OS Fund. Other investors include First Round Capital, the Y Combinator Continuity Fund, 50 Years and Vast Ventures, along with notable angel investors. Lygos produces high-value specialty chemical traditionally produced in oil-based petrochemical processes in a process that commercially proven, acid-tolerant yeast and domestic sugars instead of petroleum, and has pioneered the world’s first bio-based production of malonic acid (a C3-dicarboxylic acid). (Earlier post.)

The current process used to produce malonic acid requires sodium cyanide and chloroacetic acid; Lygos’ engineered yeast produces malonic acid from sugar and CO2. Many Lygos target products are organic acids—compounds that are expensive to synthesize using petrochemistry but can be produced at high theoretical yield microbially.

More... | Comments (0)

Green Car Congress © 2017 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group