Thailand enters the Canadian oil sands; Statoil selling 40% interest to PTTEP for US$2.28B
Eni and PDVSA launch major heavy-oil projects in Orinoco Belt in Venezuela

Purdue researchers identify final gene responsible for phenylalanine; potential to optimize plants for cellulosic biofuel by decreasing lignin

Purdue University scientists have found the last undiscovered gene responsible for the production of the amino acid phenylalanine, a discovery that could lead to processes to control the amino acid to boost plants’ nutritional values and produce better biofuel feedstocks. A paper on the work was published in the journalNature Chemical Biology.

Natalia Dudareva, a distinguished professor of horticulture, and Hiroshi Maeda, a postdoctoral researcher in Dudareva’s laboratory, determined that the gene is one of 10 responsible for phenylalanine production in plants. Understanding how the amino acid is produced could provide a strategy to increase or reduce that production.

Phenylalanine is important for plant protein synthesis and for the production of flower scent, anti-oxidants and lignin, a principal plant cell wall component that helps plants stand upright and acts as a barrier in the production of cellulosic ethanol. It is one of the few essential amino acids that humans and animals cannot synthesize, so it must come from plants.

In plant tissues where we want to lower lignin content, we may be able to block these pathways. In cases where you want to increase the amount of phenylalanine, we could do that as well.

—Hiroshi Maeda

Decreasing phenylalanine could lead to a reduction in lignin, which would improve digestibility of cellulosic materials for ethanol production. Increasing phenylalanine could boost the nutritional value of some foods.

Dudareva and Maeda used a co-expression analysis to find the prephenate aminotransferase gene. They monitored the expression activity of nine genes in the research plant Arabidopsis that were known to be involved in phenylalanine production and looked for other genes that became active at the same time.

This gene had almost identical gene expression patterns as the known phenylalanine-related genes.

—Hiroshi Maeda

The comparable gene in petunias also was identified. Dudareva and Maeda confirmed that its expression patterns matched other genes involved in the formation of phenylalanine and volatile scent compounds in the flower.

To test the find, Dudareva and Maeda used the E. coli bacteria. They overexpressed the protein encoded by newly discovered gene and detected the expected enzyme activity. They also decreased the gene’s expression in petunia flowers and witnessed a reduction in phenylalanine production.

The National Science Foundation funded the research.


  • Hiroshi Maeda, Heejin Yoo and Natalia Dudareva (2010) Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate. Nature Chemical Biology doi: 10.1038/nchembio.485



Nooo! We must not do genetic modifications to plants! We do not know what might happen! Why aren't all the Europeans protesting in the streets over this like they did over other genetically modified crops?! Nooooooo! We're all going to ....die!


In case anyone missed it, I was being blatently sarcastic above (other than the comment about European protests). It really is laughable how the Euros protested genetically-modified (GM) food crops to high heaven...but now GM biofuel feedstocks are on the horizon and they are no protesters & no angry dissent anywhere to be seen, when the same arguments can be applied to GM biofuel feedstock: No one knows how it will behave long-term in the natural environment, and whether or not it hybridize/cross-pollinate with other species, and what the effects of that happening would be.


There is the small fact that if less lignin or more phenylalanine made plants stronger or more resistant to insects, they'd have evolved those traits already. Disadvantageous changes aren't a threat to natural stocks; they'll die out if they escape into the wild.


If lignin helps plants stand up wouldn't less of it cause plants fall over? Just a simplistic question, but they evolved this for a reason and I assume the reason is still valid.


SJC, that is true for any agricultural crop.
In the wild, these plants would soon evolve to their 'natural' cousins, but just like any crop, If you grow them intentionally, they will survive (as long as humans protect them).


Just gasify the plant stalks and the lignin turns to biochar carbon to be returned to the land making the soil more fertile and sequestering the carbon in the soil.


Evolution improves survival and proliferation - GM can produce better biofuel feedstocks.

The comments to this entry are closed.