Green Car Congress
Home Topics Archives About Contact  RSS Headlines
Google search

GCC Web

Thermoelectrics

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

Fraunhofer characterizes Alphabet Energy thermoelectric PowerCard; up to 5% fuel economy improvement in automotive

January 14, 2016

Alphabet Energy is commercializing low-cost, efficient thermoelectric materials for power generation leveraging technology initially developed at the Lawrence Berkeley National Laboratory. (Earlier post.)

The company has now announced characterization from the Fraunhofer Institute for Physical Measurement Techniques IPM of heat flow and thermal resistance (in air) of the Alphabet Energy PowerCard, the company’s core thermoelectric device for power generation. The PowerCard has shipped to customers in a variety of industries, including automotive; has been tested extensively; and is now entering high-volume production.

More... | Comments (7)

Berkeley Lab findings should bolster future application of black phosphorous nanoribbons in electronic, optoelectronic and thermoelectric devices

October 19, 2015

A team led by a group of researchers at the US Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has experimentally confirmed strong in-plane anisotropy—i.e., directional dependence—in thermal conductivity, up to a factor of two, along the zigzag and armchair directions of single-crystal black phosphorous nanoribbons.

This new experimental revelation about black phosphorus nanoribbons should facilitate the future application of this highly promising material to electronic, optoelectronic and thermoelectric devices.

More... | Comments (0)

Manchester team greatly broadens thermal window of thermoelectric material using graphene; potential vehicle applications for waste heat recovery

July 22, 2015

Researchers at the University of Manchester (UK) have shown that the thermal operating window of the thermoelectric material lanthanum strontium titanium oxide (LSTO) can be expanded down to room temperature by addition of a small amount of graphene. Applications of LSTO-based thermoelectric materials are currently limited by their high operating temperatures of >700 °C.

Rather than working within the usual narrow “thermal window”, these bulk graphene/LSTO nanocomposites exhibit useful ZT values across a broad temperature range of several hundred degrees, the team reported in the journal ACS Applied Materials & Interfaces. This increase in operating performance can enable future applications such as thermoelectric generators in vehicles for waste heat recovery and other sectors, the researchers suggested.

More... | Comments (1)

Alphabet Energy introduces PowerModules for modular thermoelectric waste heat recovery; partnership with Borla for heavy-duty trucks

June 24, 2015

Alphabet Energy, founded in 2009 at Lawrence Berkeley National Laboratory, announced the availability of its thermoelectric generator PowerModule as a standalone product, available to meet the specific application needs of a range of industries, including transportation. The company also announced it will partner with Borla jointly to develop and to commercialize a next-generation-exhaust system incorporating PowerModules, with the goal of delivering significant fuel savings for commercial fleet truck fleets.

The Alphabet Energy PowerModule is a solid-state, liquid-cooled electrical generator that converts exhaust heat into electricity using Alphabet Energy’s proprietary PowerBlocks thermoelectric materials.

More... | Comments (2)

Sandia researchers demonstrate thermoelectric behavior in a MOF

May 20, 2015

Sandia National Laboratories researchers, with colleagues at the University of Virginia, have made the first measurements of thermoelectric behavior by a nanoporous metal-organic framework (MOF), a development that could lead to an entirely new class of materials for such applications as cooling computer chips and cameras and energy harvesting. “These results introduce MOFs as a new class of thermoelectric materials that can be tailored and optimized,” said Sandia physicist François Léonard.

This work, published in a paper in the journal Advanced Materials, builds on previous research in which the Sandia team realized electrical conductivity in MOFs by infiltrating the pores with a molecule known as tetracyanoquinodimethan (TCNQ), as described in a 2013 paper in Science (Talin et al. 2013). (Earlier post.)

More... | Comments (0) | TrackBack (0)

Evident Thermoelectrics acquires GMZ Energy

May 19, 2015

In a major expansion move, Evident Thermoelectrics has purchased the assets of GMZ Energy, Inc. a developer of high temperature thermoelectric generation (TEG) systems, in an acquisition that includes all patents, equipment, product lines, website, customer contacts and brand. In December 2014, GMZ had successfully demonstrated a 1kW TEG designed for diesel engine exhaust heat recapture in a Bradley Fighting Vehicle (earlier post).

The purchase comes shortly after Evident’s April announcement of a licensing agreement with NASA and is intended to solidify the company’s position as a leader in high temperature thermoelectric applications. (Earlier post.)

More... | Comments (0) | TrackBack (0)

MIT team finds chemical functionalization can lead to efficient graphene-based thermoelectric materials

April 14, 2015

Researchers at MIT are predicting that predict that suitable chemical functionalization of graphene can result in a large enhancement in the Seebeck coefficient for thermoelectric materials, leading to an increase in the room-temperature power factor of a factor of 2 compared to pristine graphene, despite degraded electrical conductivity.

Furthermore, the presence of patterns on graphene reduces the thermal conductivity, which when taken together leads to an increase in the figure of merit for functionalized graphene by up to 2 orders of magnitude over that of pristine graphene, reaching its maximum ZT ∼ 3 at room temperature according to their calculations, as reported in a paper in the ACS journal Nano Letters. These results suggest that appropriate chemical functionalization could lead to efficient graphene-based thermoelectric materials.

More... | Comments (0) | TrackBack (0)

S. Korean/US team develops new production method for inexpensive and more efficient thermoelectric materials

April 03, 2015

Researchers in South Korea at IBS Center for Integrated Nanostructure Physics along with Samsung Advanced Institute of Technology, the Department of Nano Applied Engineering at Kangwon National University, the Department of Energy Science at Sungkyunkwan University, and Materials Science department at CalTech have developed a new method for creating a novel and much more efficient thermoelectric bismuth antimony telluride (Bi0.5Sb1.5Te3) alloy.

In tests reported in a paper in the journal Science, the efficiency (zT) reached 2.01 at 320 K (46.85 ˚C) within the range of 1.86 ±0.15 at 320 K for 30 samples, nearly doubling the industry standard. When the melt spun alloy is used in a Peltier cooler, the results are also significant. The new material was able achieve a temperature change of 81 K at 300 K (26.85° C).

More... | Comments (1) | TrackBack (0)

SUTD team proposes low-temperature thermionic converter with graphene cathode; about 45% efficiency

March 09, 2015

Researchers at the Singapore University of Technology and Design (SUTD) are proposing that it is possible to design an efficient graphene-cathode-based thermionic energy converter (TIC)—a device for converting heat to electricity leveraging the phenomenon of thermionic emission, or the release of electrons from a hot body—operating at around 900 K (626 °C) or lower, as compared with a conventional metal-based cathode TIC operating at about 1500 K (1227 °C).

With a graphene-based cathode at 900 K and a metallic anode, the efficiency of the proposed TIC would be about 45%, they concluded in a paper on the work published in the journal Physical Review Applied. If realized, an efficient, low-temperature TIC could provide a supplementary or an alternative approach to thermoelectric devices for waste heat recovery using low grade waste heat—i.e, from engine exhaust or industrial processes.

More... | Comments (2) | TrackBack (0)

Green Car Congress © 2016 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group