NOAA: Warmest April Global Temperature on Record; Also Warmest January-April
Land Rover Introducing 2WD and Hybrid Technology

New High Performance Photocatalyst and Hybrid Photocatalytic-Electrolysis System Could Significantly Reduce Voltage Required and Cost for Hydrogen Production

Top: Mechanism of the photocatalytic-electrolysis system. Bottom: New high-performance photocatalyst (inset) and overall model of the system. Source: AIST. Click to enlarge.

Researchers at Japan’s National Institute of Advanced Industrial Science and Technology (AIST) have developed a tungsten oxide (WO3) photocatalyst that provides a significantly higher quantum yield under visible light than conventional photocatalysts.

The new catalyst is applied in a hybrid photocatalytic-electrolysis system that uses the photocatalytic reaction converting solar energy to lower the electrolysis voltage required for the hydrogen production by water electrolysis. AIST researchers say that the use of solar energy can reduce the voltage required for water electrolysis by almost 50%, leading to lower-cost production of hydrogen.

Potential diagram of various reaction mechanisms for hydrogen production via water decomposition. (a) Water decomposition by photocatalyst. (b) AIST’s newly developed photocatalyst-electrolysis hybrid system. (c) Ordinary water electrolysis: high voltage is required. Source: AIST. Click to enlarge.

The photocatalyst generates oxygen by oxidizing water and reducing iron(III) ions (Fe3+) to iron(II) ions (Fe2+). The system also involves low-voltage electrolysis in which water is reduced to generate hydrogen and Fe2+ ions are oxidized to Fe3+ ions.

The high efficiency of the WO3 photocatalyst was achieved using a new method—treatment of the surface of the photocatalyst with Cesium (Cs). The activity of the treated catalyst is more than ten times that of untreated catalysts. The quantum yield of the new photocatalyst is 19% under visible light of wavelength 420 nm and is approximately 50 times the previously reported values (0.4%).

In its study of hybrid photocatalytic-electrolysis systems to reduce the cost of hydrogen production, AIST noted that while certain candidate redox media are used for oxidation-reduction reactions, the technique for low-voltage hydrogen production using Fe2+ ions has already been established. The researchers decided then that the use of iron (Fe2+ and Fe3+ ion pairs) as the redox medium was, at present, the most practical technique for the hybrid system.

A major challenge that was faced in the realization of this hybrid system was the development of a high-performance photocatalyst that would reduce the redox medium (from Fe3+ to Fe2+) while generating oxygen from water.

Prior AIST work had shown that a WO3 semiconductor photocatalyst can absorb visible light and that its performance in environmental cleanup processes is significantly better than that of conventional TiO2-based photocatalysts when a copper promoter or a palladium promoter is supported on the surface of the photocatalyst.

In this new study, the conditions for the preparation and surface-treatment of the WO3 photocatalyst powder were optimized to improve the activity of the photocatalyst for the reaction in which Fe3+ ions are reduced while oxygen is generated from water. The researchers found that the treatment of the photocatalyst with cesium salt significantly improved the photocatalytic activity.

Fe2+ ions were stoichiometrically generated in the reaction. It was confirmed that Cs compounds that did not dissolve in water were present on the surface of the treated photocatalyst. The surface area, particle configuration, light absorption, and internal structure of the WO3 semiconductor photocatalyst particles did not change considerably after Cs treatment.

There are two methods of Cs surface treatment: one involves the addition of cesium salt to a solution used for hydrothermal treatment, and another involves the impregnation of the WO3 particles with cesium carbonate and sintering the particles at approximately 500 °C. High activity could be achieved by both the methods.

When the Cs-treated WO3 photocatalyst surface was washed with highly acidic water to decrease the Cs ions on the surface or washed with an iron sulfate (FeSO4) solution, the activity of the treated photocatalyst improved further (196 µmol/h) and was about 10 times that of untreated WO3 photocatalysts (18 µmol/h).

The AIST team then investigated a mechanism for improving the activity of the WO3 photocatalyst surface-treated with Cs. The Cs atoms that were unevenly distributed on the surface of the WO3 photocatalyst were partly removed by using highly acidic water, thereby generating ion exchange sites that do not exist on normal WO3 surfaces. Protons (H+) and water molecules, in the form of H3O+, were specifically absorbed at these ion-exchange sites, where oxygen was efficiently generated by the oxidation of water. At some of these sites, ion-exchange of Fe2+ ions also occurred and Fe3+ ions are rapidly reduced to Fe2+ ions at the sites.

The reaction for oxygen generation efficiently progressed until all Fe3+ ions added at the beginning of the experiment were reduced to Fe2+ ions. The reaction in both aqueous solutions of iron sulfate and that of iron chloride proceeded stoichiometrically. The photocatalyst exhibited higher activity (256 µmol/h) in the aqueous solution of iron chloride than in that of iron sulfate. The activity of the catalyst did not deteriorate during the repeated experiments.

The quantum yield of 19% obtained under visible light (420 nm) was 48 times the previously reported values (0.4% for 405 nm) for WO3 photocatalysts used for the generation of oxygen using Fe3+ ions. The AIST team achieved an efficiency of 0.3% for the conversion of solar energy to chemical energy, i.e., the production of Fe2+ ions; this is greater than the highest efficiency value reported previously for solar energy conversion by water decomposition using photocatalyst powder.

In comparison to the efficiency of conversion of solar energy to hydrocarbons in photosynthesis, this value exceeds the efficiency for switchgrass (0.2%), which is a well-known plant as a prospective raw material of biofuel. Such a significant improvement in the activity is a great step toward the realization of artificial photosynthesis, the researchers said.

The relation between the voltage and current of electrolysis in a small electrolysis apparatus that produces hydrogen using Fe2+ ions generated in the photocatalytic reaction. (a) Ordinary electrolysis. (b) Electrolysis in the presence of Fe2+ ions generated in the photocatalytic reaction. Source: AIST. Click to enlarge.

The photocatalyst-electrolysis hybrid system can directly produce hydrogen via the low-voltage electrolysis of an aqueous solution of Fe2+ ions. An electrolysis current was observed at a low voltage of approximately 0.8 V, and hydrogen corresponding to the current was generated at a counter electrode.

Theoretically, hydrogen production by ordinary water electrolysis without using Fe2+ ions requires a minimum electrolysis voltage of 1.23 V; however, in practice, a voltage of 1.6 V or higher is required because of the large over voltage of oxygen. In the new hybrid system, the photocatalyst can accumulate solar energy in an aqueous solution of Fe2+ ions, thereby enabling a low electrolysis voltage. Various types of power sources including solar cells and night-time electricity can be used for the electrolysis.

The results of this study represent a major step toward the development of a system for low-cost hydrogen production utilizing solar energy, AIST said.

If the current quantum yield of the photocatalyst is further increased and any light with a wavelength less than 480 nm can be used for this reaction, the theoretical limit of solar energy conversion efficiency will be 2.4%. If a semiconductor that can make use of wavelengths longer than that used for WO3 is developed and light with wavelengths up to 600 nm can be utilized, the theoretical limit will increase to 7.5%. The AIST team intends to continue the study to improve photocatalysts so as to increase the efficiency of solar energy conversion.



Low cost H2 made in situ for fueling SOFCs is the mid-term goal for CHP-type Residential Power Units. By producing our own energy "on-demand" we will dramatically reduce the need for large centralized hydro, nuke and coal fired power projects. We will reduce the spiraling cost of building and maintaining copper wire grids, "smart" or dumb. And we greatly increase national security by distributing power generation across thousands of small non-targetable systems.

This type of low voltage electrolysis is just one of many new paths to distributed energy systems. There are a lot of good minds at work on this problem and the commercial opportunities are increasing. All good news for a cleaner, green, independent energy future.


I note that they only compare this to "the efficiency of conversion of solar energy to hydrocarbons in photosynthesis," but how does this compare to the efficiency of conversion of solar energy to electrons with photovoltaic cells?

Roger Pham

The solar energy conversion to chemical energy of only 0.3% is simply too low to be practical, considering the cost of intalling all the hardwares and maintenance.

If and when this technology can push to near 10% solar energy efficiency, then we will really have something. The Fe2+ ions solution can be stored and transported in pipelines instead of H2. Then, whereever H2 is needed, it can be synthesized using much less electrical energy. Hopefully, the low-cost and Platinum-free electrolyzer electrode as developed recently will also be compatible with the Fe2+ solution for hydrolysis of water.


A quantum efficiency of 19% at 420nm means nothing at all in real life. >99% of all solar photons are not 420nm !

This may be scientifically interesting, but the TOTAL efficiency (so of the whole light spectrum) is what is really important. I am quite sure that it is not much better than the efficiency of switchgrass.

Compare this with cheap and convenient CIGSS cells with a real-life efficiency of >15% ! It is far more efficient and easy to use as much photons as possible to produce electricity in these cells and then use the electricity at a convenient location to produce hydrogen.

That way, you also have the possibility to use the electricity for something else if you desire, and to change your catalyst without having to climb a roof or to wander in a desert.

Ole Grampa

Bush embraced hydrogen power so I'm against it.


Harvey D.



Personal attacks are not allowed under the terms of use.

Alain is right, this should be compared with biomass for efficiency. It may be as efficient, but plants grow and have done so for a long time, use what we have. This is a scientific finding and that is fine, but it may not find practical use anytime soon.


As already commented, the efficiency is so low that it's uninteresting.
The results of research from University of East Anglia are far more promising with 60% efficiency.

The comments to this entry are closed.