UC Davis Researchers Suggest the “Battery Problem” Seen to Be Slowing Electric Drive Commercialization Is Perceptual as Well as Technological
Ford Extends Global Electric Vehicles Plan to Europe; Five Models to Launch by 2013

DOE Announces $100M Available for ARPA-E’s 3rd Funding Opportunity; Focus on Grid-Scale Energy Storage, Electrical Power Technology, and Building Energy Efficiency

At the inaugural ARPA-E Energy Innovation Summit in Washington this week, US Energy Secretary Steven Chu announced that $100 million in Recovery Act funding will be made available for ARPA-E’s third round of funding opportunity.

ARPA-E’s first solicitation, announced in early 2009, was highly competitive and resulted in funding 37 projects aimed at transformational innovations in energy storage, biofuels, carbon capture, renewable power, building efficiency, vehicles, and other areas. (Earlier post.) ARPA-E’s second solicitation announced in December, 2009—which has yielded nearly 500 concept papers—focused specifically on three areas of technology representing new approaches for biofuels, carbon capture, and batteries for electric vehicles. (Earlier post.)

The third round is focused specifically on three technology areas:

  1. Grid-Scale Rampable Intermittent Dispatchable Storage (GRIDS). ARPA-E seeks to develop new technologies to enable the widespread deployment of cost-effective grid-scale energy storage. While many valuable applications for grid-scale storage exist, this program focuses on developing energy storage technologies to balance the short-duration variability in renewable generation.

    This program seeks to develop revolutionary new storage systems that provide energy, cost, and cycle life comparable to pumped hydropower, but which are modular and can be widely implemented at any location across the power grid.

    Specifically, two areas will be considered: 1) proof of concept storage component projects focused on validating new, over-the-horizon electrical energy storage concepts, and 2) advanced system prototypes that address critical shortcomings of existing grid-scale energy storage technologies.

    Ultimately, technologies developed through this program will be scalable to the megawatt and megawatt-hour levels of power and energy capacity. This program will complement other Department of Energy grid-scale energy storage efforts by focusing on technology prototyping and proof-of-concept R&D efforts rather than pilot demonstration projects.

  2. Agile Delivery of Electrical Power Technology (ADEPT). ARPA-E seeks to invest in materials for fundamental advances in soft magnetics, high voltage switches, and reliable, high-density charge storage. These investments will be coupled to advanced circuit architectures, and scalable manufacturing processes with the potential to leapfrog existing power converter performance while offering reductions in cost.

    Specifically, three categories of performance and integration level will be considered: 1) fully-integrated, chip-scale power converters for applications including, but not limited to, compact, efficient drivers for solid-state lighting, distributed micro-inverters for photovoltaics, and single-chip power supplies for computers, 2) kilowatt scale package integrated power converters by enabling applications such as low-cost, efficient inverters for grid-tied photovoltaics and variable speed motors, and 3) lightweight, solid-state, medium voltage energy conversion for high power applications such as solid-state electrical substations and wind turbine generators.

    Deploying advanced power electronics could provide as much as a 25-30% reduction in electricity consumption—or 12 % of total US energy consumption. Innovations in power electronics could lead to significant reduction in costs.

  3. Building Energy Efficiency Through Innovative Thermodevices (BEET-IT). ARPA-E seeks to develop energy efficient cooling technologies and air conditioners (AC) for buildings to save energy and reduce GHG emissions from: (a) primary energy consumption due to space cooling and (b) refrigerants used in vapor compression systems.

    ARPA-E seeks innovative research and development approaches to increase energy efficiency and reduce GHG emissions due to cooling of buildings in the following areas: 1) cooling systems that use refrigerants with low global warming potential; 2) energy efficient air conditioning (AC) systems for warm and humid climates with an increased coefficient of performance (COP); and 3) vapor compression AC systems for hot climates for re-circulating air loads with an increased COP.

    The unique challenge for the US market is to develop technologies that can be retrofitted into current cooling systems. For developing economies, there is a large market for new cooling technologies.



Some of these funds have also gone to Dan Nocera at MIT to support his venture into solar powered electrolysis. While Chu admits it is a longshot - it's good to see these funds directed toward potential breakthrough areas. In particular high efficiency methods of splitting water. If Dan's process, or others like it can be scaled, the potential for a Bloom-type SOFC fueled by solar derived H2 could make sense. The fuel is water. the energy to make the fuel is solar.

A long shot. But a direction that makes good sense in the interest of Energy Independence.


Dr. Chu is the right person to make technical decisions. He was leader of Livermore Labs and has the credentials. He was ridiculed for mentioning white roofs to save energy, but he merely pointing out the easy ways to conserve. I guess if you have the right person, it is easier for the opposition to just ridicule any chance they get.

The comments to this entry are closed.