Green Car Congress
Go to GCC Discussions forum About GCC Contact  RSS Subscribe Twitter headlines

Waste Heat Recovery

[Due to the increasing size of the archives, each topic page now contains only the prior 365 days of content. Access to older stories is now solely through the Monthly Archive pages or the site search function.]

MIT/Stanford team develops battery technology for the conversion of low-grade waste heat to power; TREC

May 22, 2014

Researchers at MIT and Stanford University have developed new battery technology for the conversion of low-temperature waste heat into electricity in cases where temperature differences are less than 100 degrees Celsius. Their approach is based on a phenomenon called the thermogalvanic effect—the dependence of electrode potential on temperature—and is described in a paper published in the journal Nature Communications by postdoc Yuan Yang and professor Gang Chen at MIT, postdoc Seok Woo Lee and professor Yi Cui at Stanford, and three others.

The MIT and Stanford team devised an electrochemical system using a copper hexacyanoferrate cathode and a Cu/Cu2+ anode to convert heat into electricity. The thermally regenerative electrochemical cycle (TREC) entails a four-step process: (1) heating up the cell with waste heat; (2) charging at high temperature; (3) cooling down the cell; (4) discharging at low temperature.

More... | Comments (1) | TrackBack (0)

Dearman-led consortium awarded $3.1M to develop waste-heat-recovery system using liquid air engine

April 23, 2014

A consortium led by the Dearman Engine Company has been awarded £1.86 million (US$3.12 million) in the latest round of IDP10 funding from the UK’s Technology Strategy Board to support the development of a heat-recovery system for urban commercial vehicles. The tenth competition under the Low Carbon Vehicles Innovation Platform’s integrated delivery program (IDP), IDP10 is targeting the building of an integrated low-carbon-vehicle innovation chain, from the science base, through collaborative R&D to fleet-level demonstration.

The Dearman project is to deliver a production-feasible waste-heat recovery system for urban commercial vehicles, which offers life-cycle CO2 savings of up to 40%; fuel savings of 25%, with the potential of up to almost 50%; and potential payback in less than three years. The project uses the Dearman Engine, a highly-efficient liquid nitrogen or air (LiN) engine (earlier post) that harvests low-grade heat sources and, in this configuration, is most effective in urban duty cycles, working with the internal combustion engine (ICE) as a hybrid powertrain.

More... | Comments (6) | TrackBack (0)

HeatReCar project demonstrates technical feasibility of thermoelectric generator for waste heat recovery; economic case more difficult

April 07, 2014

A recently completed European project coordinated by Centro Ricerche Fiat (CRF) demonstrated the technical feasibility of a Bi2Te3-based thermoelectric generator (TEG) for waste heat recovery for application to a diesel light-duty truck (LDT). The project “Reduced energy consumption by massive thermoelectric waste heat recovery in light-duty trucks” (HeatReCar) focused on thermoelectrics to provide electricity, either to on-board components or to the power train of hybrid electric vehicles. Reduced fuel consumption for these purposes translates to emissions reductions.

TE materials have been employed previously in automotive applications but have not achieved reasonable conversion efficiencies. The researchers tackled this issue in two ways. They selected bismuth telluride (Bi2Te3) suitable for lower operating temperatures in a diesel engine. They also optimized the geometry of heat transfer surfaces to maximize the temperature difference available to the TE modules. The technology was implemented in a prototype TE generator (TEG) for a diesel IVECO Daily light-duty truck (LDT) in common use in the EU.

More... | Comments (2) | TrackBack (0)

Ricardo advancing with two novel heavy-duty vehicle technologies: cryogenic split-cycle engine and microwave fuel reforming

September 04, 2013

The concept of the Ricardo Split-Cycle engine. The recuperated engine uses isothermal compression via cryogenic injection to enable significant exhaust to compressed gas heat transfer. Source: Neville Jackson. Click to enlarge.

Ricardo is advancing its work with two novel technologies to improve the efficiency of heavy-duty goods vehicles: a cryogenic split-cycle engine “CryoPower” (earlier post), and a low-carbon waste-heat powered microwave fuel reformer “HeatWave II”.

Heavy duty vehicles, such as long haul trucks, represent a significant challenge in terms of the reduction of carbon dioxide emissions. An essential element of the transportation mix of modern industrialized society, they are inherently less amenable to the type of electrification and hybridization strategies that are already contributing to reduced carbon emissions and potential long-term sustainability for the light vehicle sector.

More... | Comments (2) | TrackBack (0)

Green Car Congress © 2013 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group