Opel Begins Ampera EREV Mule Testing
US Refiners Slightly Expanded Capacity From 2008 to 2009

Recent Arctic Warming Reverses Millennia-long Cooling Trend

Warming from greenhouse gases has countered a millennia-long natural cooling cycle in the Arctic, suggests new research published in the 4 September issue of the journal Science. Although the Arctic has been receiving less energy from the summer sun for the past 8,000 years, Arctic summer temperatures began climbing in 1900 and accelerated after 1950. The decade from 1999 to 2008 was the warmest in the Arctic in two millennia; Arctic temperatures are now 2.2 °F (1.2 °C) warmer than in 1900.

Incorporating geologic records, biologic records and computer simulations, the study reconstructed Arctic summer temperatures at a resolution down to decades, and thereby extended the climate record a full 1,600 years beyond the 400 year-long record that was previously available at that resolution.

This newly lengthened record shows that recent warming was preceded by a cooling trend that lasted at least 1,900 years and should have continued throughout the 20th century. These results indicate that recent warming is more anomalous than previously documented, says Darrell Kaufman of Northern Arizona University, the lead author of the study.

The study was conducted by an international team of scientists and primarily funded by the National Science Foundation (NSF).

Kaufman says that the results of his team’s study are significant not only because of their implications for our understanding of human influences on climate change, but also because they agree with the National Center for Atmospheric Research’s (NCAR) climate model, which is used for predicting future climate change; this agreement increases confidence in the model’s simulations of future climate change.

The new study is the first to quantify at a decadal resolution a pervasive cooling across the Arctic from the early part of the first millennium C.E. to the industrial revolution, according to Kaufman. During this period, summer temperatures in the Arctic cooled at a rate of about 0.2 degrees Celsius per millennium, leading to the “Little Ice Age”, a period of sustained cold that ended around 1850.

Scientists have known for a while that the current period of warming was preceded by a long-term cooling trend. But our reconstruction quantifies the cooling with greater certainty than before.

—Darrell Kaufman

The researchers believe that the long cooling trend was caused by a previously recognized wobble in the Earth’s axis of rotation that slowly increased the distance between the Earth and the Sun during the Arctic summer, and thereby reduced summer sunshine in the Arctic. But even though this cooling wobble persisted throughout the 20th century, by the middle of the 20th century, summer temperatures in the Arctic were about 0.7 degrees Celsius higher than would have been expected if the cooling trend had continued. This incongruity provides evidence of human influences on climate change, says Kaufman.

Kaufman says that his team’s study agrees with previous studies that have shown that Arctic temperatures increased during the 20th century almost three times faster than temperatures increased throughout the rest of the Northern Hemisphere. Called arctic amplification, this phenomenon is caused by increases in the Arctic’s absorption of the sun’s heat by dark land and exposed ocean as Arctic ice and snow melt away.

Because we know that the processes responsible for past arctic amplification are still operating, we can anticipate that it will continue into the next century. Consequently, Arctic warming will continue to exceed temperature increases in the rest of the Northern Hemisphere, resulting in accelerated loss of land ice and an increased rate of sea-level rise, with global consequences.

—Gifford Miller of the University of Colorado, Boulder, a member of the study team

The 2000-year reconstruction of Arctic temperatures provided by the study incorporated three types of field-based data, each of which captured the response of a different component of the Arctic's climate system to changes in temperature.

These field-based data included temperature reconstructions that were published by the team earlier this year. These reconstructions were based on evidence provided by sediments from Arctic lakes, including algal abundance, which reflects the length of the growing season, and the thickness of annually deposited sediment layers, which increases during warmer summers when deposits from glacial melt-water increase. The Kaufman et al. study also incorporated previously published data from glacial ice and tree rings that was calibrated against the instrumental temperature record.

The study also included a 2,000 year-long computer simulation of climate change that incorporated the Earth’s slow rotational wobble and resulting reduction in seasonal sunlight in the Arctic. Because the model’s estimate of the amount of cooling resulting from the wobble effect matched the cooling reflected in the long record of climate change provided by lake sediments and other natural archives, this analysis increased confidence in the model’s ability to accurately predict temperature responses in the Arctic to factors that influence climate change.


  • Darrell S. Kaufman, et al. (2009) Cooling Recent Warming Reverses Long-Term Arctic. Science 325, 1236 doi: 10.1126/science.1173983


The comments to this entry are closed.