AMP Holding/AMP Electric Vehicles names former head of Cadillac as CEO; founder remains as President
Global Bioenergies signs a first contract with US industrial group for specific application of gaseous biohydrocarbon process

Brookhaven team uncovers details of transport of lignin precursors across plant cellular membranes

Researchers at the US Department of Energy’s (DOE) Brookhaven National Laboratory have unraveled some of the details of how precursors to lignin are transported across cellular membranes prior to linking up. The key finding, that the process requires a class of energy-dependent transporter molecules (ATP), may provide a way to alter plants’ lignin content and thereby change their composition for more efficient biofuel production, among other applications.

A paper on the work by Chang-Jun Liu, a Brookhaven biologist and postdoc Yu-Chen Miao is published in the early edition for the week of 13 December in the Proceedings of the National Academy of Sciences.

Being able to manipulate lignin biosynthesis would have a great influence on our ability to produce renewable biofuels from plant cellulosic feedstocks, and could also have a large effect on many other agricultural and industrial processes, such as the production of paper and more digestible foods for grazing animals.

—Chang-Jun Liu

Prior to cell-wall construction, lignin precursors known as monolignols are made in the cell’s interior cytoplasm. Some precursors may be sequestered in internal vacuoles for storage, while some move out of the cell to link up and form the lignin component of the cell wall. In both cases, the precursors move across a membrane, either out of the cell or into the vacuole. But no one was certain how the process occurred—whether by simple diffusion or via some active transport mechanism.

The Brookhaven team isolated portions of cellular and vacuolar membrane from Arabidopsis and poplar plants, making them into closed vesicles that resemble bubbles, and mixed in pure monolignols and ones that have been chemically modified to form monolignol glucosides, which are commonly observed in some plants. They then monitored which type and how much of each precursor moved across the two kinds of membranes and into the vesicles under a range of conditions, including in the presence of inhibitors for different kinds of transport molecules.

The range of assays revealed that pure monolignols move across the cellular membrane while monolignol glucosides move preferentially into vacuoles. But most importantly, very little of either precursor would move across either type of membrane without the addition of ATP. ATP is the energy molecule that is well known for providing the driving force for a group of transporters called ATP-binding cassette (ABC) transporters on cell membranes, Liu said.

Adding an agent that specifically inhibits ABC transporters completely blocked uptake of lignin precursors by both types of membrane vesicles. With these experiments and additional evidence, the team demonstrated that ABC-like transporters on cell membranes are responsible for the transport of lignin precursors.

Now that the scientists have identified a class of transporters likely involved in sequestering and transporting lignin’s building blocks, they’ll pursue detailed studies to identify exactly which members of the class are involved.

If we can identify those particular transporters we might be able to control their expression to reduce the precursor deposited into the cell wall, and thus lower the cell-wall content of lignin—or, selectively control the particular type of precursor deposited to change lignin composition and produce more easily cleavable biopolymers.

—Chang-Jun Liu

This work was supported by the DOE Office of Science.

Resources

  • Yu-Chen Miao and Chang-Jun Liu (2010) ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. PNAS doi: 10.1073/pnas.1007747108

Comments

SJC

Gasify and synthesize.

fred schumacher

Attempting to reduce lignin content in plants is a big mistake. Lignin is what holds the plant together. With reduced lignin concentrations, a plant will have difficulty standing up, reducing growth and making harvest extremely difficult.

Lignin should be recognized as a valuable product in itself and could be used as feedstock for a biochemical industry to replace petrochemicals.

The comments to this entry are closed.