New Method for Producing High-Performance Zeolite Membranes; Could Increase Energy Efficiency of Biofuel Production
New Flyer Defers Indefinitely Production of 140 Diesel-Electric Hybrid Buses Due to Delays in Customer Receiving State Funding

New Graphene Nanomaterial Could Result in More Fuel-Efficient Airplanes and Cars; Applications in Energy Storage

Exfoliated Graphite NanoPlatelets. Bottom: lateral and edge views. Source: MSU, XG Sciences. Click to enlarge.

A Michigan State University (MSU) researcher and his students have developed a nanomaterial—xGnP Exfoliated Graphite NanoPlatelets—that makes plastic stiffer, lighter and stronger and could result in more fuel-efficient airplanes and cars as well as more durable medical and sports equipment and enhanced energy storage systems.

The key to the new material’s capabilities is a fast and inexpensive process for separating layers of graphite (graphene) into stacks less than 10 nanometers in thickness but with lateral dimensions anywhere from 500 nm to tens of microns, coupled with the ability to tailor the particle surface chemistry to make it compatible with water, resin or plastic systems.

The small stacks of graphene can replace carbon nanotubes, nano-clays, or other carbon compounds in many composite applications. When added in small amounts (2-3%) to plastics or resins, the nanoparticles make these materials electrically or thermally conductive and less permeable, while simultaneously improving mechanical properties like strength, stiffness, or surface toughness.

When used alone or in conjunction with carbon or glass fibers, the nanoparticles enhance electrical and thermal conductivity—producing strong, lightweight composites suitable for aerospace, automotive, or electronic applications.

Applications of xGnP + meals in energy storage. Click to enlarge.

Combined with metal nanoparticles, (xGnP + nanoparticle), the material has potential for applications in fuel cells, supercapacitors, batteries and hydrogen storage.

The material will be instrumental in the development of new and expanded applications in the aerospace, automotive and packaging industries, said Lawrence Drzal, University Distinguished Professor of chemical engineering and materials science at MSU and director of MSU’s Composite Materials and Structure Center.

Drzal led the research group that developed the product, which is considered to be a practical, inexpensive material that has a unique set of physical, chemical and morphological attributes. The nanoscale material, which is electrically and thermally conductive, has reduced flammability and barrier properties, he said.

The graphene nanoparticles are being manufactured by a new startup company, XG Sciences Inc., located in mid-Michigan and a spinoff from intellectual property owned by MSU. XG Sciences has an exclusive license to manufacture this material.

XGnP can either be used as an additive to plastics or by itself it can make a transformational change in the performance of many advanced electronic and energy devices. It can do so because it’s a nanoparticle with a unique shape made from environmentally benign carbon, and it can be made at a very reasonable cost.

—Lawrence Drzal

Potential applications of xGnP include:

  • Lighter, more fuel-efficient aircraft and car parts, and stronger wind turbines, medical implants and sports equipment.
  • Surface coatings on Li-ion electrodes and transparent conductive coatings for solar cells and displays.
  • Lightweight gasoline tanks and leak-tight and plastic containers that keep food fresh for weeks.

Drzal and his partners (former students Hiroyuki Fukushima, Inhwan Do and XG Sciences CEO Mike Knox) are already looking ahead to more uses for the product, such as recyclable, economical or lightweight units to store hydrogen for the next generation of fuel cell-powered autos.

Now that we know how to make this material and how to modify it so that it can be utilized in plastics, our attention is being directed to high-end applications where we can really make some substantial changes in the way electronics, fuel cells, batteries and solar cells perform as a result of using this material...This project goes beyond doing research and publishing papers. It appears to have made the transition from a laboratory curiosity to a commercial product and simultaneously has helped create a spinoff company to increase the economic viability of Michigan.

—Lawrence Drzal




This sounds promising, yet it is another nearly meaningless article without comparisons.. what percent stronger, lighter, cheaper, etc.


It is still in the early stages without proven applications. Like the transistor, they knew they were better than vacuum tubes for many applications, they just did not have the applications yet. They were smaller, lighter, cheaper too, but it took a while to see what could be done with them.


"..xGnP Exfoliated Graphite NanoPlatelets — that makes plastic stiffer, lighter and stronger" would imply that it already exists, is tradenamed, likely patent pending, and complete with measured tensile strenght and other physical property results.

There are so many improvements and breakthroughs hustled on the web that never pan out. Failure to provide at least some numerically significant results and comparisons leaves any article suspect.

Calvin Brock

Actually I read it yesterday but I had some thoughts about it and today I wanted to read it again because it is very well written. Shop here

Calvin Brock

Easily, the article is actually the best topic on this registry related issue. I fit in with your conclusions and will eagerly look forward to your next updates. Just saying thanks will not just be sufficient, for the fantasti c lucidity in your writing. I will instantly grab your rss feed to stay informed of any updates.
Aftermarket Custom Seat Covers

The comments to this entry are closed.