Harris AutoTECHCAST Study Finds US Vehicle Owners Currently Would Choose Lower-cost, Higher Fuel Economy Gasoline-Engined Vehicles Over Higher-Priced Alt Fuel Engines or Electric Vehicles
Gordon Murray Announces Specs and Performance Target for Electric T.27 City Car

$3M Award Supports Production of New Multi-tasking “Fuzzy Fiber” Nanomaterial; Energy Applications

A $3 million Ohio Third Frontier award to the University of Dayton Research Institute (UDRI) will fund the scale-up and production of a new nanomaterial that will allow composites to multitask—enabling a wind turbine tower that can store energy to release on a calm day or a military vehicle whose armor can serve as a battery, powering some of the vehicle’s electrical components.

Nicknamed “fuzzy fiber” by its inventor at UDRI, Nano Adaptive Hybrid Fabric (NAHF-XTM) is the first tailored nanomaterial capable of being produced in sizes and quantities large enough to make them affordable and viable for large-scale commercial use. When incorporated into resins, fuzzy fibers enable composites to be tailored for electrical and thermal conductivity, chemical and biological sensing, energy storage and conversion, thermal management and other properties.

This is going to disrupt the way we think about materials. From now on, instead of thinking “mono,” we will think “multi”—multiscale, multifunctional, multitasking. By manufacturing structural material that can serve multiple functions, fewer parts are needed for any given application, which means reduced cost, lighter weight and greater efficiency.

—NAHF-XTM inventor Khalid Lafdi, Group Leader for Carbon Materials at UDRI

Aside from serving simply as structural material, composites made with fuzzy fiber can work as batteries, sensors, heaters, supercapacitors, structural health monitors and other systems whose operations are normally performed by additional components, Lafdi says.

Everybody is growing carbon nanotubes on substrates. We’re the only people who are producing them on a large-scale and continuous process, and not just in batches. This means we can produce the material at a low cost, and it also means we can produce pieces big enough to cover an aircraft.

—Khalid Lafdi

Lafdi and his team have been producing 500 feet of 12-inch-wide fabric per day at a pilot plant in UDRI’s Shroyer Park Center. The Third Frontier award, announced 26 May in Columbus, will be matched by UDRI and Ohio collaborators Goodrich, Owens Corning and Renegade Materials to fund the creation and equipment of a full-scale production facility for the hybrid fabric. The new facility, to be located within Dayton’s Aerospace Hub, will be equipped to produce 60-inch-wide fabric. Goodrich expects to apply the technology in the marketplace first in commercial aerospace applications.

The NAHF-XTM technology was pioneered and perfected over seven years with funding from the Air Force, Army, aerospace industry and Third Frontier, said Brian Rice, Division Head for Multi-Scale Composites and Polymers at UDRI. After successfully controlling growth of carbon nanotubes on individual carbon fibers, researchers accomplished the same on a type of carbon-fiber yarn and eventually on engineered textiles. The breakthrough was in overcoming issues of uniformity and precisely controlling growth of the nanotubes.

Various industries have been replacing metals with composites in structures and components because of their lighter weight and durability. But in doing so, electrical and thermal conductivity inherent to metals is lost. By growing nanotubes on carbon fibers used in composites in a very specific manner, those properties are built back in—and the composites also can be tailored for specialized mechanical properties.

—Brian Rice

Rice said the hybrid fabric production facility will serve as a cornerstone for Ohio’s Aerospace Hub in Dayton by helping to attract and connect new and existing businesses related to aerospace, sensing technologies and advanced materials. One targeted application will be unmanned aerial vehicles weighing less than 150 pounds.

We’d like to begin making “smart” structural materials for UAVs that also serve as the plane’s communication, power and sensor systems. Not having to add a battery or external sensors means less weight on the plane.

—Brian Rice



A very high potential all-in-one material. This could be the answer for energy neutral or positive homes, small electric airplanes, future small and large EVs, wireless city lights, all kind of wireless gadgets and many other uses.

The economic recovery program could multiply (1000x) the investment here.


"enabling a wind turbine tower that can store energy to release on a calm day"

That is quite an idea, a 300 foot tall 3 megawatt wind turbine that can store energy in the tower.

The comments to this entry are closed.