VW Bailing Out of Bluetec Alliance
General Motors Joins Model Fuels Consortium

New Device Monitors Multiple Species of Emissions Directly from Exhaust

A team from The University of Manchester (UK) has constructed a laser measuring device capable of recording levels of carbon dioxide, carbon monoxide and methane from directly inside an exhaust.

Once optimized, the process could be incorporated into onboard diagnostic systems that would monitor emissions as vehicles drive along—and potentially help people reduce their emissions by adjusting their driving style.

Reporting in the Optical Society of America’s journal Applied Optics, academics claim this approach is faster and more sensitive than the extractive techniques normally used to monitor emissions.

In an MOT (Ministry of Transport) test, for example, exhaust emissions are extracted into a box while the engine is idling and the gases present are then measured.

The University of Manchester team employed a near-IR diode laser sensor to measure the variation in gas concentration during changes in the operating conditions of a Rover engine, such as increasing and decreasing the throttle, adjusting the air to fuel ratio, and start-up.

This is the first instance of this type of near-IR diode laser sensor being used directly in the exhaust of a static internal combustion engine to measure emissions.

—Dr Philip Martin

The team say the components for the device are readily available and the near-IR technology allows highly accurate readings to be taken and also cuts out interference.

In the studies reported in Applied Optics, the near-IR device used two diode lasers operating at different frequencies; one detecting carbon monoxide and carbon dioxide and the other detecting methane.

The team measured the emissions produced by a Rover K-series car engine mounted on a test bed – but they have also taken the process outside the laboratory and measured exhaust emissions in passing vehicles.

Components handling the high sensitivity and robustness required to apply this approach in the real world are only now becoming available. We have already constructed a battery-powered roadside unit using the same technology, employing rugged and robust telecommunications components.

—Dr Martin

The next steps will be to fully quantify the technique and add additional lasers for other key emissions such as nitrogen oxide, nitrogen dioxide and specific hydrocarbons.

Dr Martin, who is a co-founder of University spin-out company TDL Sensors, says the technology could also potentially be used in roadside congestion charging systems, with less polluting vehicles being charged less.

The work was partly funded by the European Framework 5 project Advanced Laser Sensor Systems for Leading Edge Manufacturing.

Resources:

Comments

Rafael Seidl

Nobody is going to adjust - i.e. moderate - their driving style for the sake of emissions. It's too hard and there's too little upside. People don't even do simple things like checking tire pressure regularly and shifting their manual transmissions into higher gear earlier, which saves fuel, i.e. hard-earned cash.

Stan Peterson

Before you can control, you must be able to measure.

This is true even if the ability to measure trace amounts in ppm, ppb, or ppt, has allowed a lot of smarmy types to get wealthy blaming non-existent pollution of non-deleterious but now measurable emissions.

But modifying driving habits is as Rafael says... hopeless.

OTOH, feedback for auto control is another question.

The comments to this entry are closed.